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THE AMBIGUOUS CLASS GROUP AND THE GENUS GROUP OF
CERTAIN NON-NORMAL EXTENSIONS

COLIN D. WALTER

In an article generalising work of Roquette and Zassenhaus, Connell and Sussman
[2] have demonstrated the importance of certain prime ideals in a number field k0 for
estimating the l-rank of the class group of an extension k. These ideals have a power
prime to l which is principal and all their prime factors in k have ramification index
divisible by l. The products of the prime divisors of these ideals in the normal closure K
of k/k0 are invariant under Gal(K/k0). Thus certain roots in k of the ideals in k0 are in
some sense fixed by the Galois group. This leads to the concept of ambiguous ideals in
an extension k/k0 which is not necessarily normal.

Of particular interest is the case when K/k0 is metacyclic. Then k/k0 is almost a
cyclic extension and many of the theorems of cyclic fields have analogues which apply.
Since the genus number and the ambiguous class number are equal for a cyclic
extension it is worth comparing them in k/k0. In fact, there they are usually different and
this can be seen from the class group description of the genus field. A character
theoretic description can also be given for the genus group and this is useful for
computing the genus number.

Estimates for the genus number and ambiguous class number have been combined
for dihedral extensions by several authors, including Barrucand and Cohn [1] for pure
cubic fields. This is done here for pure fields of any odd prime degree over the rational
field «. Indeed, applications to pure fields are the motivating force in this work, and
much of the inspiration comes from the class rank estimates of Fröhlich [4] which
generalise those of Holzer [9].

§1. Ambiguous classes for Frobenius extensions. Let G be a Frobenius group with
normal kernel N and a complement F. Then G is a semi-direct product of N and F for
which the distinct conjugates of F intersect pairwise in the identity. Consequently, if n
and f are the orders of N and F respectively then the conjugacy classes of N −1 under F
all have order f.  Hence f divides n−1 and is coprime to n.

Suppose K/k0 is a normal extension of number fields whose Galois group is G. Let L
= KN and k = KF be the fixed subfields of the subgroups N and F. There are many
similarities between k/k0 and its lifting by L to the normal extension K/L, but the
structure of the latter is generally easier to describe. In this study of the extension k/k0

the analogy between it and the classical case of K/L can be drawn by assuming f = 1 so
that k/k0 becomes normal.

Denote the (classical) class group of a field Ω by HΩ, its class number by hΩ, the n-
subgroup of HΩ by CΩ, and the maximal subgroup with order prime to n by C′Ω. Thus
HΩ = CΩ × C′Ω. A class of k will be called ambiguous (over k0) if its image in HK is
fixed by N (which generates all the conjugates of k/k0), or, equivalently, by G. The

subgroups of such classes are written G
kH , G

kC , and G
kC’ . Likewise an ideal of k is

called ambiguous if its extension to K is fixed under N or, equivalently, under G. A class
of Hk is called strongly ambiguous if it contains an ambiguous ideal. These terms are
just the standard ones when k/k0 is normal, and they can easily be generalised still
further.
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1.1 THEOREM. The group of ambiguous classes for k/k0 is the direct product
G
kH = G

kC  × G
kC’ . Here G

kC’  is the isomorphic image of C′k0 in C′k under the natural

embedding given by extension of ideals; and under extension of ideals GkC  is

isomorphic to G
KC , the group of ambiguous classes in K/k0 with n-order. Thus

0
’k

G
K

G
k CCH ×≅ .

Proof. In Theorem 5.1 of [12] it was shown that the natural maps induced by
extension of ideals provide an exact sequence

1  →  C′k0  →  C′k  →  G
K

F
K CC ’/’   →  1  .

Hence any class of C′k  which has its image in C′K  fixed by G comes from a class in
C′k0 , and vice versa.

Since n is prime to [K : k] there is a natural embedding Ck ➥  CK which restricts to
G
kC  ➥  G

KC . This is an isomorphism because the inverse map is obtained by applying

the idempotent eF = f −1∑g∈ F g  and restriction of ideals, i.e. a suitable power of the
norm.

