A Verification of Brickell’s
Fast Modular Multiplication Algorithm

Colin D. Walter & Stephen E. Eldridge

Department of Computation
UMIST
PO Box 88
Manchester M60 1QD, UK
WWww.co.umist.ac.uk

Abstract. This paper refers to the algorithm and its hardware imple-
mentation described by Brickell [1] for modular multiplication in N+10
clock pulses where N is the number of bits in the binary integers in-
volved. That paper uses a delayed carry representation which consists of
two registers of NV bits each — one for the uncarried carries. Of course,
up to N clocks ticks may eventually be required to assimilate the carries
at the end of the computation.

Several sources of possible error are reported here — one in the hard-
ware, one in the specification which the intended hardware satisfies, and
one in the definition of the control variables T3 and 7T5. Our main con-
tributions are the supply of further detail to remove such ambiguities, a
determination of the minimum number of extra bits required during the
calculation, a verification of the more detailed system, and its extension
to an integer division procedure.

The existence of a proof enables it to be used reliably for its intended
purpose in applications such as cryptography [5], where attempts have
already been made to use the algorithm or similar methods in RSA chips
[4]. The reduced number of extra bits required also marginally increases
the speed.

Concurrent work by J. K. Gibson [2] describes different additional detail
to make Brickell’s algorithm work. What is supplied in this article we
believe to be more natural than Gibson’s in that the standard delay-
carry addition stands unaltered here, and the minimum number of clock
pulses required remains clear.

Key words: RSA algorithm, fast multiplication, verification, crypto-
graphy, computer arithmetic.

C.R. Categories: F.2.1, B.7.1, E.3.

2 International J. of Computer Mathematics, vol. 33, 1990, pp. 153-169

1 Introductory Detail

1.1 Type Definitions

We use a slightly extended version of Pascal to describe the main parts of our
version of Brickell’s algorithm [1]. Let N be the number of bits needed for each
input integer. An additional @Q+1 (> 6) bits of working space are required so
that the natural size of binary integers becomes N+Q+1 bits. Brickell used 11
extra bits.

type BitIndex = 0..N+Q ;
BinaryInteger = array[BitIndex] of Boolean ;
DelayCarryInteger = array[l..2] of BinaryInteger ;

Every D : DelayCarrylnteger is required to satisfy the data invariant
(not D[2,0]) & (not(D[1,I-1] & D[2,I]) for I'in1.. N+Q)

Here D[2] can be considered to contain the unassimilated carries resulting from
the addition of two numbers of type DelayCarrylInteger. The integer repre-
sented by D is ;¢ pindex (P[1; 1]+ D[2,I])x2" where True and False are in-
terpreted as 1 and 0 respectively. We will not, in fact, distinguish Booleans,
BinarylIntegers and DelayCarrylntegers from their values as integers un-
less the context makes it necessary. Maximum values are given by choosing
DJ2,I] = 1 rather than D[1,7—1] =1 in the data invariant. So,

Lemma 1 The maximum value of a delay carry integer with L bits is
2L 4 2L-1 9

1.2 The Half Adder

Brickell describes a half adder which takes as input two binary integers (X and
Y here) and produces as output two binary integers. We stress the relationship
between the output integers by combining them into a delay carry integer D.
This must then necessarily satisfy the data invariant above. The procedure
HalfAdd(X,Y: BinaryInteger; var D: DelayCarryInteger; var Overflow: Boolean)
achieves

D+ Overflowx2N+@+1 — X+Y
by D[2] + Overflowx2N+t@+l = 2(X and Y)
and DIJI] = XxorY

which are interpreted bitwise. Software or hardware for the above can be exe-
cuted in one clock pulse by performing the bit operations in parallel. To distin-
guish different overflows it is sometimes convenient to describe the one here as
DI[2, N+Q+1], although the register contains no such bit. Easily,

Lemma 2
i) Suppose that 2L divides both inputs of HalfAdd. Then 2¥ divides
both the outputs D[1] and D[2].

C. D. Walter & S. E. Eldridge 3

ii) Suppose that 2¥ divides one input of HalfAdd. Then 2L+ divides
the output D[2].

Lemma 3

i) The outputs D[2,I1+1] and DI1,1] of HalfAdd depend only on the
inputs X [I] and Y[I]. In particular, the Overflow parameter returned
only depends on X[N+Q] and Y[N+Q].

i) For delay carry integers X, Y and D, the result of the call
HalfAdd(X[1],Y 1], D, Over flow) satisfies (D[2] & X[2]) = 0 and
(D[2] & Y[2]) = 0.

In[I]

DR I+1)| K1) | B[]
B ,1+1}‘ D[|1,1]

Or[I+1]

Sum(2, [+1] Sum][1, I]

Out[I]

Fig. 1. Definitions of In[I], Or[I] and Out[I].

