THE AMBIGUOUS CLASS GROUP AND THE GENUS GROUP OF
CERTAIN NON-NORMAL EXTENSIONS

COLIN D. WALTER

In an article generalising work of Roquette and Zassenl@arsell and Sussman
[2] have demonstrated the importance of certain primaldde a number fieldk, for
estimating thd-rank of the class group of an extenslonThese ideals have a power
prime tol which is principal and all their prime factors knhave ramification index
divisible byl. The products of the prime divisors of these ideals imtrenal closureK
of k/ky are invariant under G&l(ko). Thus certain roots ik of the ideals irky are in
some sense fixed by the Galois group. This leads to tieepb of ambiguous ideals in
an extensiot/ky which is not necessarily normal.

Of particular interest is the case whKrky is metacyclic. Therk/ky is almost a
cyclic extension and many of the theorems of cycétdf have analogues which apply.
Since the genus number and the ambiguous class numberaak fer a cyclic
extension it is worth comparing themkifko. In fact, there they are usually different and
this can be seen from the class group description ofgdmris field. A character
theoretic description can also be given for the genusipgrnd this is useful for
computing the genus number.

Estimates for the genus number and ambiguous class numiebéan combined
for dihedral extensions by several authors, includinggamd and Cohnl] for pure
cubic fields. This is done here for pure fields of any odeh@regree over the rational
field Q. Indeed, applications to pure fields are the motivatingefan this work, and
much of the inspiration comes from the class rankmedds of Froéhlich 4] which
generalise those of Holzed][

81. Ambiguous classe®r Frobenius extensionset G be a Frobenius group with
normal kerneN and a complemerf. ThenG is a semi-direct product ™ and F for
which the distinct conjugates &fintersect pairwise in the identity. Consequentlyy if
andf are the orders dfl andF respectively then the conjugacy classedlefl underF
all have ordef. Hencef dividesn-1 and is coprime ta.

Suppos/kg is a normal extension of number fields whose GalasiglisG. Let L
= KN andk = K be the fixed subfields of the subgroulsand F. There are many
similarities betweerk/ky and its lifting byL to the normal extensioK/L, but the
structure of the latter is generally easier to describehis study of the extensidaky
the analogy between it and the classical cas€lotan be drawn by assumifg 1 so
thatk/k, becomes normal.

Denote the (classical) class group of a fi@ldy Hq, its class number hyg, the n-
subgroup oHq by Cq, and the maximal subgroup with order primentby C'q. Thus
Hq = Co X C'q. A class ofk will be calledambiguous(over k) if its image inHg is
fixed by N (which generates all the conjugateskdd), or, equivalently, byG. The

subgroups of such classes are Writtd[?, CE, and C’E. Likewise an ideal ok is

calledambiguousf its extension t is fixed undem or, equivalently, unde®. A class

of Hy is calledstrongly ambiguous if it contains an ambiguous ideal. These tanms
just the standard ones whéfk, is normal, and they can easily be generalised still
further.

[MATHEMATIKA 26 (1979), 113-124]
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1.1 THEOREM. The group of ambiguous classes fdkykis the direct product
HE: CE X C’E. Here C’(k3 is the isomorphic image ofCin Ci under the natural

embedding given by extension of ideadsmd under extension of ideal@lc(3 is
isomorphic toCE, the group of ambiguous classes itkgwith n-order. Thus
HZ OCR xCly, .
Proof. In Theorem 5.1 of I2] it was shown that the natural maps induced by
extension of ideals provide an exact sequence
1 - Cy-Ck- Ckict - 1.

Hence any class @'« which has its image i€ fixed by G comes from a class in
C'y, , andvice versa
Sincen is prime to K : K] there is a natural embeddi@y 0 Ck which restricts to

CE O CE. This is an isomorphism because the inverse map is obthinagplying

the idempotent: = f‘lngF g and restriction of ideals,e. a suitable power of the

norm.
Thus the basic observation that provides informationualioee ambiguous class
group ofk/kg is this:

1.2 LEMMA. CE is isomorphic to the direct summand of the ambigucuatass

group CE of K/ L given by the projectioneviz CE.

