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The main part of this paper proves R. Brauer’s class nurelaion
[1] in a shorter and more natural way. Consequentlg passible to
obtain Stark’s generalization [8] with no extra effartd to observe that
the theorem may be applied using only the units of the ongufields.
Nehrkorn’s conjecture [6] that there exists a correspgndiass group
isomorphism is also shown to be correct.
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1. Relation theorems.In this first section are derived some general
results to describe relations in torsion modules andoision-free
modules. All the modules concerned will be finitely gated.

Let ® be a Dedekind domain contained in a fiklaf characteristic
zero and write®d, = {a/BUK @0 D, BD-p} for its localisation at the
prime idealp. Then a®-lattice M is a finitely generated torsion-fré&®-
module.M will be identified with its natural embedding KM = KO M
andM, will be written for®,,M.

If M andN are two®-lattices ofKM = KN then the indexM¥ : N]
may be defined through the local indicéd,[: N,] for the free®,-
modulesM, and N,. Let §, be the determinant of a matrix which
describes a basis df, in terms of one foM,. Then M, : N,] = ®,9, is
well-defined and non-zero. By taking fr&submodules oM and N
with the same rank &4 andN it is clear that thé, can be chosen equal
for almost allp and that the ratio of twd, is always in the field of
fractionsk of ®. Hence the intersection over all primjesvhich defines
the index, viz.

[M:N] =[] M, :N]
p
is the product of an ideal ® and an element df. If M and N are
isomorphic then M : N] = ®& for the determinantdl0K of the
corresponding automorphism &M. Thus for® = 7Z andK = C this
coincides with the usual definition of the index viewedaasdeal, and
whenK = k the definition coincides with that of Frohlich [2]. Kik is a

number field extension with norrhlkK , D is the ring of integers K,
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anda, b are ideals oK then p:b] = NkK (a_llt).
Now let G be a finite group. A[G]-lattice is just &®-lattice which
is a®[G]-module.

THEOREM 1.1. Supposd e} is a finite set of idempotents if&, X;

is the character of [Gle, and ) ax; = Ofor a O Z. If M and N are
isomorphic®[G]-lattices and KM= KN then

m [Mi: Ni]ai =
where M= MneKM and N = NngKN.

Proof. Any twoK[G]-modulesX andY and aK[G]-automorphismu
of X induce an automorphismy of Homkg (Y, X), namelyay(f) =
a o f. Clearly detay = A(a, X) depends only o and the isomorphism
class ofY, which is determined by the characgeof Y. If Y=Y, O Y,
then 0# detay = (detay)(detay,), and so

A0, Xa+X2) = Aa, X1) AQ, X2)-

Thusy — A(a, X) extends to a homomorphism from the additive group
of the virtual characters d& into the multiplicative group oK. In
particular,

*) >axi=0 O []a@x) =1.

Let e be an idempotent d[G] and x the character oY = K[G]e.
Then there is &-isomorphismB : Honkg(Y, X) = eX given byf —
f(e) with inversex — (f: y— yX). Definea, as the restriction ad to eX

Thenae o B =B o ay from whichA(a, x) = detfe). If a is chosen so
thataM = N then®det@.) = [M; : Ni] and (*) proves the theorem.

Remark (J.-J. Payan). From the local definition of ipdke theorem
still holds if the®[G]-latticesM and N are just assumed to be in the
same genus, i.&, 0N, for allp.

THEOREM 1.2.Let S= {e} be a finite set of idempotentskjG] and
s the subring of k generated ov@rby |G|™ and the coefficients of the
e 0 S Supposg; is the character of[k]e and ) aix; = > bixi for some
non-negative integers; and b. If M is a finite group and ®4G]-
module then there is@smodule isomorphism

0, 0%, 00 0% M@ for MO OM .