1.3 Adding Three Numbers

The main step in the modular multiplication algorithm requires the addition of
a binary integer and two delay carry integers. The precise specification is messy
to give, and so we make use of the code given to produce the results of this
section. A hardware implementation is given in Figure 2 of [1] using a cascade
of 5 half adders, but with an extra shift. The repeated unit without the shift is
given in Figure 1.

4 International J. of Computer Mathematics, vol. 33, 1990, pp. 153-169

procedure Add(D,B* : DelayCarryInteger ; K* : BinaryInteger ;
var Sum: DelayCarryInteger ; var Overflows: Integer);

{ Post-Condition : Sum + Overflows*2NTQ+1 = B*4+D+K* }

var Bits;, Bitsy, Bitsg : BinaryInteger ;

Ri, Ro, R3, Ry : DelayCarryInteger ;
Overflow;, Overflows, Overflows, Overflowy, Overflowsuym
: Boolean ;

begin { Add }
HalfAdd(X*, D[1], R;, Overflow;) ;
HalfAdd (R, [1],B*[1],Ro,0verflowy) ;
Bits; := D[2] OR R;[2] ;
HalfAdd (R, [1] ,Bitsi,R3,0verflows) ;
Bitsy := B*[2] OR Ryl[2] ;
HalfAdd(R3[1],Bitss,R4,0verflowy) ;
Bitsgy := Rg[2] OR R4[2] ;
HalfAdd(R4[1],Bitss,Sum,0Overflowsym) ;
Overflows := Ord(Overflow;)+0rd(0Overflows)+0rd(Overflows)
+0rd (Overflowy)+0rd (Overflowsym)
end ; { Add }

Here the OR is interpreted componentwise for each BitIndex. For each call
of it the ANDed inputs give 0 by Lemma 3(ii), and so the output is their sum.
Neglecting the Over flows which may be regarded as [N+Q+1]-components,
the code of Add is now equivalent to 8 assignments each of which just adds
two binary integers, and so is easy to verify. Note from the figures that this
procedure can be implemented by hardware which operates in a single clock
pulse. The following results are straightforward:

Lemma 4

If 2% divides the inputs D[1], B*[1] and K* of Add, and 2E+! divides the
inputs D[2] and B*[2], then 2© divides the output Sum][1] of Add and
2543 divides the output Sum|[2]. In particular, Sum|2,0] = Sum[2,1] =
Sum/[2,2] = 0.

Lemma 5
i) Suppose 2 divides each of the five input binary integer components

of the parameters D, B* and K* of Add. Then 2% divides both the
outputs Sum/[1] and Sum/[2].

ii) Suppose 2% divides at least four of the five input binary integer
components of the parameters D, B* and K* of Add. Then 252
divides the output Sum|2].

Lemma 6

i) The input bits of Add which contribute to the output bits Sum/[1, I]
and Sum(2,[+1] are DI[1,J], B*[1,J], K*[J], for J in I-2..T and
DJ2,J] and B*[2,J] for J in I—1..1.

C. D. Walter & S. E. Eldridge 5

ii) The input bits which contribute to overflow in Add are D[1,.J],
B*[1,J] and K*[J] for J in N+Q—2..N+Q, and D[2,.J], B*[2, J]
for Jin N+Q—-1..N+Q.

1.4 The Top Bits

Algorithms computing a result modulo C' often progress by subtracting a mul-
tiple of C' when possible. Where numbers are represented by registers of length
L, subtraction of C is the same as addition of K = 2% — (| providing that there
is a single overflow of 2% which is neglected. Brickell’s algorithm does this, pre-
dicting in advance the overflows when the procedure Add is executed, as well as
the overflow when a subsequent shift is applied.

By Lemma 6 the Add overflow is given by looking at the top 3 bits only of the
inputs K*, B*[1] and D[1], and the top 2 bits only of B*[2] and D[2]. For this
reason we look at 3-bit delay carry integers satisfying the usual data invariant.
By adding a subscript 3, all our definitions and procedures can be repeated
for BitIndexs = 0..2 instead of BitIndex. Now Adds applied to the most
significant bits of the input to Add will predict the overflows of Add correctly.
This creates a need for a function T'op3Bits which will copy bits with indices in
the range N+Q—2.. N+Q to a new type with indices 0..2, discarding the rest.
The data invariant for the DelayCarrylIntegers output is obtained by forcing
the [2, 0]-component to be False. All this applies also with subscript I referring
to BitIndexy = [0..I—1]. For example,