1.3 LEMMA. If ais an ambiguous ideal ofkg then the extension off] a is equal to
n

a
Proof. The extension oNy, a to K is just the product of the conjugates of the

extension ofx underN. However, the extension afis fixed under the action & and
so the product of conjugates is just title power. The same equality holds on restriction
tok.

Let 1o be the multiplicative group of non-zero fractional atde of a field Q,
extended toK wherever necessaryP, the subgroup of principal idealsl;'g; the

subgroup of ideals which are fixed by a subgrougf G when extended tK; and ||§_2 *
the subgroup of ideals which lie in a classkofixed by I'. With this notation the

isomorphic groupsle‘ and CE are then-subgroups ofIE*/Pk and IE*/PK
respectively. The most accessible parts of these grmepbelsubgroupslf‘ﬁ( /B and

I %PK / P« of strongly ambiguous classes, and in many cases theytg whole group
(seeCorollary 1.9).

Let p be a prime ideal d& with prime divisorsy; in k and below the primgs of K.
Supposes, €', g, andej are the ramification indices for these primesih, L/ko, k/ko,
andK/k respectively. The equalitge’ = ee’gives
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n _ — eele
P = Nao? =[] (Naop)™
]

Hence any common factor between #lej divides bothn andf and so equals 1. Thus

9= q,-eye'i has no roots iR. Any divisor ofp in k which is fixed byG must decompose

in K as a power o€, = [gonc P° whereH is the decomposition group # over k.
Therefore such a divisor is a powergof £.° and the generators aboyeof IE and

IE are£. andq respectively. Since the extensionspadre equal t@® for k and£.°® for

K the powers of. andgq cannot generate ideal classes witbrder inHx or Hy other
than those of the powers of the extensiong afnlesse > 1, i.e. the prime idealp

ramifies inK/L. Hencel E and IE are generated (the former up to an index prima) to
by I andly, respectively, together with the ide&@sandg respectively which divide the
prime idealsp O Iy, which are ramified irk/L.

Pute, for the ramification index iiK/L of a prime ideap U Iy,. Then,

L4Llemma. [ 10 1ol =T,8 -

1.5 Remark There are potentially more classes knto be found from the
decomposition of ramified primes: each divigpof p in k yields some class, but the
idealq may only generate certain products of these classes.

From here on suppose N is cycliwith generatoro. ThenF is also cyclic, with
generatorg say, because it is a subgroup of the cyclic automorphisapgob each
subgroup ofN with prime order. Thuss is metacyclic and, because> 1, n is odd.

Write S for the sum in the integral ringf G] of the elements in a subsebf G. Define
# 07[G] by (1-0).% = IE(l—a) ande, = f1.%. Then.# is determined uniquely up to a

multiple ofN, so thate- is really an idempotent @[G]/(D[G]N which is conjugate to
er. We have

e = f7'F and (1-o)e, = e(1-0).

Finally, letEq denote the unit group of a fiefd, r(Q) the Q-dimension of 0, Eq and
W the torsion subgroup @&x. From [12] §3.1, it is known thatv O L andW [ k.

1.6 THEOREM. The number of strongly ambiguous classes fiarik

hk0 Hpel’
HANEO™ |

where the product is ovéfinite) prime idealsp of k.

Proof. IEF1</F1< O Iff/(llc(3 N F’k)D(IE/H(O)/(PkG/H(O). The numerator has

order [IE:IKO 1 lko : H<0] = hy[]e, by 1.4. Since by 1.3 its exponent divideshe
denominator is
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P /P, O /P O(a 0K a7 DB} LEg)®
D(KY 9 n Ex)/EE )% = HY(NEK®.
1.7 GOROLLARY. The number of strongly ambiguous classegkaik a multiple of
(g ﬂpep)[Kl_o nEx Ex 2 nk]

0 N[EL : Nk /L Ek]

and

(i)

hko Hvei’
k"N Eg BTN W WOW

The number of strongly ambiguous classeghk#ik a divisor of

Mg meeﬁ
K7 nW:iET? nW]