Thus the basic observation that provides information about the ambiguous class
group of k/k0 is this:

1.2 LEMMA. G
kC  is isomorphic to the direct summand of the ambiguous n-class

group N
KC  of K / L given by the projection eF, viz. G

KC .

1.3 LEMMA. If Q is an ambiguous ideal of k/k0 then the extension of Nk/k0 Q is equal to
Qn.

Proof.  The extension of Nk/k0 Q to K is just the product of the conjugates of the
extension of Q under N. However, the extension of Q is fixed under the action of N and
so the product of conjugates is just the nth power. The same equality holds on restriction
to k.

Let IΩ be the multiplicative group of non-zero fractional ideals of a field Ω,

extended to K wherever necessary; PΩ the subgroup of principal ideals; ΓΩI  the

subgroup of ideals which are fixed by a subgroup Γ of G when extended to K; and *Γ
ΩI

the subgroup of ideals which lie in a class of K fixed by Γ. With this notation the

isomorphic groups G
kC  and G

KC  are the n-subgroups of k
G
k PI /*  and K

G
K PI /*

respectively. The most accessible parts of these groups are the subgroups kk
G
k PPI /  and

KK
G
K PPI /  of strongly ambiguous classes, and in many cases they give the whole group

(see Corollary 1.9).
Let ̀  be a prime ideal of k0 with prime divisors a j in k and below the prime @ of K.

Suppose e, e’, ej, and e’j are the ramification indices for these primes in K/L, L/k0, k/k0,
and K/k respectively. The equality  eje’j = ee’ gives
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`n  =  Nk/k0 `  =  ∏
j

(Nk/k0 `j)
ee’/e’j

Hence any common factor between the e’/e’j divides both n and f and so equals 1. Thus
a = ∏ aj

e’/e’j has no roots in k. Any divisor of ̀  in k which is fixed by G must decompose
in K as a power of A = ∏g∈ H\G @g where H is the decomposition group of @ over k0.

Therefore such a divisor is a power of a = Ae’ and the generators above ` of G
KI  and

G
kI  are A and a respectively. Since the extensions of ` are equal to ae for k and Aee’ for

K the powers of A and a cannot generate ideal classes with n-order in HK or Hk other
than those of the powers of the extensions of ` unless e > 1, i.e. the prime ideal ̀

ramifies in K/L. Hence G
KI  and G

kI  are generated (the former up to an index prime to n)

by IL and Ik0 respectively, together with the ideals A and a respectively which divide the

prime ideals ̀ ∈  Ik0 which are ramified in K/L.
Put è  for the ramification index in K/L of a prime ideal ̀ ∈  Ik0. Then,

1.4 LEMMA. [ G
kI :  Ik0 ]   =  ∏` è �.

1.5 Remark. There are potentially more classes in k to be found from the
decomposition of ramified primes: each divisor aj of ` in k yields some class, but the
ideal a may only generate certain products of these classes.

From here on suppose N is cyclic, with generator σ. Then F is also cyclic, with
generator φ say, because it is a subgroup of the cyclic automorphism group of each
subgroup of N with prime order. Thus G is metacyclic and, because f > 1, n is odd.

Write S
~
 for the sum in the integral ring ¦[G] of the elements in a subset S of G. Define

=  ∈  ¦[G] by (1−σ)=  = F
~
(1−σ) and e=  = f −1= . Then =  is determined uniquely up to a

multiple of N
~
, so that e=  is really an idempotent of «[G]/«[G]N

~
 which is conjugate to

eF. We have

eF   =   f −1F
~
                and               (1−σ)e=    =   eF (1−σ) .

Finally, let EΩ denote the unit group of a field Ω, r(Ω) the «-dimension of « ⊗ ¦ EΩ and
W the torsion subgroup of EK. From [12] §3.1, it is known that W ⊂  L and WF ⊂  k0.

1.6 THEOREM.   The number of strongly ambiguous classes for k/k0 is

=e
K

k

ENH

eh

),(1

0 ∏` `
 ,

where the product is over (finite) prime ideals ̀ of k0.

