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Kuroda’s class number relatiorn”

by

C. D. WALTER (Dublin)

Kuroda’s class number relation [5] may be derived easign fthat
of Brauer [2] by eliminating a certain module of units, thé technique
is applicable to a much wider class of relations whiehadotained from
norm relations. The main aim here is to treat the @gasvhich several
radicals of the same prime degree are adjoined to tibaakfield.

1. Norm relations. Let G be the Galois group of a normal extension

K/k of algebraic number fields antl the sum of the elements in a
subgroupH. Then a relation of the form

(1.1) Sh(H)H =0 b(H) 0 Q)
H

is called anorm relation These have been studied by Rehm in [7] and
are so-called because Artin has established in [1] hieatelation holds
precisely when

(N 0PH) =1 for alk 0 K*.

H
Here HK is the subfield fixed byH andN is the relative norm. ItLﬁ
denotes the character @induced by the unit character éhthen the
equation
(2.2) S1H(e)g = HI™ Y gHg™

glG glG

may be used to convert the norm relation (1.1) intachi@@acter relation

(1.3) Sb(H)[H |15 = 0.
H
The most interesting relations satisfy two furtherdibons :

(1.4) DEFINITION. Y b(H)H = 0 is called alirect norm relation if

(i) there is arHy O S={H| b(H) # 0} such thatH, 0 H for allH O S,
and

(ii) distinct Hy, H, 0 S = {H O § H # Ho, H # G} satisfy

IH [ HOH, [TH, = |GG,
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This definition and its notation will be subsumed froaerehon. All
sums and products will extend over [0 S and’ will indicate their

restrictions toH 00 &. For any left (resp. rightf[G]-moduleM let HM
(resp.MH) be the submodule fixed under the actiorHodnd writeMg

for > 'HM. If M is torsion-free ove? andGM = 0 then
(1.5) Mo =)' HM s a direct sum.

For supposeH, H' 0 & are distinct. TherHH' 0O ZG and soH

provides H|H'|/|G| representatives for each cosetHifin G. Thus H
acts a multiple of the trace ¢tiM/GM. Consequently ifn =) my 00 Mg

with my O HM then Hm = H|my becaus&M = 0. Hencemy is unique
asM is torsion-free.

(1.6) THEOREM A direct norm relation has the form
5 (A/IH|-G/IG|) = Ho/IHol-G/|G]
and its associated character relation is
)3 (Lﬁ —1) = 1ﬁ0—1.
Moreover

Ho=n{HOSS}, G=0{HUOS},

and $ completely specifies the relation
Proof. When a(H’)|H ’|_1 H' =0is multiplied byI:|/| H | for H
[0 S orH = G one obtains
(@o+a(H)H [ H+YaH)|G['G =0

whereay = a(Hp) and the sum extends ovdi # H in & O {G}. This
givesa + aH) = 0 forH 0 S and y a(H’) = 0 forH = G. Thus the

form of the norm relation is established. (1.3) gives ttharacter
eqguation which will henceforth usually be written

(1.3) SaHUE = 0.

(1.7) EXampLE. If G is an elementary abelian group of prime expopent
and ordep” andT is the set off{" —1)/(p —1) maximal subgroups then

SH =@ -1/(p-1)(G +p 1
HOT

is a direct norm relation.
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Proof. Any isomorphism betwee® and its character grou@*
provides a bijection between maximal and minimal subgrowgrseely

H o H ={gOG|h(g) = 00h O H*}

where H* is the image ofH in G*. The order ofT is the number
(p"-1)/(p-1) of minimal subgroups. Nog H if and only if [gF O H".
So the number of maximad containingg is the number of minimal
subgroups offg®, namely p"*-1)/(p-1) if g # 1. Thus the norm
relation holds. It is direct because distinct maxisuebgroupsH andH’
satisfy HH' = p"2G.

There are several ways of constructing new relatioos fgiven

ones by passing from the whole group to a subgroup or quotiemp gr
andvice versgsee [8]). In particular,

(1.8) LEMMA. Suppose G and G’ are subgroups qf Sach thatGG’
Gy and Zb(H)I—T = 0 is a direct norm relation for GIf HG' =
{hg’|h0O0H,g’0G} is a subgroup of §Gfor every HIS then

Yb(H)HG’ = 0is a direct norm relation for €

—~

This is clear becaud¢G’'= HG' = G'H forHO S

2. Brauer's class number relation.Let U be the unit group df ; W
its subgroup of roots of unitys(H) the 2-component in the order of
HW, h(H) the class number diK; r(H) the rank ofHU/HW ; andn(H)
the degree dfiK/k. A bar will denote the natural map —» U/W.