Proof. Define 4 O Z[G]/Z[G]N by 3 = (1-0)"E(1-0)". Then from [L2] §1.7, there
is a direct sum decomposition
Z[G)ZIGIN = [osi«Z[GlA
which yields
H'(NEQ = UogrH'(NEQ)A .
Here X and 3 can be replaced bg and e respectively so thatdf(N,Ex)®*| divides
IHY(N,EQ)[HY(N,EQ)F| *. The second factor is juk 9 n E, :Ex 7 n k] whilst the
first can be translated using the valQéEx) = n™* for the Herband quotient given, for
example, in 14]. Thus HY(N,Ex)| = nH°(N,Ex)| = n[EL : Nw.Ex]. This gives (i) from
Theorem 1.6.
Bounds can be obtained for the denominator of the last geor O k"7 n W

choosea 0 k such that = a*™% ThenZ" = " = a®9N = 1 pecaus&v 0 K". Clearly
Ko(C,0)/ko is normal. ButG has no normal subgroups other than those containing or
contained byN. Thusa [0 kg implies L = ko(). Also ¢ O Ko impliesa O ko and hence

{=1.S0 K7 n W/ E&_U n W) is trivial unless possibly wheln [ ko(R‘/i), and then
its order divides\l[V: W° WY. In particular, ifk = ko(R‘/E) and a prime not dividing is
ramified ink/ky thena cannot be a unit and'[“n W: E&_U nW]=n.

For the rest consider the denominator of 1.6 again. lesdrom

P /P, O{a Ok |a'™? OBk} kgEx 0K nEx)/E; 7.
This has the factor group
K7 n E)EF 2K aw) O (K9 n By )(MmNE=0) g

O «"™NnEQ/ETN
where the isomorphism is given by the clasa®®f O k'™ n Ex mapping to the class of
a"™. This is well-defined: firstly because' ™ determinesa up to an element
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BOL* n K =ko“and @)™ = a"™ for suchp; and secondly becausedit™” =7 0'W
then g"N = "NV = VD2 = 1 by the oddness of The map is certainly
surjective. For the injectivity suppose'™” O k' n Ex maps to E™.  Then
(ae)"™ = 1 for somee O E. Without loss of generalitys"™™ = 1 so that
@ = (@)= oV = 1, whencen'™ 0 k% n Wrepresents the trivial class. The
subgroup initially quotiented out wak'® n W)/(Ex*™ n W) which has order dividing
[W-WPWY, as was shown above. This completes the proof of (i)gares the last part.

Remarks Whenn = | is prime andhy, is prime tol, these estimates give lower
bounds for the order of an elementary abelignoup within the class group d€ and,
hence, also a lower bound for the minimal number ofegsors of itsl-Sylow
subgroup. Part (i) and its approximatidm,[],e,/n'“"**! therefore generalise
Frohlich’s Theorem 1 in4] and its proof. This approximation yields the result of
Connell and Sussman’s Theorem 1 2 for k/ky, when the degree is prime; but the
analogue for general may be weaker (see 1.5). Howevell,)+1 < r(k)-r(ko) with
equality possible only wheih= n—1. Therefore the estimate in (i) is usually as good as
that from (ii) and the rank interpretation for (i) geadeses Gerth’'s Proposition 3.4 in
[5].

A good knowledge of the unit group Kfallows one to obtain still better estimates
for the divisibility ofhy:

1.8 THEOREM. The quotient of ambiguous ideal classes modulo strongly ambiguous
classes is isomorphic to

((Nk /LK nEL)/Ni/LEK)®

Proof. (1 /R)/I(ICRIR) DR IR Pg)
O(RD*F CD 1RO =R EDe 1R
={(a)| Nk /La DE}*/P7
Ha OK [Nk, a OE }8/EgKY?
O(Nk /LK nEL)®/ Nk Exk-

The first isomorphism is by Lemma 1.2. The subsequent ar&pprecisely those used
by Hasse in§] la 813: multiplication by g, mapping to a generator of a principal
ideal, and applying the norm fa¢/L. The isomorphisms are proved by him and are
straightforward when Hilbert’s Theorem 90 is borne indrand it is observed thak
ande. commute.