Proof. ≅kk
G
k PPI /  ≅∩ )/( k

G
k

G
k PII )//()/(

00 k
G
kk

G
k PPPI . The numerator has

order [ G
kI :

0kI ][
0kI :

0kP ] = hk0∏è  by 1.4.  Since by 1.3 its exponent divides n, the

denominator is
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≅
0

/ k
G
k PP ≅Fe

L
N
K PP )/( Fe

KK ELEK )/}|({ 1 ×− ∈∈ σαα

=e
KK EEK )/)(( 11 σσ −− ∩≅  =  H1(N,EK)e .

1.7 COROLLARY. The number of strongly ambiguous classes in k/k0 is a multiple of

(i)   
]:[

]:)[(

/

11
0

KLKL

Kkk

ENEn

kEEKeh ∩∩ −−∏ σσ
` `

and

(ii )   
]:][:[

~~
0

nGNn
kK

Nn

k

WWWEEk

eh

−− ∩

∏` `
 .

The number of strongly ambiguous classes in k/k0 is a divisor of

]:[ 11
0

WEWk

eh

k

k

∩∩ −−

∏
σσ

` `

Proof. Define βi ∈  ¦[G]/¦[G]N
~
 by βi = (1−σ)−iF

~
(1−σ)i. Then from [12] §1.7, there

is a direct sum decomposition

¦[G]/¦[G]N
~
    =    ⊕ 0≤i<f ¦[G]βi

which yields

H1(N,EK)   =   ⊕ 0≤i<f H
1(N,EK)βi  .

Here β0 and βi can be replaced by eF and e= respectively so that |H1(N,EK)e= | divides

|H1(N,EK)||H1(N,EK)F| −1. The second factor is just ]:[ 11 kEEK Kk ∩∩ −− σσ  whilst the

first can be translated using the value Q(EK) = n−1 for the Herband quotient given, for
example, in [14]. Thus |H1(N,EK)| = n|H0(N,EK)| = n[EL : NK/LEK]. This gives (i) from
Theorem 1.6.

Bounds can be obtained for the denominator of the last part.  For ζ ∈  k1−σ ∩ W

choose α ∈  k such that ζ = α1−σ. Then ζn = ζN~ = α(1−σ)N~ = 1 because W ⊂  KN. Clearly
k0(ζ,α)/k0 is normal. But G has no normal subgroups other than those containing or
contained by N. Thus α ∉  k0 implies L = k0(ζ). Also ζ ∈  K0 implies α ∈  k0 and hence

ζ = 1. So (k1−σ ∩ W)/( σ−1
kE ∩ W) is trivial unless possibly when L ⊂  k0( n1 ), and then

its order divides [W : WG Wn]. In particular, if k = k0( nα ) and a prime not dividing n is

ramified in k/k0 then α cannot be a unit and [k1−σ ∩ W : σ−1
kE ∩ W ] = n.

For the rest consider the denominator of 1.6 again. It comes from

kKk
G
k EkEkPP ×− ∈∈≅ 0

1 /}|{/
0

σαα  σσ −− ∩≅ 11 /)( kK EEk .

This has the factor group

≅∩∩ −−− )(/)( 111 WkEEk kK
σσσ  Nn

k
Nn

K EEk
~

)1/()
~

(1 /)( −−−− ∩ σσ

 ⊂   Nn
kK

Nn EEk
~~

/)( −− ∩
where the isomorphism is given by the class of α1−σ ∈  k1−σ ∩ EK mapping to the class of

αn−N~. This is well-defined: firstly because α1−σ determines α up to an element
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β ∈  L× ∩ k× = k0
× and (αβ)n−N~ = αn−N~ for such β; and secondly because if α1−σ  = ζ ∈  W

then αn−N~  = ζ(n−N~)/(1−σ) = ζn/(n−1)/2 = 1 by the oddness of n.  The map is certainly

surjective. For the injectivity suppose α1−σ ∈  k1−σ ∩ EK maps to Ek
n−N~.  Then

(αε)n−N~ = 1 for some ε ∈  Ek.  Without loss of generality αn−N~ = 1 so that

(α1−σ)n = (αn)1−σ = αN~(1−σ) = 1, whence α1−σ ∈  k1−σ ∩ W represents the trivial class.  The
subgroup initially quotiented out was (k1−σ ∩ W)/(Ek

1−σ ∩ W) which has order dividing
[W:WGWn], as was shown above. This completes the proof of (ii) and gives the last part.

