
1

Techniques for the Hardware

Implementation of Modular Multiplication

by

Colin D. Walter

Computation Department, U.M.I.S.T.,
PO Box 88, Sackville Street, Manchester M60 1QD, U.K.

C.Walter@co.umist.ac.uk http://www.co.umist.ac.uk/

Index Terms: Computer arithmetic,
cryptography, RSA cryptosystem, Montgomery
modular multiplication, redundant number
systems, higher radix representation, optimal
speed, area complexity.

Abstract
Hardware for modular multiplication is

required for strong cryptosystems so that large
volumes of encrypted data can be safely stored in
public areas and obtained over a public network
(e.g. the WWW) but only understood by authorised
users. This article reviews the main bottlenecks
which may arise in the more obvious
implementations of RSA and outlines a variety of
solutions to them so that plain text can be recovered
in real time.

1. Introduction
RSA [1] is an arbitrarily strong, two key

cryptosystem which is generally only currently used
for authentication protocols and for exchange of
session keys to enable secure communication by
arithmetically less intensive encryption methods.
However, there is a growing need for secure
encryption of large volumes of data. In particular,
this is the case for data accessible over the internet
which is commercially sensitive and should only be
comprehensible to certain readers. It is also the
case for much private data which is stored on
public servers. The quantity of such data can make
weak cryptosystems essentially useless in such
situations. However, software implement-ations of
a strong cryptosystem such as RSA are too slow for
decrypting retrieved data in real time for viewing or
editing purposes. Only dedicated hardware can
achieve a speed equal to the disk access times,
internal bus speeds, etc. which dictate the retrieval
times for unencrypted data.

An RSA cryptosystem consists of a modulus M
of around 1024 bits and two keys d and e with the
property that Ade ≡ A mod M. Message blocks A
satisfying 0 ≤ A < M are encrypted to A’ = Ae mod
M and so uniquely decrypted by A = A’d mod M
using the same algorithm for both processes.
M = PQ is chosen as a product of two large primes,
e is often small with few non-zero bits so that
encryption is relatively fast, and d chosen to satisfy
de ≡ 1 mod (P–1)(Q–1). Thus d has as many bits
as M. The owner of the cryptosystem publishes M
and e but keeps secret the factorization of M and
the key d. Breaking the system requires discovering
P and Q, which is computationally infeasible.
Indeed, each addition of a small, almost constant
number of bits (around 15) to the size of M doubles
the effort required for this [2].

This paper discusses the major problems
associated with space and time efficient hardware
implementation of the cryptosystem and reviews
their solution. Among the issues of concern are
carry propagation, digit distribution, buffering,
communication and use of available area.

2. Notation
The computation of Ae mod M is split into two

main processes: modular multiplication and
exponentiation. The exponentiation is discussed
last as it has to make repeated use of the modular
multiplication hardware. Thus we look first at
computing (A×B) mod M.

Each number X has a representation of the form

X = x ri
i

i
n
=
−∑ 0
1 where r is the radix or base (usually

a power of 2) and xi is the ith digit (usually
0 ≤ xi < r). Let n be the number of digits for this
representation of M. The representation is
redundant if numbers can be represented in more
than one way. Here this occurs by allowing digits

Proc. 2nd IMACS Internat. Conf. on Circuits, Systems & Computers, Athens, Oct 1998, vol. 2, pp 945-949

2

in a range larger than 0..r−1, and typically that
given by an extra (carry) bit, that is, 0..2r−1. For
example, the output from a carry-save adder
provides two bits for each digit and so, in effect, is
a redundant representation where digits lie in the
range 0..2 rather than the usual 0..1. We use k for
the number of bits used to represent a digit, so that
kn is approximately 210 here, and O(kn) is
effectively constant.

The choice of k and n splits the formation of
A×B into two multiplication levels: forming
products of k-bit digits and forming products of n-
digit numbers. More levels could be created.
Different algorithms are used for each level. The
lower level is of combinational logic, possibly
pipelined to increase throughput. The hardware
will be built around n k-bit digit multipliers, and
this defines our choice of k. The upper level views
a product as a sequence of additions of digits
multiples aiB of the multiplicand, and so will take a
number of clock cycles.