1.9 GOROLLARY. Suppose Likhas u unramified infinite primesThen the quotient
of ambiguous classes modulo strongly ambiguous classes has order dividing
n“"[wW: WWF] for even f In particular, when u= 0the quotient is isomorphic to

(N /LK nW)/(Ng / Ex nW))°
Proof. Let C; be the decomposition group of one infinite prime divisoKiabove the

infinite primei of ky. By hypothesisC; has order 2 for all but valuations, and without
loss of generalityC; 0 F asn is odd. WherC; has order 2 it is generated by ¢

which inverts elements d. Write CiZ[G]N for the subgroup of[G] fixed on the left
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by Ci and on the right biX. E./W s torsion free andsg€e ay. [11] 84) is isomorphic to a
right submodule of finite index in

M = (L, cz[GN) / z([J; G) .
M is generated by thégﬁ = gf:il\~l whereg U F and so the effect &d.- is determined

by the values oEiN.7.
Supposepog* = o' so thatr has ordef modulon and then set
f-1r-1

o P2 et i
= Z Z J - Z +r +f/2
7 i:O(j:oa WI " i=0 ﬁT@ﬁ +¢I :

It is immediately verifiable that (0).# = IE(l—a) and that
_ _ fr2-1 o
Ns=N(y-1) %(r'“c 2_he'
i=0

HenceCiN.# = 0 whenC; has order 2 anvﬁiﬁﬁ: ~CN.# for alli. ThusM.% 0, Q
has dimension at mosuf over Q for this choice of#. The same is therefore true of
(EU/W).% O, Q and shows that K n E))W / N¢.Ex .W)®* has order dividing"",

It remains to consider the subgroupi(K n W) / (Nk .Ex n W))®* of the group in

1.8 due to torsion ifEx. W' is contained in the denominator becad8e= Nk, { for
¢ OWOL. If ZOWP then, modulo eIements which fixand multiples oh, we have

f-1ri-1 . .
=5 Yolgs= Zr =" -)/r-n=0.

i=0 j=0
So Wf)” O W' and there is a natural surjection frolY 6 Nk K)WE / WWF to the
group under consideration, given BYWV"WF — (Z/(N« Ex n W))®<. Hence the order of
the group dividesW : W"WF]. The exact sequence

1 - (NK/LK N VV) / (NK/LEK N VV) — (NK/LK N EL) / NK/LEK

N (NK/LK N EL)W/ NK/LEK WS 1

remains exact when fixed by the idempotepnt So the above bounds on the outer two
groups of

1 - ((NK/LK N VV) / (NK/LEK N V\/))ey — ((NK/LK N EL) / NK/LEK)e‘g

—~ ((NkK n EDW/ N Ex W) 1

place the required bound on the central group and yieldeteired isomorphism
between the first two groups wherr 0.

1.10. ROLLARY. Suppose ko has no unramified infinite primes and
generatedV n Ny, K over Wn Ny Ex. Choosen [0 K such that = Nx, .o and an ideal
a in K for which(a) = a'. Then the class of d\n generates the ambiguous classes of
k/ko over the strongly ambiguous classes

Proof. Under the maps of 1.8 and 1.9 the imag&lofn is Z”, which generates the
group of 1.9.
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1.11 LEMMA. Suppose ko is a pure field extension of a totally real fielthen the
guotient of ambiguous by strongly ambiguous classes is isomorphic to

(NK/LK N VV) / NK/LEK N W) .

Proof. Herek is obtained fronky by adjoining a root of an element ka. Therefore

L is obtained fronky by adjoining amth root of unity and solL/k, has no unramified
infinite primes. NowZ generate$V /W' and assumingrog * = o' givesZ? = " ™. So,
modulo elements which fi& /W',

f-1ri-1 .

Fo=5 5 olg =1.

i=0 j=0
Hence W/W")* = W/W' ande_ acts as an automorphism of the group in 1.9. In fact
e fixes the group.