Remarks. When n = l is prime and hk0 is prime to l, these estimates give lower
bounds for the order of an elementary abelian l-group within the class group of k, and,
hence, also a lower bound for the minimal number of generators of its l-Sylow
subgroup. Part (ii) and its approximation hk0∏`è /nr(k)−r(k0)+1 therefore generalise
Fröhlich’s Theorem 1 in [4] and its proof. This approximation yields the result of
Connell and Sussman’s Theorem 1 in [2] for k/k0 when the degree is prime; but the
analogue for general n may be weaker (see 1.5). However, r(L)+1 ≤ r(k)−r(k0) with
equality possible only when f = n−1. Therefore the estimate in (i) is usually as good as
that from (ii) and the rank interpretation for (i) generalises Gerth’s Proposition 3.4 in
[5].

A good knowledge of the unit group of K allows one to obtain still better estimates
for the divisibility of hk:

1.8 THEOREM. The quotient of ambiguous ideal classes modulo strongly ambiguous
classes is isomorphic to

e
KLKLLK ENEKN )/)(( // ∩

Proof.   )//()/( *
kk

G
kk

G
k PPIPI   )/()( *

K
N
K

eN
K PII F≅

σσ −−≅ 1)1(* )/()( K
N
K

eN
K PII F σσ −−= 1)1(* /)( K

eN
K PI =

   σαα −∈= 1
/ /}|){( K

e
LLK PEN

σαα −∈∈≅ 1
/ /}|{ KEENK K

e
LLK

KLK
e

LLK ENEKN // /)( ∩≅ .

The first isomorphism is by Lemma 1.2. The subsequent maps are precisely those used
by Hasse in [8] Ia §13: multiplication by 1−σ, mapping to a generator of a principal
ideal, and applying the norm for K/L. The isomorphisms are proved by him and are
straightforward when Hilbert’s Theorem 90 is borne in mind and it is observed that NK/L

and e=  commute.

1.9 COROLLARY. Suppose L/k0 has u unramified infinite primes.  Then the quotient
of ambiguous classes modulo strongly ambiguous classes has order dividing
nuf/2[W : WnWG]  for even f.  In particular, when u = 0 the quotient is isomorphic to

e
KLKLK WENWKN ))/()(( // ∩∩

Proof. Let Ci be the decomposition group of one infinite prime divisor in K above the
infinite prime i of k0. By hypothesis, Ci has order 2 for all but u valuations i, and without
loss of generality Ci ⊂  F as n is odd. When Ci has order 2 it is generated by γ = φ f/2

which inverts elements of N. Write Ci¦[G]N for the subgroup of ¦[G] fixed on the left
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by Ci and on the right by N. EL/W is torsion free and (see e.g. [11] §4) is isomorphic to a
right submodule of finite index in

M  =  (⊕ i Ci¦[G]N) / ¦(⊕ i G
~) .

M is generated by the C
~

igN
~
 = gC

~
iN
~
 where g ∈  F and so the effect of e=  is determined

by the values of C
~

iN
~= .

Suppose φσφ −1 = σ r so that r has order f modulo n and then set

=�    =   )(
~

)( 2/
12/

0
2

1

0

1

0

2/ fii
f

i
n

rr
f

i

i
r

j

j fii
i

N +
−

=

+
−

=

−

=
+


− ∑∑ ∑

+
φφφσ  .

It is immediately verifiable that (1−σ)=��� = F
~
(1−σ) and that

iifi
f

i
rrNN φγ )()1(

~~ 2/
12/

0
2
1 −−= +

−

=
∑=  .

Hence C
~

iN
~=   = 0 when Ci has order 2 and γC

~
iN
~=  = −C

~
iN
~=   for all i. Thus M=  ⊗ ¦ «

has dimension at most 1uf over « for this choice of = . The same is therefore true of
(EL/W)=  ⊗ ¦ « and shows that ((NK/LK ∩ EL)W / NK/LEK .W)e=  has order dividing nuf/2.