Definition. For natural numbers I, the function
TopI Bits(D : DelayCarrylntger) : DelayCarrylIntegery

is specified by TopI Bits(D)[1] = D[1] div2N+@*+1=I and TopI Bits(D)[2] =
2x(D[2] div2N+@+2-1),

There is an analogous definition for T'opl Bits applied to a variable of type
BinarylInteger. Now, by Lemma 6,

Lemma 7
i) If I > 3 then, for the same input,
Add(D, B*, K*, Sum, Over flows)
and
Add;(ToplBits(D), Topl Bits(B*), Topl Bits(K*), Sum , Over flowsy)

will satisfy Owerflows = Overflows;.

ii) If I > 4 then, for the same input,
Add(D, B*, K*, Sum, Over flows)
and
Addy(Topl Bits(D), Topl Bits(B*), Topl Bits(K*), Sumy, Over flowsy)
will satisfy Sum[l, N+Q] = Sum;[1, I—-1], Sum[2, N+Q] = Sum[2,1-1],
and Overflows = Overflows;.

6 International J. of Computer Mathematics, vol. 33, 1990, pp. 153-169

A numerical characterisation of overflows is useful. Working with the numbers
the bits represent rather than with the bits themselves is more elegant, and our
version of Brickell’s algorithm is written in this way. However, Gibson [2] deals
directly with the overflow bits and, although it is not stated, we presume Brickell
also meant to refer to the overflow bits of the delay carry integers rather than
overflows in their numerical equivalents.

Lemma 8
i) The value of the overflows in Add is

[Top3Bits(D)+Top3Bits(K*)+Top3Bits(B*)] div 8

ii) The sum of the output bits Sum|[1l, N+Q] and Sum|[2, N+Q] of Add
is
[TopdBits(D)+TopdBits(K*)+Top4Bits(B*)] div 8

—2([Top3Bits(D)+Top3Bits(K*)+Top3Bits(B*)] div8)

By Lemma 7(i), the proof of (i) can be simplified by first noting that it
suffices to look at the corresponding call to Adds. From the analogue to Lemma
4 for Adds (just take N+@Q = 2 there), we have the output Sumgs of Adds
satisfying Sums[2,0] = Sums[2,1] = Sums[2,2] = 0, i.e. Sums[2] = 0. So
Sums = Sums[1] and the maximum value of Sumg is therefore that of Sums[1],
namely 7. Thus Sumgz = Sumsz mod 8 and by the post-condition for Add reduced
modulo 8, Sumg = (Top3Bits(D)+Top3Bits(K*)+Top3Bits(B*)) mod8. The
post-condition for Add now taken div8 gives the number of overflows as that
stated since Sums div8 = 0.

Now consider part (ii). Suppose we ignore the topmost bits, i.e. those of
index N+@Q), so that Top3Bits extracts the bits of index N+Q—3.. N+Q—1.
Then the expression of (i) would be the “overflow” from the N+Q—1st place
rather than the N+Qth. The same “overflow” is obtained by applying Top4 Bits
properly instead of T'op3Bits, if we ignore the input bits of index N+@. This
new expression, which is the first term in (ii), therefore represents all bits flowing
into the N+Qth place, both those coming from direct input and those passing
up the adder from lower positions. Some of these bits combine in pairs to give
the overflow bits from the V4+Qth position, whilst the remainder give the output
from the N+Qth position. Hence this last output is given by subtracting twice
the number of overflow bits (as in (i)) from the number of bits flowing into the
N+Qth place.

Lemma 9
a) If 24 > TopdBits(D)+Top4Bits(K*)+TopdBits(B*) > 16 then ex-
clusively either
i) there is one overflow from Add, or
ii) the two output bits from Add with index N+@Q are 1;
b) If 16 > TopdBits(D)+TopdBits(K*)+TopdBits(B*) > 8 then
i) there is no overflow from Add, and

C. D. Walter & S. E. Eldridge 7

ii) one output bit from Add with index N+@Q is 1, the other 0;
¢) If 8 > TopdBits(D)+TopdBits(K*)+Top4dBits(B*) then

i) there is no overflow from Add, and

ii) neither output bit from Add with index N+@Q is 1.

The proof of this depends on the previous lemma. Because in general
TopdBits(S) > 2xTop3Bits(S), it is clear from Lemma 8(i) that in cases (b)
and (c) there can be no overflows, and in case (a) at most 1 overflow. As remarked
in the proof of Lemma 8(ii), the expression

[Top4dBits(D)+TopdBits(K*)+TopdBits(B*)] div 8

gives the sum of the output bits with index N+@Q and the overflow bits. In case
(a) this amounts to 2, which can be split only as expressed in (i) or (ii). In cases
(b) and (c) it amounts to 1 and 0 respectively, so that there is no overflow, as
stated in the parts (i), and the output bits must be as stated in the parts (ii).