82. The Principal Genus of/lk. A definition of genus for a general finite extension
of the rationals was first given i8][by Frohlich. Here the notion of relative genus over
a base field is required and it is defined as follosee[14]). Let Q* denote the Hilbert
class field of a field?, i.e. its maximal abelian unramified extension, and? be its
abelian closure. Therdlative) genus fieldof Q over a subfieldQ is defined to be
Q* n QQ*™; and the associategknus groups the factor group of the class groupcbf
corresponding to this extension @f The genus group can also be written as a quotient
of the group of ideals if2, and then the subgroup factored out is calledptivecipal
genus

As before, supposi/k, is a metacyclic Frobenius extension. Th&h is cyclic of
odd degrea and its (relative) principal genus is known toRéx' ? whereo generates
Gal (K/L) (see[14]). Hasse’s analogue§] la 813) of Hilbert's Theorem 90 shows that
this is precisely the grouB« Ker Nx,. where KerNk,. is the kernel of the norm map
Ik —» I.. Thusa O Ik is in the principal genus if, and only K. a = Nx.(a) for some
o [0 K. This interpretation also holds for the principal genuk/le by Theorem 2.2(iii).
However, the genus number and the ambiguous class humbeh edincide fork/L
need not be equal fdrky .

The analogue of Hilbert’s Theorem 90 fdk; is:

2.1 LEMMA. (i) If a O k and Ny o = 1 thena = Ni(8°) for someB 0 K™ ;
(i) If a O 1, and Ny = (1) thena = Ngi(6*7) for someb O I.

Proof. Let Sbe a set of representatives for the conjugacy claggeslounderF. If

Nwio 0 = 1 thena = 87 for someB 0 K* by Hilbert’s Theorem 90. Herg" 7 is fixed
by F and so

o= Bl—U: (Igl—a)ﬁ_ZhDF 2@ Shgh_l _ (ﬁl—a)—gﬁz (ﬁ—g)(l—ﬂ)lg — NK/k((ﬁ_g)l_U)y

as required. The second part is analogous using Hasse’'s l@mroit.).

2.2 THEOREM. (i) The ambiguous class number éks
1 F 1_
ICk IICK 111Cg &
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(i) The genus group ofKg is isomorphic to
C', XCk 1C 9"

(i) The(relative) principal genus of ko is H(IK(l“”E, i.e., the group of ideals [ Iy
such that N, = N, (a) for somen O k.

A comparison of (i) and (ii) shows that fafk, the ambiguous class number will
differ from the genus number ttlz(l_a) and C|(<1_U)F have different orders. This is
usually the case for pure fieldsegSection 3).

Proof. The first part is just Theorem 1.1 and the exactness of
1.¢cg - ck -cft9 o1,

The maximal abelian extensionlaf, unramified ovek, and with degree prime g
is unramified oveky, and so corresponds to the class gr@lp. The maximal abelian

n-extension oky unramified ovelk is the maximal abelian-extension oky unramified
overK. It is therefore the maximal abeliarextension ot in K* which is fixed undeF
(i.e. under the action of Gal(ko) suitably extended). The corresponding genus group

for this field is CK/ClK_eF ClK_U because the group for the class field kofis
Ck /ClK_eF DCE and the genus group fa€/L is Ck /C%‘U. Part (ii) now follows
from the exactness of

1. CEOF - ck - ckncgFeke - 1.

1_

The genus group itself is therefokg, /C’, N C|(<1_U)F where @ = n"*N. Hence

the principal genus is the group of ideals with classrgghg to C’lk_eN Cg_a)':.
From 2.1(ii) this group is included Rl % 9. Conversely, ifa O I« anda®F is in a
class ofC'x thena®F™N) = o= s i 5 class oC’ll(_eN . S0a®™F is in a class of
C’lk_eN , and the principal genus is indeédlK(l“’)E. The equivalence of the other
formulation in (iii) is clear using 2.1(ii).

2.3 GOROLLARY. The genus group ofKg is isomorphic to M, Ik/ Nk, Px -

Proof. Apply N to l/Pka-oF , wWhich is the genus group, and use the alternative
definition of the principal genus in 2.2(iii) to show tlais is a monomorphism.
Now if a O ko anda = N0 thena = Nigio(a/Nkia ™). Hence:

2.4 LEMMA. a O ko is a norm in K, if, and only if it is a norm in KL.

For each prime ideak (1< i <t) of ko which is ramified irK /L let 98; be a prime of
x K/L . L
L abovep; and fora O let xi(a) = be the norm residue symbol. This yields
Pi ko Xi(@) %ﬁ y y

amapy: ko - N defined byx(a) = (x1(a), x2(a), ..., Xi(a)).
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2.5 LEMMA. a0 ko™ is a norm in K, if, and only if a [ ker y.