It remains to consider the subgroup ((NK/LK ∩ W) / (NK/LEK  ∩ W))e=  of the group in

1.8 due to torsion in EK. Wn is contained in the denominator because ζn = NK/Lζ for
ζ ∈  W ⊂  L. If ζ ∈  WG then, modulo elements which fix ζ and multiples of n, we have

=�    ≡  0)1/()1(
1

0

1

0

1

0
≡−−=≡ ∑∑ ∑

−

=

−

=

−

=
rrr f

f

i

i
f

i

i
r

j

j
i

φσ  .

So (WG)=  ⊂  Wn and there is a natural surjection from (W ∩ NK/LK)WG / WnWG to the
group under consideration, given by ζ/WnWG õ (ζ/(NK/LEK ∩ W))e= . Hence the order of
the group divides [W : WnWG]. The exact sequence

1  →  (NK/LK ∩ W) / (NK/LEK  ∩ W)  →  (NK/LK ∩ EL) / NK/LEK

→  (NK/LK ∩ EL)W / NK/LEK .W  →  1

remains exact when fixed by the idempotent e= . So the above bounds on the outer two
groups of

1  →  ((NK/LK ∩ W) / (NK/LEK  ∩ W))e= 
  →  ((NK/LK ∩ EL) / NK/LEK)e=

→  ((NK/LK ∩ EL)W / NK/LEK .W )e=  →  1

place the required bound on the central group and yield the required isomorphism
between the first two groups when u = 0.

1.10. COROLLARY. Suppose L/k0 has no unramified infinite primes and ζ
generates W ∩ NK/LK over W ∩ NK/LEK. Choose α ∈  K such that ζ = NK/Lα and an ideal
Q in K for which (α) = Q1−σ. Then the class of NK/kQ generates the ambiguous classes of
k/k0 over the strongly ambiguous classes.

Proof. Under the maps of 1.8 and 1.9 the image of NK/kQ is ζ= , which generates the
group of 1.9.
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1.11 LEMMA. Suppose k/k0 is a pure field extension of a totally real field. Then the
quotient of ambiguous by strongly ambiguous classes is isomorphic to

(NK/LK ∩ W) / NK/LEK ∩ W )  .

Proof. Here k is obtained from k0 by adjoining a root of an element in k0. Therefore
L is obtained from k0 by adjoining an nth root of unity ζ and so L/k0 has no unramified
infinite primes. Now ζ generates W /Wn and assuming φσφ −1 = σ r gives ζφ = ζr−1. So,
modulo elements which fix ζ /Wn,

=�    ≡  ∑ ∑
−

=

−

=

1

0

1

0

f

i

i
r

j

j
i

φσ   ≡  f .

Hence (W /Wn)e=  = W /Wn and e=  acts as an automorphism of the group in 1.9. In fact

e=  fixes the group.

§2. The Principal Genus of k/k0. A definition of genus for a general finite extension
of the rationals was first given in [3] by Fröhlich. Here the notion of relative genus over
a base field is required and it is defined as follows (see [14]). Let Ω* denote the Hilbert
class field of a field Ω, i.e. its maximal abelian unramified extension, and let Ωab be its
abelian closure. The (relative) genus field of Ω over a subfield Ω0 is defined to be
Ω* ∩ ΩΩ0

ab; and the associated genus group is the factor group of the class group of Ω
corresponding to this extension of Ω. The genus group can also be written as a quotient
of the group of ideals in Ω, and then the subgroup factored out is called the principal
genus.

As before, suppose K/k0 is a metacyclic Frobenius extension. Then K/L is cyclic of
odd degree n and its (relative) principal genus is known to be PKIK

1−σ where σ generates
Gal (K/L) (see [14]). Hasse’s analogue ([8] Ia §13) of Hilbert’s Theorem 90 shows that
this is precisely the group PK Ker NK/L where Ker NK/L is the kernel of the norm map
IK → IL. Thus Q ∈  IK is in the principal genus if, and only if, NK/LQ = NK/L(α) for some
α ∈  K. This interpretation also holds for the principal genus of k/k0 by Theorem 2.2(iii).
However, the genus number and the ambiguous class number, which coincide for K/L
need not be equal for k/k0 .