2 The Modular Multiplication Algorithm

The modular multiplication algorithm M can now be described. Several minor
changes have been introduced which make it different from Brickell’s description:
the loop is more naturally entered at a different point, the number of extra bits
required beyond the N of the inputs is made variable (Q+1 instead of 11), and
the Booleans T} and 75 have been accumulated into a delay carry integer T' which
almost gives the result of integer division. Of course, if the integer quotient is
not required then 7" may be discarded.

One further possible difference between this algorithm and that given by
Brickell is worth noting. It concerns the definition of the Booleans T'[1, J—1]
and T[2,J] — Brickell’s T} and T,. Our definition using the function T'op4 Bits
ignores the bit which might have formed the [2, 0]-component in the result, but
Brickell seems to include it. As it does not contribute to any overflows it must be
ignored if a numerical characterisation of the different cases is used as here. We
must assume therefore that when Brickell mentions overflows he is referring to
overflow in a delay carry representation not a binary integer representation. He
is not explicit on this distinction and so readers could be misled to an incorrect
definition of the Booleans T and T5.

The idea is first to multiply the most significant bits of A by B to obtain the
most significant bits of the product. Then, when the production of less significant
bits results in little or no change to the highest bits, multiples of C' are subtracted.
In fact, since only addition is allowed, rather than subtracting C, the algorithm
must add a multiple of K = 2V —C. This is chosen to ensure that the overflows
match the multiple added. For example, adding KQ1 = 291 x(2V —(C) is done
when an overflow of exactly 2V*+®@*lis guaranteed, in order that the result is
equivalent to subtracting 291 xC. These overflows, (which arise from either of
the calls to Add or Shift in the algorithm below), are predicted by Lemma 9.

The specification given at the head of the procedure will show that it is not
precisely a modular multiplication algorithm: the residue may differ from the

8 International J. of Computer Mathematics, vol. 33, 1990, pp. 153-169

least non-negative one by the addition of C', so that the integer quotient is 1 less
than it should be. Brickell makes no comment that the residue may not be in
the expected range. Examples which illustrate this are easy to find.

Finally note that our proof includes very naturally the limit case of C' =
2N=1_ That it works for such values of C' is not as accidental as Brickell’s treat-
ment suggests.

2.1 Code for the Algorithm

We introduce first one more function and a few definitions before giving the
code of the algorithm. Multiplication by a power of 2 whether to a positive or
negative exponent is achieved by a (hardwired) shift up or down. For this we
use a function

Shift(D : DelayCarrylInteger; E : Integer) : DelayCarrylnteger

to shift D by E places. Possible overflow is important, but not underflow in
this context. Shifting in either direction will not change the invariant property
for delay carry integers D since it is accompanied within the function by finally
setting D[2,0] = 0. Thus a possibly significant bit may be lost.

The code is documented with pre- and post- conditions, and a three part
loop invariant. The proof and correct action of the algorithm depend upon the
previous properties established for a particular implementation of Add and on @
being taken large enough: @@ > 5 is proved here and included as a pre-condition.
Incorrect action can be demonstrated for @ < 4.

procedure M(A,B : DelayCarryInteger ; C : BinaryInteger ;
var D,T : DelayCarrylInteger) ;

{ Write Only : D, T T

{ Pre-Conditions : A[1]<2N, a[2]<2N,
B[11<2N, B[2]<2N,
oN-1 <c<2N,
Q > 5. }

{ Post-Conditions: A*B = C+T + D and 0 < D < 7C/4 }

var K, KQ, KQ1, K* : BinaryInteger ;
B* : DelayCarryInteger ;
J : BitIndex ;
Overflows : Integer ;
begin { M
K = 2N - ¢ ;
KQ = Shift(X,Q) ;
KQ1l := Shift(X,Q+1) ;
D =0 ;

T =0 ;

C. D. Walter & S. E. Eldridge 9

for J := N+Q downto 1 do

begin
{1: Top4Bits(D) + Top4Bits(KQ1) < 19 T
{2: Shift(A,Q-J)*2%B = Shift(T,—J)*2Q+1*C + D}
{3: If J < Q then 29*'~J divides D[1] and
2Q+4=J divides D[2] }

if J-Q > 0 then

B* := A[1,J-Q-1]*B + A[2,J-Q])*Shift(B,1)
else

B* := 0 ;
T[2,J] := (Top4Bits(D)+Top4Bits(KQ1l) >= 16) ;

T[1,J-1]:= (not T[2,J]) and
(Top4Bits(D)+Top4Bits(KQ) >= 8) ;

K* := T[1,J-1]1*KQ + TI[2,J1*KQ1 ;
Add(D,B*,K*,D,0verflows) ;
D := Shift(D,1)

end ;

D := Shift(D,-Q-1)

end ; { M1}

2.2 Remarks on the Hardware

As the data invariant clearly holds for A and T, the calculations of B* and
K* involve a choice rather than an addition, and so only one clock cycle is
needed for each iteration of the loop. If we neglect the time spent to initialise
the parameters, during which the first five assignments can also be made, or to
emit the result, during which the last shift can be done, the algorithm performs
the work in just N+@Q cycles. The least time is achieved with the minimal value
of @@ =5, as opposed to Brickell’s unexplained choice of @ = 10.

