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Abstract

By an appropriate choice of the modulus used in RSA cryppbygrat is possible
simplify the hardware for performing the required modulartipiidation step, and
thereby increase the speed of encryption and decrypiiere we consider this when

P. L. Montgomery’s algorithm is used.

1. Introduction

In earlier work by the author and Eldridge [5,6], it wasveh how certain moduli
M in RSA cryptography [1] enable simplification of therdwaare for performing the
modular multiplication step, and this in turn leads toremease in the speed of both
encryption and decryption. It is possible to make furihgrovements of the type
seen in [5], using Montgomery’s algorithm [3] for modularltiplication instead. Here
we extend [6] using such techniques, and so familiaritly thie detailed discussion in

both might be helpful.

Modular multiplication is normally performed, as in ordinanultiplication, by
keeping a running total, initially zero, which is repédteshifted and added to the
product of the multiplicand by the next digit of the mulépli This is reduced modulo
M during each iteration in order to keep the partial produstihdo the size oM. The
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multiples ofM subtracted on successive iterations are actually tfiks dif the integer

guotient of the product byl. This is Brickell's approach [2].

The main bottle-neck in this computation is the catauteand broadcasting of the
guotient digits to every digit position for every iteratiolrhis can be solved using a
number of techniques to simplify the hardware in ordereduce its critical path
length. The methods in [6] were sufficient for moduli upatmut 1000 bits in length.
Here we perform operand scaling, or its equivalent, tengikthe results to moduli of
any size. As a consequence, almost all of the harde/dutly utilised almost all of the
time, even for moduli of arbitrarily many digits. Thigeans that no significant further

improvement is likely without resorting to entirely difént algorithms.

2. Montgomery’s Algorithm

In Montgomery’s algorithm for modular multiplication, thexpected order of
processing is reversed, with the digits of the multifd&ing considered in the opposite
order from usual, namely starting with tleavestdigit. The shift is themlownwardson
each iteration, and a multiple Bfis addedin order to make this shift possible without
a fractional part developing. This reversal of processitroduces an extra factor df 2
wherei is the number of iterations performed. In brief, acalate AxB) mod Mup to

this factor, the repeated operation required is:
R« 2'R+aB+gM

wherea is a digit ofA, andq is a digit of the appropriately scaled integer quotient

(A x B) div M.

Some pre- and post- processing is necessary to remefactbr 2and extract the
true modular product (see [6]). However, one advantagdasofriéthod is that carries
propagateawayfrom the digits oR which are used to determine the quotient digjits
l.e. the multiples of the modulus to be added or subtraEtgthermore, at the cost of
a few more iterations, the multiplicaBdcan be shifted away from these digits in order

to simplify the process of calculating quotient digitd &tither.
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3. The Simplifications

As usual, a redundant representation of the numbers iwdpto enable the
addition cycle to be performed with digit parallel openaicA and B, which are
normally results from previous modular multiplicationsg ahe partial producR, are
assumed to be of this form. We choose the digit rangeZ@}Lfor them, but note
that, asA is consumed from the bottom up, it can be convertedherfly to non-
redundant form so that the digitused to formaB is just a single bit. The modulié
is known beforehand, and so can reasonably be assumbd io the usual non-

redundant binary form.

Carry
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Figure 1 Bit Slice for Adder of depth 4.

As A andB are known initially,aB can be calculated as far in advance as necessary
to speed the computation, although space may be requiredfeo fartial calculations
before they are used. We will show below thatan be computed as long before it is
needed as necessary. Tlgh4 can also be computed in advance, which meansSthat
aB + gM can be generated without delaying the main addition. th&@ean be given a

representation with a digit range of jy&:1,2}. Now the addition cycle has been

reduced to just
R« 2'R+S

in which bothR andS have (different) redundant representations. This caiobe as

in Figure 1 by an adder with a critical path length of/ahlgates, leading to a very
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short clock cycle. Moreover, if 3 bits are used forhedigit of R, then the adder can

be shortened to a mere 3 gates, as in Figurgu&t half the depth of Brickell's adder

2].
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Figure 2 Bit Slice for Adder of depth 3.

Assume that the registers containidgB, M andR all containn digit positions.
The computing ofS= aB — gM requires the broadcasting of digitgnda to each of
the n digit positions using a tree of multiplexers and thendigd-parallel addition.
This requires AQég n) time and Of) area. So the digitg anda need to be available
aboutt = O(log n) cycles, say, before the addition cycle in whichribgt value oR is
calculated fronS= aB — gM. This is achieved by modifyin and M so that their

lowestt digits are always fixed, and known in advance.

First, we replac® by 2B so that its lowest digits are all zero. The registers must
thereby be increased in size thyigit positions over and above the number of digits in
M. So the number of iterations in the modular multiplisaimust also be increased by
t. This is only a marginal change in the space andusage, and does not increase the

post-processing.

Secondly, adM is odd, we could replac®l by a multipleM” = mM with the
property mM = 1 (mod2"). However, the result using the scaled modddsvill need
some further minor post-processing to reduce it modulmtiginal M. Alternatively,

the modulus can be chosen to satidfi 1 (mod2) directly. The modulus used in the
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RSA crypto-system is a produagb; p, of two primes, each typically of around 100
decimal digits in length. These primes are obtained lsidering a sequence of
numbers until one is found that, using an algorithm suclthas of Solovay and
Strassen [4], is likely to be prime with a given, véigh probability. Any suitable
choice for the first primey; will determine the congruence whigh must satisfy,
namely p, = p; ' (mod2). The same algorithm can then be used to searcmfor a

appropriate value for the second prime.

A consequence of these simplifications is that thetobott digits of R are
determined merely by shifting down the bottori digits of its previous value. Since
these digits do not change wheis added, they will be the digits Thus the digitg
are indeed produced when required. Moreover, they cantbimed in non-redundant
binary form: since the lowestdigits of R are initially O, they have non-redundant form
initially, and thereafter, the digit at positi@hl can be converted to non-redundant
form, with its carry moving upwards, so that the nosdrelancy property of the

lowest digits is maintained.
4. Conclusion

To sum up, forany numbern of binary digits in the modulus of the modular
multiplication, we have described how to generate thésdigguired for the modular
reduction steps without delaying the formation of the prodddwus modular
multiplication suited for RSA may be implementednnt+ O(log n) clock cycles using
P. L. Montgomery’s algorithm and a clock cycle deterohibg an adder with a critical
path length of only 3 gates. This adder has just halfiépeh of those used previously

in the literature, and so leads to significantly fagenformance.
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