Proof. Again letM, = ®,0,M for each primep of ®. ThenM, is a
®,[G]-module which is trivial for almost ay and, in particular, fop
dividing the idea®|G|. AsM 00, M, we may assume without loss of
generality thaM = M, for some primép not dividing®|G|.
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Let N = ®,[G]e. Then there is &,-isomorphism Horgv[g](Ni, M)
= @M given byf — f(e). Two ®,[G]-lattices N and N’, of the same
character satishkN O kN’ and therefore the work of Maranda ([5],
Theorem 4) shows that ON'. Combining these isomorphisms gives

0; 05,qMD 0 Hom@; 0%, Ni M)

0 Hom@; 07 Ni.M) O 0; 0% jgm@).

2. Nehrkorn’s theorem. Let K/k be a normal extension of algebraic
number fields with Galois grou@. Suppose ﬁ. is the character o
induced from the unit character on a subgrbiyand for a modul&X on
which G acts letHX be the submodule fixed undeit Write H for the
sum of the elements H. As usual let us defing to be the group of
units inK; W its subgroup of roots of unityy(H) the order oHW,; and
Wy(H) the 2-component of(H).

THEOREM2.1.Let QHK) be the part of the ideal class group of HK
formed from classes whose orders are primi&tolf

Y, oaH) g = Y, bH) 1S

where gH) and KH) are non-negative integers then there is a group
isomorphism

Oy 03 ek ooy 0% eHK)D  for QHK)Y DC(HK).

Nehrkorn indicated in [6] that the above result hdids proved it
only for K/k abelian. It is immediate from Theorem 1.2 becauséef t
natural isomorphisnC(HK) [0 HC(K) and because the charactq? 1

corresponds to the idempotéivﬂHL

LEMMA 2.2. Suppose M is a finité[G]-module fixed by a normal
subgroup N over which G is cyclidf Sa(H)1; = S b(H)1; where gH)
and KH) are non-negative integers then there is a trivial group
isomorphism

Oy D?(:T)HM(D DDHD‘J?(:T)HM(“ for M OMm.

Proof. From¥15(g)g = H[*YgHg™ for both sums ovegdG
we deduce that S(gﬁ) = |N|1ﬁN(g). Hence Za(H)lﬁ,/\h'N =

ZH b(H )1ﬁ,/\|'>',\| . By Brauer [1], Satz 2, or Rehm [7], Satz 1, this refati

is trivial for G/N cyclic. Thus the stated group isomorphism holds
trivially asM is aZ[G/N]-module withHM = (HN/N)M.
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THEOREM 2.3 (Brauer [1], 85)f ¥ a(H)1; = Othen

[TowH*™ = 1,y ve(H)™.

Suppose also that JNs the group of2-power roots of unity in K and
k(W»)/k is cyclic. Then

[T, we(H)*™ = 1.
Proof. Let W, be the Sylowp-subgroup ofW. Then, with the
possible exception qf = 2, k(\W,)/Kk is cyclic and the theorem is a direct
consequence of Lemma 2.2 on taking orders.

3. Brauer’s theorem.With the notation of 82 let us assume also that

k =Q; n(H) = [G:H] is the degree dflK overk; ri(H) andr,(H) are the
numbers of real and non-real infinite valuationdiéf, r(H) is the rank

of HU/HW; R(H) is the regulator and(H) the class number ¢iK; and
o(H) = 2 or 1 according adK is totally complex or not. For some fixed
embedding oK into the complex numbefS let C be the Galois group
of the maximal real subfield df. ThusC is generated by the auto-
morphismy which induces complex conjugacy Kn

Let L andL* be Z[G]-lattices which make

0-7-7GC-L-0 and 0-L* - Z[GIC -~Z - 0
exact sequences of leAf{ G]-modules. Here the maps from andZAare
given byn — nG andaC — 1(@) respectively for the unit character 1.

Specifically,L andL* will be identified withZ[G]C/ZG and {a0Z[G]C
| 1(a) = 0}. Denote by a bar the natural méps- U/W andZ[G] -

Z[G)/ZG and define maps : U — CL andA* : U — CL* by
ME) = Qg loglb™ell

M(E) = Dgcloglpellg for eOU

where || || is the absolute value of the chosen embeddikgirdd C.
These are bot[G]-homomorphisms and they are injections because
the ranks oA(U ), A*(U), L, L*, and U are all equal by the next theorem
and the Dirichlet unit theorem.

THEOREM 3.1.We have
[HL : AHU] = Zn(H)2 "2 "R(H)
and
[HL* : A*HU ] = Z3(H)2 " MR(H) .