The analogue of Hilbert’s Theorem 90 for k/k0 is:

2.1 LEMMA. (i) If α ∈  k and Nk/k0 α = 1  then α = NK/k(β1−σ) for some β ∈  K× ;

(ii) If Q ∈  Ik and Nk/k0 Q = (1) then Q = NK/k(R1−σ) for some R ∈  IK .

Proof. Let S be a set of representatives for the conjugacy classes of N−1 under F. If
Nk/k0 α = 1 then α = β1−σ  for some β ∈  K× by Hilbert’s Theorem 90. Here β1−σ  is fixed
by F and so

α = β1−σ = 
∑ ∑∈ ∈

−−− Fh Sg hghN 1~
1 )( σβ = FS

~~
1 )( −−σβ = FS

~
)1(

~
)( σβ −−  = NK/k((β − S

~
)1−σ ),

as required. The second part is analogous using Hasse’s lemma (op. cit.).

2.2 THEOREM. (i) The ambiguous class number of k/k0 is

||/|||’| )1(
0

σ−F
K

F
Kk CCC  .
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(ii) The genus group of k/k0 is isomorphic to
F

K
F
Kk CCC )1(/’

0
σ−×   .

(iii) The (relative) principal genus of k/k0 is PkIK
(1−σ)F

~
, i.e., the group of ideals Q ∈  Ik

such that Nk/k0 Q  = N k/k0 (α) for some α ∈  k.

A comparison of (i) and (ii) shows that for k/k0 the ambiguous class number will

differ from the genus number if )1( σ−F
KC  and F

KC )1( σ−  have different orders. This is

usually the case for pure fields (see Section 3).

Proof. The first part is just Theorem 1.1 and the exactness of

1  →  G
KC   →  F

KC   →  )1( σ−F
KC   →  1  .

The maximal abelian extension of k0 , unramified over k, and with degree prime to n,
is unramified over k0, and so corresponds to the class group C′k0 . The maximal abelian
n-extension of k0 unramified over k is the maximal abelian n-extension of k0 unramified
over K. It is therefore the maximal abelian n-extension of L in K* which is fixed under F
(i.e. under the action of Gal(L/k0) suitably extended). The corresponding genus group

for this field is σ−− 11/ K
e

KK CCC F  because the group for the class field of k is

F
K

e
KK CCC F ≅−1/ and the genus group for K/L is σ−1/ KK CC . Part (ii) now follows

from the exactness of

1  →  F
KC )( 1 σ−

  →  F
KC   →  σ−− 11/( K

e
KK CCC F   →  1 .

The genus group itself is therefore F
K

e
kk CCH N

~
)1(1’/ σ−−  where eN = n−1N

~
. Hence

the principal genus is the group of ideals with class belonging to F
K

e
k CC N

~
)1(1’ σ−− .

From 2.1(ii) this group is included in PkIK
(1−σ)F

~
. Conversely, if Q ∈  IK and Q(1−σ)F

~
 is in a

class of C′k then Q(1−σ)F
~
(n−N

~
) = Q(1−σ)F

~
n is in a class of Ne

kC −1’ .  So Q(1−σ)F
~
 is in a class of

Ne
kC −1’ , and the principal genus is indeed PkIK

(1−σ)F
~
. The equivalence of the other

formulation in (iii) is clear using 2.1(ii).

2.3 COROLLARY. The genus group of k/k0 is isomorphic to N k/k0 Ik / N k/k0 Pk .

Proof. Apply N
~
 to Ik/PkIK(1−σ)F

~ , which is the genus group, and use the alternative
definition of the principal genus in 2.2(iii) to show that this is a monomorphism.