Choose one prime divisor iK of each infinite prime ink and
suppose €i | 1<i <r} is the set of their decomposition group<Kitk.
Sor =r(G) + 1 and eaclC; is determined up to conjugacy. lUfis
defined by the exact sequence

r
i=1

of Z[G]-modules where [J Z — n [J; G then Brauer'’s theorem may be
formulated as follows.

(2.2) THEOREM ([9], Theorem 4.1). Suppose} a(H )1ﬁ = 0. If the
submodule M o) is Z[G]-isomorphic to L then

MhH)2M = 1 H)waH)HU - M

Unit groups may be written in either additive or muitative
notation but the context will clarify the choice. Suppo

(23) QGU ={e0U|hOZ n#0,withne 0 GU}
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is the group of units with powers kn Then GV =V n QGU for any
subsetv [0 U and so the equalities hold in the definitions below.

Q* = [HoL . Lo],
Q = [HoU:HoW+Ug] = [HU :Ug],
Qo = [HoU: (HolUnQGU) + Ug] = [HgU :GHU +Ug],

I(H) = [HUNQGU : HW+GU] = [GHU :GU],
lo = [Uon QGU: Wy +GU] = [GUgy:GU]J.

By comparing rank$(H) and o are finite. Ifx [0 HoX for someZ[G]-
moduleX then (1.1) gives

—b(Ho)x = b(G)G/Hox + > " b(H)H/Hox

—~

As H/Hy is the trace foHoX/HX so (1.6) shows thatd;Hg]x [ Xo. Thus
(2.4) [HoX : Xo] is finite

if X is finitely generated, and all the indices above ariefi The basic
simplification of (2.2) for direct norm relations is :

(2.5) LEMMA.
MIHU :HMIEH) = (Qur@) i (H)AH).
Proof. (GHQU +Ug)/Uy OGHgU /GU, whence
(2.6) QIQ = I(Ho)/lo.
LetV=GU,. Then
Q* [HgU : HoM]/[GU : GM]I (Hg)Qg
= [HoM : Mg][HgU : HoM][GM : GU][GU :V][Ug: HU]
= [Up:Mpl[GM :V] = [Ug:Mg+V] since Mot+V)/Mo OV/IGM
= [Up/V : (Mg +V)/V] = [ [(HU +V)/V : (HM +V)/V] by (1.5)
= [ [HU : (HM +V) n HU]
= [ [HU : HM]/[HM + GHU : HM]
= [ [HU : HM]/[GHU : HM n GHU]
= [ [HU : HM]/[GU :GM]I (H) .

Theorem (1.6) completes the proof.
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3. The indexQ*. Let L; be defined to make thg GJ-module sequence
r
i=1

exact. Associated with it is the submodule = >’ HL; and the index
Qr = [HoLi :Lig] which is finite by (2.4). Both (2.1) and (3.1) are exact
when restricted to the submodules fixed by a subgkbbpcause this is
a left exact functor and any pre-image of an elemerlinor HL; is
certainly fixed byH. Hence

Hol/Lo O {Ho(DZ[G]C)}{ >’ H(OZ[G]C)}

0 O(HeZ[GICi / ' H(Z[GIC)) O O HoLilLio
and so

(3:2) =M @

Now define a pairing ofL; x QL; by (x, y) = |G |_1 (1&3 -1 (xy*)
where * is the involution induced lgp— g™ for g O G. If Nis aZ-sub-
module ofL; with basis f} let R(N) = |de{(n,,ny))| be the regulator of
N. This is independent of the choice of basis and for anathbmodule
N’ it satisfies
(3.3) R(N) = [N:N']?R(N)

whenever N : N'] is defined.
Let HgG denote the sum of the distinct elements mgd | h(OH,

cC}, |HgG| the number of such elements, akgG its image inL;
under (3.1). IH andH’ O & are distinct then there areld H andh’ [
H’ such thathh’ = g for any giveng 0 G. Soh*gh™ = 1 and HgH"’ =
HH'. Thus

(HgC)(Hg'C)* 0ZG and (HgG.H g'G) =0.