Proof. LetHgC denote the sum of the distinct elements hgd |
h(OH, cOC} and HgC| the number of such elements. If possible choose
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0o O G such thaHgeC is a single coset df and otherwise take arny.
Then 8(H) = HgoC|/H| and the elementslgC - [HgClHgoC| *HgoC
generatéHL* over Z. Fore O HU we have
M(€) = ) loglg elHIC = 3 logly ell(HIC - IHgCIHGoCl HgeC)
for sums over double coset representatyesH\G/C. Hence
[HL*M*HU] = z3(H)2"2"R(H) .

Now [HL:AHU ] = [HL:HL*] [HL*:A*HU ] becauseCL* — CL* is
an isomorphism. As a basis Hf_ is given by HigC } for g 0 H\G/C
with g00HgoC so HL:HL* ] = Zdet(@agy) Whereagg = dgq+HgCl/HgoCl
for the Kronecker delté. But ) g a4 = n(H)/d(H) gives a constant row
by which HgCl/[Hg,C| may be subtracted from eaayy. Thus
[HL:HL*] = Zn(H)/&(H) as required.

LEMMA 3.2. If S a(H)1; = 0 then
0=>a(H) =>a(H)ri(H) = Ya(H)ra(H) =3 a(H)r(H) = > a(H)n(H) .

Proof. The sums are the evaluations of the reIatbrtﬁ/¢G|, Y,
(1 -y)/2, 6/|C|—(§/|G|, and 1 respectively because

r(H) =HgOG | gyg™ O HI/IHI = 15(y) -

LEMMA 3.3.If > a(H)l,f = 0andM, M* O U are Z[G]-isomorphic

toL, L* respectively then
[1RH)® = [T(n(H)[HU : HM])*® = [](8(H) [HU :HM*] )2

Proof. M and M* exist becauseA and A* are injective
homomorphisms so that L*, andU all have the same character.

Let 7t = [](n(H)[HU :HM]R(H))*". By Theorem 3.1
zrt = [1(22[NHU :AHM] [HL:AHU 1))
Hence Lemma 3.2 and Theorem 1.1 yield
Zrt = [|[HLAHMP® = []HL:HAM]P® = 7

from L OAM. The other relation holds similarly.
Application of the functional equation to the residuetlnd zeta
function{pk(s) ats = 1 gives the well-known result
lims_o s ™Zuk(s) = ~h(H)R(H)/W(H) ,
while the interpretation ofux(s) as the ArtinL-seriesL(s, 1;, K/Q)
shows thatya(H)1; = 0 implies[]¢k(9*" = 1. Equating values at
s=0 and using Lemma 3.2 yields (Kuroda [3])
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[ h(H)RH) /w(H)PH) = 1,
H

Comparing this with the limit of[[Zuk(9*™ = 1 ass - 1 shows that
the corresponding product of discriminants is also 1. Hewev
combining it with Lemma 3.3 and Theorem 2.3 immediately pravide
Brauer’s theorem ([1], Satz 4) :

THEOREM 3.4. If the submodules M and M* of Wre Z[G]-
isomorphicto L and L* respectively and i[a(H)lS =0 then

MhHEM = [ H)wo(H)[AT : HMIP
H H
[ O(HWo(H)[AT : Hm# )
H

Remark 3.5. Seé6= {H | a(H) # 0} and letUs be the group generated
overZ[G] by {HU |H O §. ThenUs may have smaller rank th&ah so
that more units need to be calculated to obtain a mddulelowever,
supposd.s is aZ[G]-module satisfyingHL O Ls O L for all H O Sand
M’ O U is the corresponding submodulehdf AsHM = HM’ for allH O
S we may replaceM by M’ in the theorem and by Theorem 1.1 the
substitution of any modul®ls 0 U which isZ[G]-isomorphic toLs is
also valid. In particular, the minimal choicelaf ensures thavls 0 Us.
A module M§ can be defined analogously. is therefore possible to

apply Theorem 3.4 when only the units of the occurring subfields are
known

Remark 3.6. The full extent of Theorem 1.1 has not petnbex-
ploited but we expect that when the value of

oX) = lims.os™™L(s,X, KIQ)

has been calculated fofx) = x(6/|C| - (3/|G|) and any characterthen
the same techniques will produce a relation similar to féme®.4 (see
Lichtenbaum [4]). An intermediate result can be otadi If the

characterp is irreducible overQ, contains an absolutely irreducible
character of degreé(p), and a(H) O Q are chosen to satisfgp =
Za(H)l,f , then the methods above give

. ) _ 0 h(H) ()
PN e - L Erw)HG v

wherelL, =L n ,CL andM, =M n e,CM for the central idempotem
of Q[G] corresponding tg. In [8] Stark derives essentially the same
formula by generalizing the methods of Brauer.
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4. Change of ground field.It remains to interpret Brauer’'s theorem
in terms of the Galois group” of a relative normal extensior¥” /4

within K/Q. &# will denote a subgroup ¢f; Z'the unit group of%; and
G( #) andG(_%" ) the Galois groups dk/# andK/.%". Thens =

G(_%# )L is aZ[%¢ ]-module whose precise structure will be determined
below.