Now if a ∈  k0
× and a = NK/Lα then a = Nk/k0(a/NK/kα(n−1)/f ). Hence:

2.4 LEMMA. a ∈  k0 is a norm in k/k0, if, and only if, it is a norm in K/L.

For each prime ideal `i (1 ≤  i ≤ t) of k0 which is ramified in K /L let @i be a prime of

L above ̀ i and for a ∈  k0
× let χi(a) = 




i

LKa
@

/,  be the norm residue symbol. This yields

a map χ : k0
× → Nl defined by χ(a) = (χ1(a), χ2(a), ..., χl(a)).
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2.5 LEMMA. a ∈  k0
× is a norm in k/k0, if, and only if, a ∈  ker χ.

Proof. Suppose χ(a) = 1, i.e. 



i

LKa
@

/,  = 1 for 1 ≤ i ≤ t. Then 



@

LKa /,  = 1 for each

conjugate @ of each prime ideal @i since 



τi

LKa
@

/,  = ττ 


−
i

LKa
@

/,1  for τ ∈  G.

Therefore a is a local norm for each prime ideal of L ramified in K. So a is a local norm
for every completion of K /L because the oddness of n ensures that no infinite valuation
is ramified. Thus a is a norm in K /L as the extension is cyclic. So a is a norm in k/k0 by
2.4. In each case the reverse implication also holds. So a is a norm in k/k0 if, and only if,
χ(a) = 1.

Suppose NIk is the group of ideals in k which have principal norms in k0. If Q ∈  NIk

and Nk/k0Q = (a) for a ∈  k0 then a homomorphism Χ : NIk →  χ(k0)/χ(Ek0) can be defined
by Χ(Q) = χ(a) mod χ(Ek0).

2.6 THEOREM.    (cf. [6] & [ 7])    ker Χ  is the principal genus of k/k0.

Proof. Assume Q ∈  NIk satisfies Nk/k0 Q = (a). Then by Theorem 2.2(iii) Q is in the
principal genus if, and only if, aε is a norm in k/k0 for some unit ε of k0 , i.e., if, and only
if, aε ∈  ker χ.

When the class number of k0 is prime to n the map Χ can be extended to the whole
of Ik. Choose h ∈  ¦ such that hhk0 ≡ 1 mod n. For Q ∈  Ik with Nk/k0 Q

hk0 = (b) we must
have Χ(Q)n = 1 and therefore Χ(Q) = Χ(Q

hhk0) = χ(bh) mod χ(Ek0). This is consistent with
Χ on NIk as defined above. Clearly for this extended map ker Χ is the group of ideals
whose hk0th power is in the principal genus. Hence:

2.7 THEOREM. When hk0 is prime to n the n-subgroup of the genus group of k/k0 is
isomorphic to Χ(Ik).

2.8 COROLLARY. When hk0 is prime to n the genus number of k/k0 divides
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Proof. The factor of the genus number which is prime to n is given precisely by
Theorem 2.2(ii). The denominator is the order of χ(Ek0). So it remains to show that
|χi(A)| divides the ramification index è i of `i in K/L where A is the set of all generators

of ideals in (Nk/k0 Ik)
hk0. By Hasse [8] II §7, |χi(A)| divides è i if a is prime to ̀ i. Suppose

`i
hk0 = (a), ai is a prime of k above ̀ i with degree f ’i over k0, and @i has degree fi over k0.

Then fi divides f ’i and (Nk/k0 ai)
hk0 = (a f ’i). Thus, again by Hasse (op. cit.), ai gives rise to

χi(a
 f ’i) which also has order dividing è i.

Remark. Putting f = 1 and using the product formula for norm residue symbols to
remove one prime in 2.8 provides the familiar formula for the genus number of K/L.

§3. Pure Fields of Prime Degree over «. Let l be an odd rational prime, ζ a
primitive lth root of unity, and m a positive lth power free rational integer. For this
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section let k0 = «, k = «( l m ), L = «(ζ), and K = «( l m , ζ  ). These fields satisfy the
hypotheses of the earlier sections. So the strongly ambiguous classes are generated by
the primes of k which are totally ramified over «. From Wegner [13] these are the prime
ideals dividing (m) and, if ml−1 ≡/ 1 mod l2, also the prime ideal above (l). Hence:

3.1 THEOREM. Let Q be an ambiguous ideal of k = «( l m ). Then Ql = (a) for a ∈  «
defined by N k/«Q = (a). Here a is a product of lth powers, primes dividing m, and, if
ml−1 ≡/ 1 mod l2, also the prime l. In the case when Q is principal, a is a norm.