However, theHgG form a basis ot for H 0 & and suitableg O G

because.ioc = >’ HL; is a direct sum by (1.5). Hence the corresponding

matrix for R(Lio) is zero except for blocks of determind{HL;) on the
diagonal. This gives

(3.4) R(Lio) = [] R(HL).
The number oHgG which haveHl| elements is
KOO G lavg™ OHY /[H| = 1§ (v)
wherey; generatesC,. Thus the number with B| elements ig,(H) =
1ﬁ (1-y)/2. Setri(H) = dim HZ[G]C; -1. As (3.1) is exact when fixed
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by H so {HgG } is a basis oflL; wheng runs over representatives of
the non-principal double cosdt8G/G . If HQG # HhG then

(HgG,HhG) = —|HgG|HhG| /|G|
and
(HgG,HgG) = HgG|- HgGl/ |Gl .
Hence _ _
RHL) = H[™ 22 h1c 1 detA

whereA =1 — ( [HgG| / |G|)gn for the identity matriX. Add together the

rows ofA to obtain the constant rom]1C;| / |G| and use it to eliminate
(IHgGC| / |G|)gn - Thus detA = H1Ci|/ |G| and

(3.5) RHL) = H[ 220 g

Equation (3.3) give§? = R(Lig)/R(HoLi) and combining this with (3.4)
and (3.5) produces

(3.6) Q= (M HI
because) 'r(H) = Z’lﬁ (1-y)/2 = 1ﬁ0 (1-y)/2 = rx(Hg) removes the
power of 2. Now
r(H+1 = dimHL+1 = ¥ dimHZ[GIC = § (r(H)+1).
i i

ri(H)+1 ri(Ho)+1

11GI) / (1Hdl 1Gl)

Thus (3.6), (3.2), and (1.6) together yield
(3 7) Q*_zao - |_| |H|a(H)(I’(H)+l)

4. The Einheitenindexi (H). I(H), which will be writtenl (HK/K) in
this section, is a generalization of Hasse’s Einhitkx ([3], §20) for

an abelian extension @f over its maximal real subfield. L&t O k; O ko
be a tower of fields. The basic property is

(4.1) THEOREM |(Kko/ko) divideska:Ko].
This is clear from the next lemma becau@e/ky) divides|(ka/ks) x

| (ka/ko).

(4.2) LEMMA. If ki/ko has no intermediate fields arf#é:ko] = p then
I(ki/ko) = Lor p. In the latter case p is prime angdxkKky(€) for some unit

€ such thate” O ko. Converselyif p is prime and k# ko(\/—_l) has this
form then (ki/ko) = 1 or p according to whether or not ks the unique
extension of kwith the form k= ko(w) wherew’ O kg is a root of unity
with p-power order

Proof. LetU; andW; be the groups of units and roots of unitykin
Wi, the p-Sylow subgroup oV, andV; the subgroup of units ik with
some power itV = UgWi. Thenl(ki/ko) = [V1: Vo]. The normN for ki/ko
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induces thepth power map oiv:/W; and mapd/; into Uo. HenceV; / Vg
has exponermp.

AssumeV; # Vo. If € O V1-Vo then there is am O Z such thag™ 0
Uo but €™ O Uo. Sok; = ko(€™ and p is prime. Moreover, if i a
primitive pth root of unity andk’; = ki(¢) then k’1/K’y is cyclic with
generating automorphism, say. The nornN extends td'1/k’. Letq =
[Wi : Whp). Thene®™ ™ O Wi, [@0for € O Vy. Thus ifes, 2 O Vi thena, b
0 Z can be chosen such thaf a or p4 b, and &°%.,")%® = 1. So
£:%%,° 0 Up and €,%,° O Vo. Hencee; O V, impliesp{ b and e, O
Vol810 ThereforeVi/Vy is cyclic of orderp.

Supposek; # ko(\/—_l) but k; = ko(g) wheree? O Uy Then w O
Wi,p[d0 andNw = 1 givew O @0 So puttingw = &% for g; O V3
yields V.9 0 @0 In fact, € givesV,"™® = @0 The last part of the
lemma holds because in this ca6&"® = 1 if and only ifWa, = Wop.