Proof. Supposey(a) = 1,i.e. %‘%’Lﬁ: 1 for 1<i <t. Then ?%E: 1 for each
conjugate® of each prime idea¥®; since ﬁ%ﬁ = r_lﬁi%_”‘ﬁ for 7 O G.
| |

Thereforea is a local norm for each prime ideallofamified inK. Soais a local norm
for every completion oK /L because the oddnessroénsures that no infinite valuation
is ramified. Thusa is a norm irK /L as the extension is cyclic. $ds a norm ink/ky by
2.4. In each case the reverse implication also h8loa.is a norm irk/k if, and only if,
x@ = 1.

Supposalk is the group of ideals ik which have principal norms iky. If a O nlk
andNyn = (a) for a [ ko then a homomorphisnX : ylk - X(ko)/ X(Ex,) can be defined

by X(a) = x(a) mod x(Ex,).
2.6 THEOREM. (cf. [6] & [7]) ker.X is the principal genus ofk.

Proof. Assumea [ \li satisfiesNi, @ = (). Then by Theorem 2.2(iiig is in the
principal genus if, and only i€ is a norm irk/k, for some unite of ko , i.e., if, and only
if, ac O ker y.

When the class number kf is prime ton the mapX can be extended to the whole
of Ix. Chooseh O Z such thathh, = 1 modn. Fora O Iy with N, a0 = (b) we must
haveX(n)" = 1 and therefore(a) = X(a"™*) = x(b" mod (Ex,). This is consistent with
X on\lk as defined above. Clearly for this extended mapXes the group of ideals
whosehyth power is in the principal genus. Hence:

2.7 THEOREM. When R, is prime to n the 1subgroup of the genus group dkkis
isomorphic taX(ly).

2.8 GROLLARY. When Ry, is prime to n the genus number §ldivides

hI<o Hvel’
[Eko - Ekg N Nik/koKl

Proof. The factor of the genus number which is priment® given precisely by
Theorem 2.2(ii). The denominator is the ordery@Ey,). So it remains to show that
Lxi(A)| divides the ramification indes; of p; in K/L whereA is the set of all generators
of ideals in (\Ik/kolk)h"o. By Hasse §] Il 87, |x(A)| dividesg,, if ais prime top;. Suppose
pih"o = (a), gi is a prime ok abovep; with degred’; overky, and¥; has degre& overko.
Thenf; dividesf’; and (N, qi)h"0 = (af’i). Thus, again by Hasse cit.), gi gives rise to
)ﬁ(af’i) which also has order dividingy;.

Remark Puttingf = 1 and using the product formula for norm residue symbols to
remove one prime in 2.8 provides the familiar formulatfiergenus number &JL.

83. Pure Fields of Prime Degree ovél. Let | be an odd rational primeg, a
primitive Ith root of unity, andm a positivelth power free rational integer. For this
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section letko = @, k = Q(\Vm), L = Q(2), andK = Q(Ym, 2). These fields satisfy the
hypotheses of the earlier sections. So the stronghjicaraus classes are generated by
the primes ok which are totally ramified oveR. From Wegner13] these are the prime
ideals dividing ) and, ifm~* £1 modl?, also the prime ideal abow®.(Hence:

3.1 THEOREM Leta be an ambiguous ideal of«Q(Ym). Thena' = (a) for a0 Q
defined by Ny = (). Here a is a product of Ith powerprimes dividing mand, if
m~* £1 modl?, also the prime.ln the case whemis principal, a is a norm

3.2. THEOREM. For a rational prime p and & Q" let (@) O Z denote the
multiplicity of p as a factor of.al'hen a is a norm in/® if, and only if
(mVp(a)a_Vp(m))(p_l)/l = 1 mOdp

for all primes p dividing m with g 1 modl.