The topmost nonzero bit of B* will have index at most N and its top @
bits are therefore all 0. Feeding this property into the hardware allows the top
parts of the second and fourth half adders to be removed, as in Figure 2, because
they no longer perform a non-trivial function. The naming of the output bits in
Brickell’s Figure 3 suggests that the top part of the fifth half adder might also
be removed to leave only two half adders. That this is not the case in general is
clear from trying to patch together the top section with the middle one. This is
the possible source of error in the hardware referred to in the abstract. The lower
end of the adder can also be simplified in an obvious way using the information
given in Lemma 4 and the data invariant restriction on the [2, 0] bit.

10 International J. of Computer Mathematics, vol. 33, 1990, pp. 153-169

K*[N+5] K*[N+4] K*[N+3] K*[N+2] K*[N+1] K*[N] D[2, N]
D[1,N+5] |D[1,N+4] |D[1,N+3] |D[1,N+2] |D[1,N+1] |D[1,N] B*[2, N]
D[2,N+5] |D[2,N+4] |D[2,N+3] |D[2,N+2] [D[2,N+1 |B*[1,N]

neldvHA eldvHA e]{vHA o]

R

Ry | R | R | R
Bitsy Bitsy Bitsy
af ool smaf sl
R3 R3

Overflows Sum[2, N+5]|Sum[2, N+4]|Sum[2, N+3][|Sum[2, N+2] Sum[2, N+1] Sum[2, N]

Sum[l, N+5] Sum[l, N+4] Sum[l, N+3] Sum[1l, N+42] Sum[l, N+1] Sum|[1, N]

Fig. 2. Special delayed carry adder: Upper end for Q = 5.

2.3 The First Loop Invariant

The crux of our proof of the algorithm is the verification of the loop invariants.
A little preparation is necessary; to study the flow of bits up the adder it is
convenient to start with a definition, illustrated in Figure 1.

Definition. Using the notation of the code for Add,
i) let Or[I] denote Bitsy[I]+Bitsa|I]|+Bitss[I] ;
ii) let In[I] denote 2xD[2, I+1] + D[1,I] + 2xB*[2,14+1] + B*[1,I] +
K*[1];
iii) let Out[I] denote 2x Sum[2, I+1] + Sum][1, I].

These quantities relate to the input and output from the single cascade of five
components of the half adders representing 27, taking into account the natural
pairing of bits under the data invariant. The bits are weighted to give 1 for an
index I, and 2 for an index I+1. Equating input and output bits clearly yields
the first two of the following lemmas:

Lemma 10 With the above notation,

In[I]+0r[I] = 2xOr[I+1] + Out{]

Lemma 11 Execution of the code of Add makes its parameters satisfy
Top4Bits(D) + TopdBits(B*) + Top4Bits(K™) + Or[N+Q—3]

= Top4Bits(Sum) + Over flowsx2*

C. D. Walter & S. E. Eldridge 11

Lemma 12 The call of Add in M satisfies

i) If @ > 4 then 20r[N+Q—3] + Out[N+Q—4] < 6 + K*[N+Q—4];
ii) If @ > 5 then 20r[N+Q—3] + Out[N+Q—4] <5 + K*[N+Q—4];
iii) If @ > 5 and K* = 0 then 207[N4+Q—3] + Out[N+Q—4] < 4;
iv) If @ > 6 then 20r[N+Q—3] + Out|[N+Q—4] < 4+ K*[N+Q—4];
v) If @ > 7 and K* = 0 then 20r[N+Q—3] + Out|[N+Q—4] < 3.