5. The indicesQy and Q..

(5.1) LEMMA. Qo divides [T [H : Hq]"™™©,
Proof.Qq is the order of
HoU/(Ug+HoUnNn QGU) O (HoU+ QGU)/( Up+QGU) O (HoU)/d(Uo)

where¢: U - U/QGU is the natural map. Fog O HoU the norm
eqguation (1.6) gives

[G:Hgle = (I—|So|)Gmo£ +5' [G:H]I—I/~Ho£
so that
(5.2) ' [G:Hod(HU)
= [G:Hol¢(Uo) O [G:Holdp(HoU) O >’ [GiH]$(HU)

becausep(GU) = 0. Since the sum$’ are direct by (1.5) and each

®(HU) is torsion-free Q, divides the indexX]’ [H:Ho]“™™"Y between
the end modules. Finally digqdHU) = r(H)-r(G).

(5.3) LEMMA. If [H:Ho] = n is the same for all HI & then Q divides
I MM for each HO § where
" = HoUnQHU : HoW + UpnQHU].
I” divides [HoK/H'K) which divides n
Proof. Let¢’: U - U/QHU be the natural map. Then (5.2) yields

Y nd’(HU) = nd’'(Ug) O nd’'(HU) O D' ¢’(HU).
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The sums)’ are direct. Henc®’ = [HoU + QHU : Up+QHU] divides
the index| ]'n®™**Y) petween the end modules. As
dim¢’'(HU) = dim¢(HU)=r(H)-r(G) for HO S, HZH,
and
Y'(r(H)-r(G)) = r(Ho) - r(G)
s0Q’ dividesn" ™) Now

Q = [HoU : HoW + Uo]
= [HoU : Uot (HoUNnQHU)][Uot (HoUNQHU):HoW+Ug] = QT'.
Thus the proof is completed by (4.1).

6. Kuroda’s relation.

(6.1) MaIN THEOREM. Suppose the subgroups of the Galois group G of
a normal extension K/k of number fields satisfy a direct norm relation
((2.4) and (1.6)) whose corresponding character relation(is3). Then

the class numbers(H) of the fields HK fixed by the subgroups H are
related by

(6.2) ] hH™ = wQ)™ [ {I(H) [H:H ™5,
H H

The unit indices @and (H) are defined ir§2 and bounded bgs.1) and
(4.1).Further, w = 1 unless IE k(\/—_l) [ HoK when w= wx(Ho)/wz(H;)

for the unique subgroup;Hl S whose fixed field containﬂ(—_l).

Let QH) be the subgroup of the ideal class group of HK composed
of classes with orders prime {& : Hg]. Then the part of the class
number relation(6.2) prime to[G : Ho] is induced by the direct sum
decomposition

C(H)/C(G) = Y C(H)/C(G)
HOS,

given byy = S'[H:Ho] *H/Hoy for y O C(Ho)/C(G) and the natural
identification of ¢H) as a subgroup of Ely).

Proof. Definew by w™ = [Twy(H)*"). Then Theorem 2.3 of [9] gives
wi = 1 if V=10 kor +/=1 O HoK. Otherwise, ifJ is the Galois group of
K/k(+/-1) then (1.6) yields

S(JHIPHI-G/[G) = J/P-G/[G]

Consequently3|—~|/ |I|H| # G/ |G| for at least ondd [0 S, sayH;, and
H; O J for such a subgroup. However Jifalso containgd’; 0 & then
HiH’i # G and soH; = H';. Asw,(H) = 2 for allH 0 & exceptH = H; the
value ofw; is wa(Ho)/Wo(H;).



Kuroda’s class number relation 49

Now > a(H)r(H) = 0 is apparent from equating the ranksig) and

Uo. Hence (6.2) is obtained from (2.2), (2.5) and (3.7). Tasscgroup
relation holds because the norm equation gives

y = > [H:Ho ™ H/Hoy.

A particularly useful special case of this theorem geaeralization
of Kuroda’s result [5], which includes the formulae ofrgetz [4] and
Parry [6].