3. Multiplication

Practical planar designs are well known for
multipliers which are optimal with respect to some
measure of time and area [3]-[8]. Under a model
which assumes that wires take area but do not
contribute to time, Area×Time2 complexity for a k-
bit multiplication is bounded below by k2 [3] and
this bound can be achieved for any time in the range

log k to k [6]. Such designs tend to use the
Discrete Fourier Transform and consequently
involve large constants in their measures of time
and area. There are more useful designs which are
asymptotically poorer but perform better if k is not
too large. Since the cross-over point is claimed to
be around k = 3×103 bits [5], i.e. greater than the
size of the numbers here, classical methods are
preferable. Indeed, it makes sense to pick a
standard k-bit combinational multiplier off the shelf
since it will contain years of optimisation, it will
have a known latency and will be known to be
correct. For a current standard chip of perhaps 107

transistors devoted entirely to RSA, k = 32 or 64 is
the maximum practical [9] since there must be
space for registers and for other operations such as
modular reduction.

There is a direct trade-off between time and
area. Doubling the number of digit multipliers
allows the parallel processing of twice as many

digits and so halves the time taken. If the k-bit
multiplier works in one cycle with no pipelining and
k is roughly the bandwidth of the internal bus, it is
easy to calculate that sufficient throughput for real-
time decryption requires n multipliers so that a
complete multiplier digit times multiplicand aiB (or
equivalent) can be computed in one cycle. Then, in
effect, each cycle processes all the multiplicand bits
with k of the multiplier bits. A different regime
would lead to more complex data paths and hence
less efficient use of chip area, and so is not
considered.

Suppose therefore that the n digit multipliers
are used to add aiB to a partial product in one clock
cycle. If the carries are propagated then this takes
extra time beyond the digit multiplic-ations. The
digit multipliers ought not to lie idle while this
happens. The equivalent of a carry save adder
might be used to avoid carry propagation, so that
the partial product has a redundant representation
[10]. Alternatively, successive aiB can be
pipelined: either ai+1B can be formed as the previous
carries are propagated or, if aibj and its carry are
calculated on one cycle, the next multiplier along
should use this carry on the next cycle to compute
aibj+1 and another carry [9].

4. Modular Reduction
The reduction of A×B to (A×B) mod M can be

carried out in several ways, but each involves
repeatedly choosing a suitable digit q and
subtracting a shifted qM from the current
remainder. The successive choices of digit q can be
pieced together to form the integer quotient Q =
(A×B) div M or a closely related quantity if desired.
Classically, shifted multiples of M are subtracted
from the most significant end of A×B:

{ Pre-condition: 0 ≤ A×B < M×rn }
R := A×B ;
For i := n−1 downto 0 do
Begin

q := R div (M×ri) ;
R := R − q×M×ri ;
{ Invariant: 0 ≤ R < M×r i

& R ≡ (A×B) mod M }
End ;
{ Post-Condition: R = (A×B) mod M }

This requires waiting for a full carry propagation
with each subtraction if the largest possible multiple

Colin D. Walter, Hardware Implementation of Modular Multiplication

3

is to be removed. A better solution is just to use the
top digit or two of M and the remaining product to
determine a sufficiently good multiple of M to
remove [10]. This reduces the result enough to
guarantee an upper bound of rM, say, when the
process terminates. This can be cleaned up
properly at the end of the de-cryption. The critical
path is now in the circuitry for computing q, but
this can be reduced by scaling M [11,12]. M is
replaced by a small multiple so that its top digits
are known and simple, say, 10... Minor post-
processing will again recover the correct residue.

If the product A×B is fully computed before the
modular reduction starts, then a register of 2n digits
is required. However, if the product is performed
by repeated shifting and addition, the modular
reductions can be interleaved with the additions to
keep the partial sum down to only about n digits,
thereby saving space. This has the added advantage
that the multiplier hardware and modular reduction
hardware can work simultaneously on the same
modular product; otherwise full utilisation of these
two parts of the hardware would require the
complication of handling two modular products at
once.