Lemma 10 allows the properties claimed in Lemma 12 to be translated into
upper bounds on In[N+Q—4]+0r[N+Q—4]. In the first case, from the definition
of In, B*[2, N+Q—3] = 0 gives In[N+Q—4] < 3+ K*[N+Q—4], and Or[I] <3
completes the proof. In subsequent cases, B*[2, N+Q—3] = B*[1, N+Q—4] =0
gives In[N+Q—4] < 24+ K*[N+Q—4], and the proofs are completed by bounding
Or[N+Q—4]. In the second case, as for (i), Or[I] < 3 suffices. In the third case
it remains to obtain Or[N+Q—4] < 2. This last is apparent from the hypothesis
K* =0, B [2, N+Q—4] = 0 and

Bits; [N+Q—4] + Bitss[N+Q—4]

= D[2, N+Q—4] + R1[2, N+Q—4] + B*[2, N+Q—4] + R2[2, N+Q—4]

= D[2, N+Q—4] + K*[N+Q—-5]xD[1, N+Q—5]

+(K*[N+Q-5] # D[1, N+Q-5])xB*[1, N+Q—-5]

= D[2, N+Q—4] + D[1, N+Q-5]x B*[1, N+Q-5]

< D2, N+Q—4] + D[1, N+Q—-5]

<1
The last two cases are concluded by showing Or[N4+Q—4] < 2 and Or[N+Q—4] <
1 respectively. They are left as exercises for the reader and involve showing

Bitsa[N+Q—4] = 0 for both cases and that Bitss[N+Q—4] and Bits;[N+Q—4]
are not both 1 in the last case. The next lemma is also an exercise.

Lemma 13 If I < N+Q then TopdBits(KQ1) < 8 — K*[I].

In the first loop invariant the aim is to bound the value which the partial
product D may have: it should satisfy

1: TopdBits(D) + Top4Bits(KQ1) <19 .

This is clearly the case when the loop is entered because D = 0, and the restric-
tion C > 2N~1 forces TopdBits(KQ1) < 8. An inductive argument is used to
deduce that (1) holds at the start of a general iteration. We make essential use
of the consequence TopdBits(B*) = 0 of choosing @) > 4. This leads to a sim-
plification in Lemma 9 which forms the basis of the proof. Note that Gibson [2]
achieves an essentially similar loop invariant by his normalisation process which
produces numbers for which the invariant cannot be false.

The induction step in the proof is divided into three cases according to the
values of T'[2,J] and T'[1, J—1]. Initially, suppose that T'[2, J] holds. This with
the induction hypothesis (1) provides

16 < TopdBits(D) + Top4Bits(KQ1) < 19.

12 International J. of Computer Mathematics, vol. 33, 1990, pp. 153-169

By Lemmas 9(a) and 11 with Top4Bits(B*) = 0, we have, after the call which
adds D, KQ1 and B*, that Top4Bits(D) < 194+ Or[N+Q—3] — 16d for d = 1
or 0 according as Add overflows or not respectively. Using
TopbBits(Sum) = 2xTopdBits(Sum) + Out[N+Q—4],
which is immediate from the definition of Out, we have
TopbBits(D) < 2x(19+0r[N+Q—3]—16d) + Out[N+Q—4].
By Lemma 9(a) Shift overflows if and only if d = 0. So, after the Shift call,
TopdBits(D) < 2x(19+O0r[N+Q—3]—16d) + Out[N+Q—4] — 2x16(1—d)
=6+ 2xOr[N+Q—3] + Out[N+Q—4].
By Lemma 12(ii), Top4 Bits(D) < 645+ K*[N+Q—4] at the end of the iteration,
and this with Lemma 13 yields
TopdBits(D) + TopdBits(KQ1) < 11 4+ Top4Bits(KQ1) + K*[N+Q—4]
<11+8
=19
for the start of the next iteration.
The second case is when T2, J] is false, but T'[1, J—1] holds. Now
8 < TopdBits(D) + TopdBits(KQ) < TopABits(D) + TopdBits(KQ1) < 15

before the Add call, which adds D, B*, and K* = KQ. Lemmas 9(b) and 11
make it possible to deduce that after the Add call D satisfies

TopdBits(D) — TopdBits(KQ) + TopdBits(KQ1) < 15+ Or[N+Q-3].
Just as in the previous case,

TopbBits(D) < 2x(TopdBits(KQ) — TopdBits(KQ1)
+15 + Or[N+Q-3]) + Out[N+Q—4],

and the use of Lemma 12(ii) produces
Top5Bits(D) < 30+2x(Top3Bits(KQ1)—TopdBits(KQ1))+5+ K*[N+Q—4].