Proof. By Lemma 2.5a is a norm ink/Q, if, and only if, yi(a) = %‘%’Lﬁ: 1 for
|

1<i <t. Since there is only one prime ideallrabove () the product formula for norm
residue symbols permits this prime to be ignored if ituogcThe remaining ramified
primes are the # | which dividem. Using the properties of Hasse’s norm residue and
power residue symbolsge[8] 11 811) for the chosen prim® in L above p) # (I) one

obtains
KL mamn_ Hpa PMme@ 0 mvpm ~vp@
E‘-B E_E%E_@ LY E_[Ea P [H

Let n(p) = (o™ —1)1 wheref(p) is the order op modulol. Thenln(p) = Nuo % -1. So

E‘%Ezl o XP=1modP - xP=1modp)

for x 0 Q prime top. Thus

%’ ;* /L E: 1« @2 ™)® = 1 modp.

This congruence is automatically satisfied wh@n) = 0 modp-1, and therefore whdn
does not dividgp—-1. Otherwisep = 1 modl, which givesn(p) = (p—1)/1. The theorem
now follows.

3.3 GOROLLARY. If ais an ambiguous ideal of k with = (a) and a does not satisfy
all the congruences of Theore&h®2thena is not principal

Proof Combine Theorems 3.1 and 3.2.

Let {pi | 1 <i <t} be the set of ramified primes as described above, and let
{pi|1<i<s be the subset g = 1 modl. Define x'(a) = (M™@a *™)* ™" modp for
p=piand 1<i<s Theny(a) = (x1'(a), x2'(a), ..., Xs(@)) provides a homomorphism in
effect fromQ* to F;° wherekF, is the finite field ofl elements. By 3.2 the kernel gfis
the subgroup ofa O Q° which are norms irk/Q. Composing this with the map
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V: Ix - Q" given bya — [a| for Nyea = (a) yields a homomorphisnX’ : I — F°. As in
82 the kernel ofX’ is the group of ideals whose norms are norms of ipahédeals.
Thus, as in 2.6 and 2.7,

3.4 THEOREM ker X is the principal genus of® and|X (I¥)| is the genus number

3.5 THEOREM. (i) The genus number oftkis F, i.e. X is surjective;

(i) the order ofX’ (I") is that of the quotient of strongly ambiguous classes by the
subgroup of classes corresponding to ideals of the principal genus;

(i) every ambiguous class is stromgambiguous if, and only,if O Nx Ex or
¢ O NK.

Remark ([10] Lemma 4) O Nw.K if, and only if,pi * =1 modI? for 1<i <t with
pi Zl. Thus for mosim every ambiguous class is strongly ambiguous.

Proof. Frohlich has already proved (i) id][ Alternatively, €f [1], Theorem 4.2), let
g be a rational prime. Fixing the value ®f(q) only forcesq to belong to certain
arithmetic progressions modytp Hencey : Q* — Fis surjective even when restricted
to unramified primes of orderl-1 modulol. But such primes have prime factaxsand
qi-1 of degree 1 ant-1 respectively irk. Sov(q:) = g and X' = ¢’y is surjective. Note
that the idealsy; generate th& cosets of the principal genus lig and give rise to an

elementary abelian factor group of the class group of
The second part comes from Theorem 3.4 and the ladt@artemma 1.11.

3.6 THEOREM (cf Fréhlich (4] Theorem 3)Let F be the order of¢ (1Y), and let |
be the number of strongly ambiguous clas$éen t’> max €', t—(I1+1)/2) and the class
number of ke Q(\/m) is divisible by

| stt'—g’

Proof. By Theorem 3.5(i) the genus group provimsesosets of the principal genus
and by (i) of the same theorem the ambiguous ideals prévidelasses in the principal
genus. The lower bound @'ris just Corollary 1.7(i) with Theorem 3.5(ii).

Remarks,t, ands’ can be calculated very easily frarmand the definition o’ and
so the given lower bound férimmediately yields a divisor of tHeclass number.

This theorem is given in greater generality, though witlpyoof, by Barrucand and
Cohn in fL] Theorem 9.1.
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