Space/Time Trade-offs for Higher Radix
Modular Multiplication using Repeated Addition

by

Colin D. Walter

Computation Department, U.M.1.S.T.,
PO Box 88, Sackuville Street, Manchester M60 1QD, U.K.

e-mail; cdw@sna.co.umist.ac.uk

Index Terms:Computer arithmetic, cryptography, RSA, modular multiplication,

redundant number systems, higher radix, optimal speed.

Abstract

The value of using a higher radix for modular multiplicatiorthe context of RSA is
investigated. The main conclusion is that for algargtwhich perform the multiplication
via repeated addition, there is, broadly speaking, a dir@de¢-off between space and time
provided by change of radix. Thus chip area utilised is rqugldportional to speed.
However, initially as the radix is increased fromfire is a short-lived increase in speed

greater than the extra area used.

IEEE Transactions on Computers, v.no. 2, (Feb 1997), pp. 139-141.

1. Introduction.

Increasingly widespread use of highly secure cryptographyaudst have made
necessary dedicated hardware for performing the inteasiseciated arithmetic. Many
algorithms, such as the RSA scheme [6], use modular expatien, which is achieved
through repeated multiplication. There are two standgatitims for reducing modular
multiplication to repeated addition (see [2], [5]) besidesencomplex methods such as
the Discrete Fourier Transform [1]. In two recent papg7] and [8], Eldridge and the
author have shown that, without compromising on chim,atlee speed of the addition
should be the limiting factor on the overall time lod tstandard algorithms. This contrasts
with the simplest approaches whose time efficiencybagind by the intermediate
calculation of the multiple of the modulus to subtracthe modular addition step. Both
these papers concentrated on number representationsadith2. This work applies
these methods with other radices in order to quantifybamefits that might accrue from

the use of a higher radix.

It is known that multiplication (and hence also modulaultiplication) of k bit
numbers can be performediay ktime usingk’/log karea [4]. As well as being complex,
such time-optimal multipliers are currently too area-hurigr practical implementations
of RSA cryptography. However, they can be used fodihie by digit products required
in higher radix versions of the standard methods mesdi@ove. This then yields a very
fast yet easily verifiable circuit in reasonable gegime, although it is at the cost of the
sub-optimal multiplication time taken by the standard dtigox. The algorithm provides
products most quickly by tailoring the choice of radix lhe tmaximum area available on
the chip. However, we will see that increasing thaixrés probably only worthwhile for
low radices; large ones eventually make this style adutar multiplication too expensive
in terms of area and design complexity. The onlyydalhgible benefit over a number of
base 2 or base 4 multipliers in parallel with the sarea & probably the convenience of

sequential output.

Colin D. Walter High Radix Multiplication

2. The Modular Addition Cycle.

At the heart of most implementations of the RSA arggstem [6] is an adder for

performing the modular multiplicatiod\(x B) mod M by the repeated operation:
R « rR+aB- M

where d = +1 depends on the choice of algorithth<{ +1 for the standard algorithm,
o= -1 for Montgomery’s algorithm [5]); is the radix for the number representatiams,
is a digit of A, andq is a redundant digit chosen to keRpbetween 0 andN. The
multiplication or division by is performed by a shift and, whér= 1, qis a digit of the
integer quotientQ = (A x B) div M. (A similar, though more complex, relation holds
whend= -1.) The whole operation can be performed in one obycle if a redundant
number system is used fBr so that carry propagation is bounded. We need not bsgrec
about the digit range used, but will assume the extra redeyw@aequivalent to that given

by using one extra bit. Hence typical ranges mightiael tor-1 or 0 to 2-1. For
convenience, we will assume also that the radixpevaer of 2, say = 2, and we will use
n for the number of basedigits in the hardware registers we need. Tieslog, rM[

k+1 bits are required for a digit (although in placksa& convenient), and the number of

bits in the inputs, namely around, is constant for the circuits of interest.

In the context of RSA, various assumptions are possiBiest, the numbers involved
have many digits, being typically up t6°? in size. Secondly, sinok andB are usually
residues of previous modular multiplications, we assumethiegtare fully known initially
and that they have the same redundant forR aghirdly, we assume that the moduMs
is fixed for many consecutive multiplications in whichtputs are used as the next inputs.
Hence time can be spent in pre- and post- processingchtend of the sequence with
very little affect on the overall cost. In partiaul®l may be scaled beforehand and have a
non-redundant form, whilst the final outp&® may differ from the least non-negative

residue by a small multiple o.