THEOREM 4.1.SupposeZa(%)1;: 0. If the submoduleZof 7 is
Z[<¢ ]-isomorphic to.#” then
[h)3) = () wa ()77 2 2212

for n(#") = [Z7% £].

Proof. PutH = G(.%").%. ThenC[¢']%# andC[G(«)]H areC[Z]-
isomorphic undet?” o~ H. So they have the same characters, i.e.
1; (»)= 1HG(4)(g) if , 0 Zis the image ofy 0 G( < ). Hence the
character relatiofy a( H/G(_%") )1,? = 0 holds and Theorem 3.4 may be
applied. EvidentfHU =77 andHM = %7 for H = G(_%")# and
2" = G(%)M. When these have been substituted Theorem 1.1 allows

any.~ 0.~ 'to be chosen because” [1.#, and Lemma 3.2 permits the
new value oh(%").

The generatorsHgC of HZ[G]G may be identified with the
normalised infinite valuations

Vige®) = Ib7X|f & O HK)

of HK wheref = HgC|/H| and || || is the absolute value for the chosen
embedding oK into C. So the subgroup

Zi = (@Cg™ n G(«))/G(7)
of €’which fixesG( % )giC is the decomposition group i’/# of the
corresponding infinite prime. Thus the double coset decotmmosi

G = Y [4G(#)aC

determines up to conjugacy a decomposition greygor each infinite
prime of 4.
The exact sequence definihgestricts to

07 - G(%)Z[GIC - G(¥)L - 0.

This is also exact as fixing by a subgroup is a left eikasitor and any
pre-image of an element iIG(_% )L is necessarily fixed bys(_-%").

However, G(_%" )Z[G]é 0 O{47[¢ ]%—f under the Z[< ]-map
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SXxG(#)gC — OX%; forx OZ[%]. Hence

LEMMA 4.2.1f {Z7j} is the set of decomposition groups for one prime

divisor in %" of each of the r infinite primes i then_ satisfies the
exact sequence

027 - 0L42[9)% - & -0

where nd 7 — n [J; Z

References

[1] R. Brauer,Beziehungen zwischen Klassenzahlen von Teilkdrpern eines
galoisschen KoérperdMath. Nachr. 4 (1951), pp. 15874.

[2] A. Frohlich, Ideals in an extension field as modules over the algebraic
integers in a finite number fieldath. Zeitschr. 74 (1960), pp. 238.

[3] S. Kuroda,Uber die Klassenzahlen algebraischer Zahlkérpiagoya
Math. J. 1 (1950), pp.-1L0.

[4] S. Lichtenbaumyalues of zeta and L-functions at zegmc. Math. France,
Astérisque 24-25 ( 1975), pp. 13B8.

[5] J.-M. MarandaOn the equivalence of representations of finite groups by
groups of automorphisms of modules over Dedekind ribgead. J. Math.

7 ( 1955), pp. 516626.

[6] H. Nehrkorn, Uber absolute Idealklassengruppen und Einheiten in
algebraischen ZahlkérpermAbh. Math. Sem. Univ. Hamburg 9 (1933),
pp. 318-334.

[7] H. P. Rehm,Uber die gruppentheoretische Struktur der Relationen
zwischen Relativhormabbildungen in endlichen Galoisschen
Korpererweiterungend. Number Theory 7 (1975), pp.-4®.

[8] H. Stark,L-functions at s 1, Il, Advances in Maths. 17 (1975), pp-6Q.

DEPARTMENT OF MATHEMATICS
UNIVERSITY COLLEGE
Belfield, Dublin 4, Ireland

Received on 13. 2. 1976
and in revised form on 2. 11. 1976 (814a)