(6.3) THEOREM. Let p be a rational primen = 2 an integer and a
(1 <i<n) elements of a number field&uppose

k = k(Ra|1<i<n)

has degree 'bover k and let{k, | t O T} be the set ofp"-1)/(p—1)
subfields of degree p overBenote by h h;, h; Uy Uy, Uk; and Wy, W,
W the class numbersinit groups and groups of roots of unity of; i,
and k respectivel\Set

Q = [UEI:WEIH Ut] .
toT
Let ube the number of algebraically independent fieldsfkthe form

k(e) whereeP O Uy. If one of the kis K~/-1) let v satisfy2" = Worfwk
where wgand w; are the2-components of the numbers of roots of unity

in kg and I(\/—_l). Otherwise put = 0. Let 1y ri, and Kk be theZ-ranks
of U/Wh Ui /W, and U/Wk. Then

he he _ A
e = Qo
n L1

where

—_ n_l u_l
A = Z(n-D(~ —1)—%@%7_1@&_1)*'@)‘)7_[]@_\/'

The index Q divides®dor B = B; = (n-1)(ro—+1) and any field k and
the g™-th power of every unit of-kies in WU .

For Q=Kkg k;, or k let @) be the natural embedding intqkg) of
the part of the ideal class group &f formed from classes whose orders
are prime to pThen there is a direct sum decomposition

Clka/CK) = 3 Clk)/C(K) .
(I

Remarks. The same theorem holds more generally prowitgdhat
the Galois group concerned is isomorphic to the one here.
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When applied to different relative extensions witkifk the theorem
produces all relations between the class numbers ofriatBate fields
which can be deduced from relations between induced principal
characters.

The value oB cannot in general be improved beyond

B' = 3(ro+1)(n -1) - 3(ne+ 1) ((P" -1)/(p-1) -1)
because® is the value of) whenUp /W is isomorphic to the lattice
of (2.1).
Proof. Example (1.7) gives a relation between the Galasps of

the fieldsk{( V1), k( V1), andk( Y1), and Lemma (1.8) allows this to be
lifted to a direct norm relation between the groups effigldskg, k;, and

k. (6.2) gives the required relation once the following egealiare
proved:

(6.4) w = p’,
(6.5) |—| [H:Ho]a(H)(r(H)_l)/z - p—a*X

forx= 3(n-1)(ro-1) — 3{ (" -1)/(p 1) -1 r-1},
6.6) Qo 1H)™=Q"p ™ for y=(p*-1)/(p-1)-u.

The first is trivial and for the second note that
|—| [H:Ho]a(H)(I’(H)—l)/Z — |—| ([HHO] pl—n)a(H)(r(H)—l)lz - p_a*X .
By (2.6) the last is equivalent to

Ioa* |—| I(H)a(H) — I(Ho)a*p_a*y ’
that is,
IO_l |_| It = py
toT

in the obvious notation.

By (4.2) the index; is 1 orp. If k(1) andk(e,) are two of thek; with
&, ande” in Uy thenk(g:€,) is k or another suck:. Thus if there ara
algebraically independent such fields then the total nunitbethe

number of subfieldk; of their compositiork,, viz (p"-1)/(p —1), and, by
(4.2),

M = p™° whered = 0 or 1.

Precisely,d = 0 if no field k has the formk(w) where w 0O Wy has

p-power order, or if one of thk is k(\/—_l) and it has corresponding
index|; = p. Otherwised = 1.

Let us suppose that if one of theis k(\/—_l) thenl, = 1 for it. The
linear combinations ofi algebraically independent generatersf the

ki with €” O Uyx generate each);nQUi over WUy and so generate
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UonQUy over WoUk. No linear combination which is not @th power
can lie inUx because of their algebraic independence. Therefore any
combination in\pUy lies in the equivalence class modudgof a root of
unity w O k with «® O k and yields a subfield; of k. with I = 1.
Converssely, such la in k; leads to a linear combination WpUy. Hence
lo = pu— .

Now suppose that = k(\/—_l) is one of thek and thatl; = p. Then
the u algebraically independert generate eachsinQUy over WUy
except whent = i. Thus they generate ovhUy a subgroup of indep

in UpnQUy. On the other hand there is a linear combination of them
which lies in the same class modwg as +/-1. Thus agairly = p*°
andlo™ [ It = pYwhich proves (6.6).

The bounds on the order and exponentJaef\[]U; come from

(5.3) and from applying (1.6). The first remark is clear;tfeer second
see [8]; and for the last use (3.7).
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