As A andB are known initially,aB can be calculated as far in advance as necessary to
speed the computation, although space may be required ta bafféal calculations

before they are used. We will show below thatan be computed as long before it is

IEEE Transactions on Computers, v.no. 2, (Feb 1997), pp. 139-141.

needed as necessary. Thyld can also be computed in advance, which means that
S=aB - M can be generated without delaying the main addition.th \tfiese

assumptions, the addition cycle reduces to just
R« rrR+S

in which bothR andS have redundant representations. An adder for this coofthgate
carries in the binary representation of the individiiglts of the output to giv&R as a
redundant number of radixwith digits in the required form. As this might requiiae
but little extra area if any, we will just usk Bits for each digit instead &1, so that both
R and S basically consist of two binary numbers each. Twenrequire an adder which
reduces four binary numbers to two. By slightly reapming two full adders, this can be
done with a critical path length of about 4 gates, leatdirayvery short clock cycle indeed.
A andB will have the same form also. With the adder bemdudly utilised throughout
the multiplication, it is not possible to pipeline salaralculations through this part of the
hardware at once. Hence the timing results obtaindd cawver both latency and

throughput.

3. Forming aB- &gM.

The hardware model which we use assumes bounded fan-farandt, with all gates
having O(1) area andD(1) time delay, and all wires having(1) width but conveying
signals in zero time. We assume power, earth andgtiisignals are available at any point
of the chip (e.g. through additional layers in the chgp)that no wiring overhead need be
counted for any such connections which a gate requifbs is a good approximation to
reality for circuits of a size appropriate to RSA cryptaphy in a technology where gate
delays exceed signal propagation time along a chip-lengéh wience, for arbitrary a
1:t bit multiplexer formed from a tree of multiplexers witbunded fan-out will have(t)
gates, a critical path “length” @(log t), which is the time it takes to operate, and a wire
length and area d(t log t). Thus the wires dominate the area, and it is haxdisth
trying to recover any area from the obvious rectangularlog t circuit layout. Such
multiplexers account for the longest wires in the ciecwe describe, but we will show

how to compute their inputs far enough in advance to aanyddelay caused by wire

4

Colin D. Walter High Radix Multiplication

length. Thus critical paths will involve only localrnections, and the wire delay may then

be ignored.

The computing ofgM andaB requires the broadcasting of digiteinda to each digit
position ofM and B and then either the calculation of the digit multipleiterselection
from a set of pre-calculated values. In either case,need a tree of multiplexers to
distributeq anda to then digits. Since a digit ha®(k) bits, this will have critical path
time O(log n), O(nk) area of multiplexers, and a wire length or are®@ik log). This
and the rest of the hardware for calculatii®-ogM needs to be pipelined as the results

from successive computations must be available at@ack cycle of the main adder.

If all digit multiples of M and B are pre-calculated, the@(nkr) register area is
required, and the selection of the right value ta®€lg critical path depth, a further
O(nkr) gate area and a wire length, or areaQ@frk’). This is the more expensive choice,

as we see next.

On the other hand, suppose the multipleBl@ndB are calculated on the spot. Then
only O(nK) register area is required, and the calculation of thitipies takes the same
additional time and area an Rarallel products of twé-bit integers. It suffices to choose
a pipelineable digit by digit multiplier with minimal ar@dich generates one product per
cycle as throughput. Thus we take a multiplier of @@d) per digit with a latency of
O(log K, pipelined to give a product every cycle. It can benddfisimply by means of a
divide-and-conquer method (see 3M in [3]) and yet be optmh respect to
Tim& x Area without having to use the Discrete Fourier Transforfthe overall digit
multiplier area is justO(nk’), which is much less than that needed for pre-computed

multiples. This then is the method to choose for coimguhe multiples oM andB.

Finally, the addition (or subtraction) mB—AdqM takes a single clock tick and area
O(nK) by virtue of the redundant representation. Overallafbdigits together, the time
taken from the generation qfanda to the completion of computirgB—AogM is O(log nk

clock cycles and it use®(nié+ nk log n) area.

IEEE Transactions on Computers, v.no. 2, (Feb 1997), pp. 139-141.

4. Operand Scaling.

The calculations of the last section mean that tigitsdgq and a need to be
availablet cycles, say, beforaB-ogM is needed, whereis O(log nK. Unexpectedly, but
not surprisingt is essentially dependent only on the number of bithieninputs, not on
the choice of radix. In order to provide the quotienttajgt digits in advance, we need to
scale and shiftM and A. We describe the appropriate techniques in the casbeof
classical algorithm (i.ed = +1). For Montgomery’'s reformulation [5] (i.& = -1),

corresponding suitable techniques have been described bytior and Eldridge in [8].

First of all, following [7] 83, we choose so thatmM has a most significant digit 1
followed by at least digits 0. This is achieved by choosingto be the first+1 (or so)
significant digits oM™, rounded up. With the scaled moduto®, the residudR will now

be bounded byrBM. Hence about cycles of additional post-processing will be necessary
after all the modular multiplications are done in orderobtain the least non-negative
residuemod M Before such post-processing, we can expect tiRdisethe inputsA and

B of the next modular multiplication, so that they toith be up to 2nMin size.