The modular reduction requires another n digit
multipliers to compute qM, so that the main area
taken up by the RSA circuitry is 2n k×k-bit
multipliers and an adder to combine their outputs.
It has been suggested that a table be formed
containing some or all digit multiples of M in order
to avoid re-computing them so many times. This is
unwise as it requires O(2k) entries, so the time and
space requirements would exceed those of re-
computation unless k were very small.

5. Montgomery’s Algorithm
The above modular reduction method has

several disadvantages. It requires a redundant
representation (which takes up more space) to avoid
carry propagation, makes a poor choice of multiple
to subtract, takes time to compute the digit q, and
requires the global broadcasting of q to each digit
position. Peter Montgomery [13] has shown how to
use the least significant digit of an accumulating
product to determine the multiple of M to subtract.
He reverses the usual multiplication order by
choosing multiplier digits from least to most
significant and shifting down on each iteration. If R
is the current partial modular product, then q is

chosen so that R+qM is a multiple of r, and this is
shifted down (i.e. divided by r) for use in the next
iteration. Consequently, (A×B×r–n) mod M is
computed:

{ Pre-condition: 0 ≤ A < rn }
R := 0 ;
For i := 0 to n−1 do
Begin

q := (-(r0+ai×b0)m0-1) mod r;
R := (R+ai×B+q×M) div r ;
{ Invariant: 0 ≤ R < M+B }

End ;
{ Post-Condition: R ≡ (A×B×r–n) mod M }

The extra factor, a power of r, is easily cleared up
in minor post-processing [14]. Any extra multiple
of M is also easily removed.

With this algorithm, the digit q is computed
from the lowest digits of R and M without waiting
for any carry propagation. So pipelining of the
digits can now take place with
aibj+1 computed on the cycle after aibj using its
carry and the same values of q and ai. Thus, a non-
redundant representation can be used and q and ai

no longer need to be broadcast to all digit slices in
the same clock cycle.

Once more the critical path length is in
computing q. To reduce this path M is again scaled
[15], this time ensuring that its lowest digits are
known and simple, say ...01. This moves the
critical path to within the multiplier of each digit
slice, so that most of the hardware is operating at
full capacity. Further optimisation must
concentrate on the digit slice and improved
communications.

6. Communications
Our goal is to have only local inter-

communication because of the delays and wiring
associated with global movement of data. The
standard approach, namely parallel processing of
digit operations for the same multiplier digit,
requires broadcasting q and ai to all digit slices on
each cycle [10,12]. Avoiding this requires
pipelining digits as described above and yields a
systolic array [16,17,9].

If the term aibj were added to the partial result
in digit slice j on cycle i+j, the first output digit
would occur at time n−1. Full utilisation of the

Proc. 2nd IMACS Internat. Conf. on Circuits, Systems & Computers, Athens, Oct 1998, vol. 2, pp 945-949

4

hardware could only occur if another modular
multiplication were to start at time n when digit
slice 0 becomes free again. Fortunately, the
exponentiation involved in the cryptosystem means
that the output from one modular multiplication is
the input to the next modular multiplication, and so
no time is lost and little wiring and buffering is
required to achieve this. The precise timing details
are actually slightly more complex because of the
shift down in Montgomery’s algorithm [16,17,9].

Since this system requires input digit serially, k
bits at a time for each number and produces output
similarly, its I/O matches internal bus speeds and
bandwidth and so reduces the need for on chip
buffering of data.

7. Exponentiation
The exponentiation required for encryption and

decryption is generally achieved simply by
incorporating several registers and making repeated
use of the modular multiplier hardware. If the
exponent d has the same size as M, namely about
nk bits, then the usual square and multiply
algorithm for exponentiation takes between nk and
2nk modular multiplications, and 1.5nk on average.
There are ways to reduce this towards nk [18,19]
but the possible improvements are very limited.
Much more is achieved by good design for the
modular multiplier.

8. Conclusion
We have reviewed the main bottlenecks which

may arise in hardware for implementing the RSA
cryptosystem and shown how to make the most
efficient use of area. The key solutions are to use
Montgomery’s modular multiplication algorithm
[13], scale the modulus, pipeline digit products and
use an existing k-bit combinational multiplier.
Finally, k is chosen as large as possible to make full
use of the available chip area so that real time
decryption is achieved.