After the Shift, which by Lemma 9(b) with our initial hypothesis must overflow
once,

TopdBits(D)
< 30—-16+ 5+ 2x(Top3Bits(KQ1)—TopdBits(KQ1)) + KQI[N+Q—3]
Thus,
Top4Bits(D) + Top4Bits(KQ1)
< 19+ 2xTop3Bits(KQ1) — TopdBits(KQ1) + KQ1[N+Q—3]
= 19
at the start of the next iteration.
If T[2,J] and T'[1, J—1] are both false, then Top4Bits(D)+TopdBits(KQ) <
7 for the initial value of D and K* = 0. Lemma 9(c) applies and states that nei-
ther of the calls to Add nor Shift will overflow. So, using Lemma 11 as before,

C. D. Walter & S. E. Eldridge 13

after the Add call

Top4Bits(D) + TopdBits(KQ) < 7+ Or[N+Q-3],
which gives

Top5Bits(D) < 2x(7 — TopdBits(KQ) + Or[N+Q-3]) + Out[N+Q—4].
Directly Lemma 12(iii) yields
Top5Bits(D) < 14 — 2xTopdBits(KQ) + 4.
After the Shift therefore
TopdBits(D) < 18 — 2xTop3Bits(KQ1).
Hence the next iteration starts with
TopdBits(D) + Top4dBits(KQ1) < 18 + Top4dBits(KQ1) — 2xTop3Bits(KQ1)

=18+ KQI[N+Q—-3]
<19,

as required.
So the first loop invariant holds by induction before and after each iteration
of the loop.

2.4 The Second Loop Invariant

The second loop invariant in the code for procedure M relates the partial quo-
tient T and intermediate residue D to the part of the product Ax B computed
so far.

2: Shift(A,Q—J)x2xB = Shift(T,—J)x2°T'xC + D .

This holds when the loop is entered as the right side of the equality is zero, and
shifting A down N bits removes every non-trivial bit so that the left side also is
Zero.

Now suppose the invariant holds at the beginning of iteration J. From the
first loop invariant and Lemma 9(a), when T'[2, J] = 1 either Add has an over-
flow of 2V+@+1 or there are two overflows from the subsequent Shift. Similarly,
when T'[1, J—1] = 1, the Shift has exactly one overflow. So, assuming bits of A
with negative indices are zero, at the end of that iteration,

Dout = 2% (Din+B*+K*) — T[2, J]x2N+TO+2 _ T[1, J—1]x2N+@+1

= 2x(Shift(A,Q—J)x2xB — Shift(T,—J)x29t1xC

+A[1l, J-Q—-1]xB + A2, J-Q]x(2xB)

+T[1, J-1]xKQ + T[2, J]x KQ1)

—T[2, J]x2N+C+2 _T[1, J—1]x2N+@+1
=2x(2xShift(A,Q—J) + A[l,J-Q—1] + 2x A[2, J-Q])x B

—(2xShift(T,—J) + T[1,J-1] + 2xT[2,J]) x 29+ x C
= 2xShift(A, Q+1—J)xB — Shift(T,1-J) x 291 x C

14 International J. of Computer Mathematics, vol. 33, 1990, pp. 153-169

This is clearly the loop invariant again, with J—1 in place of J. Hence decrement-
ing J to start the next loop iteration will establish the loop invariant correctly
again. Thus by induction, the loop invariant will always hold.

2.5 The Third Loop Invariant
The last of the three loop invariants, namely
3 : If J < @ then 2971~/ divides D[1] and 294~/ divides D[2],

holds for J = @ by virtue of the case L = 0 of Lemma 4 and the Shift at the end
of the previous iteration. In general, suppose it holds at the start of an iteration
with J < Q. Clearly B* = 0 and 29 divides K*. So all three [1]-component
inputs to Add are divisible by 29*1~7 and both the [2]-component inputs are
divisible by 294~/ Now Lemma 4 forces the outputs D[1] and D[2] of Add also
to be divisible by 29+1=/ and 29+4=7 respectively. The Shift of the iteration
then adds 1 to the exponent of those powers of 2 dividing each component of D,
yielding the loop invariant for the start of the next iteration.

2.6 The Post-Condition

For @ > 5 each of the three parts of the loop invariant has been established
also to hold at the end of the last iteration. Thus we may set J = 0 to obtain a
post-condition for the loop. With appropriate simplifications, this becomes:

1: TopdBits(D) + TopdBits(KQ1) < 19
2: AxBx29tt = Tx29t1xC + D
3: 2971 divides D[1] and 294 divides D[2].

Because of the third assertion, it is possible to divide D by 29+ using Shift
without losing significant bits. Hence, after the final Shift down of D by Q+1
places, (2) yields

AxB =CxT+ D

which is most of the claimed post-condition.

By using the obvious bounds on the least significant bits of D and KQ1, the
first assertion yields (D—2N+97242)+(KQ1-2N+@=341) < 19x2N+4@=3 at the
end of the loop, and therefore D—2V=3 + 2N _C—2N=4 < 19x2N~4 at the end
of the algorithm, i.e. D < C+6x2¥~%, By making use of 2V =1 < C one obtains
the required post-condition easily from 6x2N~* < 3C/4. Clearly, the stronger
post-condition D < C+6x2¥~% might be preferable in some circumstances.