We next scaléd and mM by shifting both upt”= t+2 places, so that we are now
computing Ar” x B) mod (r'mM) and then shifting the result down by places to
compensate. Leé¥1’= r'mM be the new modulus. The consequence of the scaling and
shifting is that the terraB makes no contribution to the computatiorRah the region of
the topmost+1 digits ofM”. Moreover, the form oM’ means that the teriggM” only
affects the topmost digit @ in this region. The digitg are chosen to kedp with fewer
digits thanM”, though it may sometimes become slightly negative essalt. Initially,

R = 0 so that such a property holds. Thereatfjas, picked equal to the digit oR in the
same position as the top digit df. SorR + aB — dgM’ still has fewer digits thaM ” as
carry propagation is limited. Thus the new valueRowill have the same property again.
Indeed, if we are careful enough with carry propagatiogn the top—1 digits of R are

now the ones which, with, were the tog digits of the previous value & Hence the
top t digits of R are just the next values forg, and so the values gfare generated as

early as required.

Colin D. Walter High Radix Multiplication

Scaling and shifting therefore solve the main problemmickv slows up most
implementations. The cost of this is an increasthéntime by an additiond(log nk
clock cycles per modular multiplication and an increasaréa given by havin@(log nk
extra digits, together with some minor extra post-praings after all the modular
arithmetic. These increases are small compardakettotal time and area requirements as
long asO(log nk < O(n), i.e. if nis not too small. In such cases the overall orderea

and time are as calculated in the previous section.

5. Timex Area.

Whenn is not too small, i.en = O(log nK), 83 gives the whole area of the adder to be
O(nk¥+ nk log n) and the time required for a modular multiplicatio®{®). If n is not
too large either, specifically ibg nis at mostO(K), then this area simplifies ©(nk’), and

soTimex Areais O(n’k’). Now suppose the inputs are of fixed size sorikaessentially
the number of bits iM, is fixed. Then, except for extreme valuesnpfTime x Areais

constant to a first approximation, no matter whaticghof radix is made.

For large radix, i.e. small, the design is not of any value because the time peoalt
producing the digitgy in time is too great. However, for small radix, ikeless than
O(log n), thelog nterm in the area dominates the expression, soTima¢ x Area is
roughlyO(n log n), which increases with. Thus, for such, increasing the radix provides
a more efficient algorithm at least initially. Naivis dominant term corresponds to the
part of the circuitry for distributing the digitsanda as opposed to that for computing the
digit product. So the constant implied by eotation is probably relatively small for the
nk log n term compared with that for tls¢ term. This means that the penalty for using

a very small value fok (i.e. a small radix) is likely to be short-lived.

We have not considered here the relative advantageslifiefent redundant
representations. However, by observing that lessaeatea is required to represent
minimal redundancy as the radix is increased, it isylikeat for such representations,
Timex Areawould decrease slowly at least initially as the réslincreased. This provides

an added, though diminishing, incentive to increase tig aavay from 2.

IEEE Transactions on Computers, v.no. 2, (Feb 1997), pp. 139-141.

6. Conclusion.

Overall our main conclusion is that, to a first appmmation, Timex Areais inherently
constant for this algorithm; that i§imex Areais independent of the choice of radix for
the best implementations of the standard method of modulétiplication by means of
repeated addition. This result holds assuming the maseeffimplementation of digit by
digit products. Since the design described here is paraateby the radix, the best speed
is obtained easily just by choosing the largest radixvibich sufficient chip area is

available.

Our other conclusion is that, notwithstanding tA@mne x Area is approximately
constant, there is an initial, though short-lived inmaroent in efficiency when the radix is
moved away from 2. Thereafter, placing a number of modaldtiplication processors in
parallel on a chip would provide similar throughput for tAme cost in terms of area, but

without the advantage of the above scheme which prodsomstput sequentially.

References.

[1] R. P. Brent & H. T. Kung, “The Area-Time Complexitf Binary Multiplication,”
J. ACM, vol.28, 1981, pp. 521-534.

[2] E. F. Brickell, “A fast modular multiplication algorithh with application to two-key
cryptography,” inAdvances in Cryptology - RYPTO’82, Chaum et al., Eds., New
York, Plenum, 1983, pp. 51-60.

[3] W. K. Luk & J. E. Vuillemin, “Recursive Implementatioof Optimal Time VLSI
Integer Multipliers”, VLSI '83, F. Anceau & E.J. Aas (ed<lsevier Science, 1983.

[4] K. Mehlhorn & F. P. Preparata, “Area-Time Optimal$™ Integer Multiplier with
Minimum Computation Time”, Information & Control, vd8, 1983, pp. 137-156.

[5] P. L. Montgomery, “Modular multiplication without ttiadivision”, Math.
Computation , vol44,1985, pp. 519-521.

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A methaat btaining digital signatures
and public-key cryptosystemsComm. ACMvol. 21, 1978, pp. 120-126.

Colin D. Walter High Radix Multiplication

[7] C. D. Walter, “Faster Modular Multiplication by OpetarBcaling,” Advances in

Cryptology - @YPTO'91, Lecture Notes in Comp. Sci. v&i76 (1992), pp. 313-323,
Springer-Verlag.

[8] C. D. Walter & S. E. Eldridge, “Hardware Implementatiof Montgomery's Modular
Multiplication Algorithm,” IEEE Trans. Comp. vofi2, 1993, pp. 693-9.

4th May 96