References
[1] R. L. Rivest, A. Shamir & L. Adleman, “A

Method for obtaining Digital Signatures and
Public-Key Cryptosystems”, Comm. ACM,
vol. 21, 1978, pp. 120-126.

[2] N. Koblitz, A Course in Number Theory and
Cryptography, Graduate Texts in
Mathematics, vol. 114, Springer-Verlag,
1987.

[3] R. P. Brent & H. T. Kung, “The Area-Time
Complexity of Binary Multiplication”, J.
ACM, vol. 28, 1981, pp. 521-534.

[4] R. P. Brent & H. T. Kung, “A Regular
Layout for Parallel Adders”, IEEE Trans.
Comp., vol. C-31, no. 3, March 1982, pp.
260-264.

[5] W. K. Luk & J. E. Vuillemin, “Recursive
Implementation of Optimal Time VLSI
Integer Multipliers”, VLSI ’83, F. Anceau &
E.J. Aas (eds.), Elsevier Science, 1983, pp.
155-168.

[6] K. Mehlhorn & F. P. Preparata, “Area-Time
Optimal VLSI Integer Multiplier with
Minimum Computation Time”, Information
& Control, vol. 58, 1983, pp. 137-156.

[7] F. P. Preparata & J. Vuillemin, “Area-Time
Optimal VLSI Networks for computing
Integer Multiplication and Discrete Fourier
Transform”, Proc. ICALP, Haifa, Israel,
1981, pp. 29-40.

[8] C. S. Wallace, “A Suggestion for a Fast
Multiplier”, IEEE Trans. Electronic
Computers, vol. EC-13, no. 2, Feb. 1964,
pp. 14-17.

[9] C. D. Walter, “Redundant Arithmetic is not
necessary for Fast Modular Exponentiation”,
submitted to IEEE Trans on Comp.

[10] E. F. Brickell, “A Fast Modular
Multiplication Algorithm with Application to
Two Key Cryptography”, Advances in
Cryptology - CRYPTO ’82, Chaum et al.
(eds.), New York, Plenum, 1983, pp. 51-60.

[11] C. D. Walter, “Faster Modular
Multiplication by Operand Scaling”,
Advances in Cryptology - CRYPTO ’91, J.
Feigenbaum (ed.), Lecture Notes in Comp.
Sci. vol. 576, 1992, pp. 313-323, Springer-
Verlag.

[12] C. D. Walter, “Space/Time Trade-offs for
Higher Radix Modular Multiplication using
Repeated Addition”, IEEE Trans. Comp.,
vol. 46, 1997, pp. 139-141.

Colin D. Walter, Hardware Implementation of Modular Multiplication

5

[13] P. L. Montgomery, “Modular Multiplication
without Trial Division”, Math. Computation,
vol. 44, 1985, pp. 519-521.

[14] S. E. Eldridge, “A Faster Modular
Multiplication Algorithm”, Intern. J.
Computer Math., vol. 40, 1991, pp. 63-68.

[15] S. E. Eldridge & C. D. Walter, “Hardware
Implementation of Montgomery’s Modular
Multiplication Algorithm”, IEEE Trans.
Comp., vol. 42, 1993, pp. 693-699.

[16] C. D. Walter, “Systolic Modular
Multiplication”, IEEE Trans. Comp., vol.
42, 1993, pp. 376-378.

[17] P. Kornerup, “A Systolic, Linear-Array
Multiplier for a Class of Right-Shift
Algorithms”, IEEE Trans. Comp., 1994, vol.
43, no. 8, pp. 892-898.

[18] D. E. Knuth, The Art of Computer
Programming, vol. 2, “Seminumerical
Algorithms”, 2nd Edition, Addison-Wesley,
1981, pp. 441-466.

[19] C. D. Walter, “Exponentiation using
Division Chains”, IEEE Trans. Comp., vol.
47, 1998, no. 7, to appear.

26th May 1998