3 Different Values of Q

Firstly, observe that with the example N =8, Q = 4, C = 129, A[1]/A[2] =
64/126, and B[1]/B[2] = 160/190, the wrong answer is obtained as @ is too
small.

C. D. Walter & S. E. Eldridge 15

To obtain bounds on the incorrect behaviour of the algorithm for small val-
ues of @, note that if the algorithm fails for Q = Q¢ then it also fails for all
Q@ < Qo. To see this, suppose (N, Qo, A, B,C) is a failing instance for finding
AxB mod C with Q = Qp. Then (N+(Qo—Q),Q, Ax220=% B Cx2%~?) is a
failing instance for Q < Qg because exactly the same bits are processed in both
cases during the loop of the modular multiplier, with the resulting residue D
being shifted fewer times to give 290~® times what it was before. Furthermore,
if the algorithm fails for N = Ny then it also fails for all N > Ny. Thus, if
(No,Q, A, B,C) is a failing instance, then so is (N, Q, A, Bx2N~No (C'x2N-No)
for the same reasons as before: the same bits are processed after an initial N—Ny
loop iterations in which D remains 0, but with an additional N—Nj zero bits at
the lower end of all the registers. Hence,

Theorem 14. If the algorithm is incorrect for the pair (Ny, Qo) of values
of (N,Q) then it is incorrect for all pairs (N,Q) with N > Ny and
Q < Qo. It is incorrect for (N, Q) = (8,4).

The benefits of larger values of @ are not substantial. Taking @ > 7 eliminates
completely the effect of the most significant bits of B* on the overflows during
one iteration of the loop. Repeating the proof of Section 2 using Lemma 12 (iv,v)
for such @ provides:

Theorem 15 If @ > 7 then the algorithm works as stated but with
18 in place of 19 in the first loop invariant, and D < 13C/8 in the
post-condition (or D < C+5x2N~4),

This slightly increases the likelihood of the residue being less than C' and there-
fore makes it more likely to find D < C by checking just the top few bits
(instead of accumulating the carries). However, the advantage in those few cases
may not outweigh the extra loop cycles involved. Gibson [2], by choosing to “nor-
malise” his partial answer D on each iteration achieves the slightly better result
D < 3C/2, but the cost seems to be a longer clock cycle time to incorporate the
normalisation.

4 Conclusions

Our results have already been summarised in the abstract at the start of the
paper. Several omissions which could lead to errors are indicated, illustrating
the care with which it is necessary to check such algorithms for the completeness
and correctness of definitions, specifications, and implementations. In particular,
note that our definition of “T'op4Bits” (see Section 1.4 before Lemma 12) is not
the one which Brickell may seem to choose. Indeed, care has to be taken over
whether “overflow” applies to a binary or delay carry representation. The concept
of the algorithm is simple enough but its proof is complicated by having so many
bits coming up from lower indices which tighten the inequalities that must be
established.

16 International J. of Computer Mathematics, vol. 33, 1990, pp. 153-169

P. Riess and J. Shawe-Taylor [3] remark that all relevant input to Brickell’s
algorithm had been tested and found to be correct. This pre-supposes certain
details and assumptions which we failed to find explicitly in the original paper
[1], but have now supplied.

The work described here was implemented in hardware in early 1988 and has
now run without fault in systems for many months. Our completion of the details
of Brickell’s work differs from that described by Gibson [2] in several ways. The
most important of these is that we preferred to keep the repetitive nature of the
adding hardware so that there was greater flexibility to use it for inputs which
did not have N bits. This might enable results to be obtained not just from the
top end of the registers. The price of the natural addition is, however, a more
complicated proof of correctness, but the benefits are flexibility, simplicity, and
probably a shorter cycle time.

References

1. Brickell, Ernest F., A Fast Modular Multiplication Algorithm with Application to
Two Key Cryptography, Advances in Cryptology (Proceedings of CRYPTO 82)
edited by Chaum et al., Plenum, 1983, pp 51-60.

2. Gibson, J. K., A generalisation of Brickell’s algorithm for fast modular multiplica-
tion, BIT 28 (1988) pp 755-763.

3. Riess, P. and Shawe-Taylor, J., The RSA public key cryptosystem, Dept. of Stats.
& Comp. Sci. Notes, RHNBC, Egham Hill, Egham, Surrey, England, TW20 0EX.

4. Rivest, Ronald L., RSA Chips (Past / Present / Future), Advances in Cryptology,
(Proceedings of EUROCRYPT 84), LNCS 209, Springer Verlag, 1985, pp 159-165.

5. Rivest, R.L., Shamir, A. and Adleman, L., A method of obtaining digital signatures
and public key cryptosystems, Comm. ACM, 21 (1978), pp.120-126.