3.2. THEOREM. For a rational prime p and a ∈  «× let vp(a) ∈  ¦ denote the
multiplicity of p as a factor of a. Then a is a norm in k/« if, and only if,

(m
vp(a)

a
−vp(m)

)
(p−1)/l

 ≡ 1 mod p

for all primes p dividing m with p ≡ 1 mod l.

Proof. By Lemma 2.5, a is a norm in k/«, if, and only if, χi(a) = 



i

LKa
@

/,  = 1 for

1 ≤ i ≤ t. Since there is only one prime ideal in L above (l) the product formula for norm
residue symbols permits this prime to be ignored if it occurs. The remaining ramified
primes are the p ≠ l which divide m. Using the properties of Hasse’s norm residue and
power residue symbols (see [8] II §11) for the chosen prime @ in L above (p) ≠ (l) one
obtains
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Let n(p) = (pf(p) −1)/l where f(p) is the order of p modulo l. Then ln(p) = NL/« @ −1. So





@
x  = 1   ⇔   xn(p) ≡ 1 mod @   ⇔   xn(p) ≡ 1 mod (p)

for x ∈  « prime to p. Thus





@

LKa /,  = 1    ⇔   (m
vp(a)

a
−vp(m)

)
n(p)

 ≡ 1 mod p .

This congruence is automatically satisfied when n(p) ≡ 0 mod p−1, and therefore when l
does not divide p−1. Otherwise p ≡ 1 mod l, which gives n(p) = (p−1)/l. The theorem
now follows.

3.3 COROLLARY. If Q is an ambiguous ideal of k with Ql = (a) and a does not satisfy
all the congruences of Theorem 3.2 then Q is not principal.

Proof Combine Theorems 3.1 and 3.2.

Let {pi | 1 ≤ i ≤ t}  be the set of ramified primes as described above, and let
{ pi | 1 ≤ i ≤ s} be the subset of p ≡ 1 mod l. Define χi’(a) = (m

vp(a)
a

−vp(m)
)
(p−1)/l

 mod p for
p = pi and 1 ≤ i ≤ s. Then χ’(a) = (χ1’(a), χ2’(a), ..., χs’(a)) provides a homomorphism in
effect from «× to ¨l

s
 where ̈ l is the finite field of l elements. By 3.2 the kernel of χ’ is

the subgroup of a ∈  «× which are norms in k/«. Composing this with the map
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v: Ik → «× given by Q õ |a| for Nk/«Q = (a) yields a homomorphism Χ’ : Ik →  ¨l
s
. As in

§2 the kernel of Χ’ is the group of ideals whose norms are norms of principal ideals.
Thus, as in 2.6 and 2.7,

3.4 THEOREM. ker Χ’ is the principal genus of k/« and |Χ’ (Ik)| is the genus number.

3.5 THEOREM. (i) The genus number of k/« is ls, i.e. Χ’ is surjective;

(ii) the order of Χ’ (Ik
N) is that of the quotient of strongly ambiguous classes by the

subgroup of classes corresponding to ideals of the principal genus;

(iii) every ambiguous class is strongly ambiguous if, and only if, ζ ∈  NK/LEK  or
ζ ∉  NK/LK.

Remark. ([10] Lemma 4) ζ ∈  NK/LK if, and only if, pi
l−1  ≡ 1 mod l2 for 1 ≤ i ≤ t with

pi ≠ l. Thus for most m every ambiguous class is strongly ambiguous.

Proof. Fröhlich has already proved (i) in [4]. Alternatively, (cf [1], Theorem 4.2), let
q be a rational prime. Fixing the value of χi’(q) only forces q to belong to certain
arithmetic progressions modulo pi. Hence χ’ : «× → ¨l

s
 is surjective even when restricted

to unramified primes q of order l−1 modulo l. But such primes have prime factors a1 and
al−1 of degree 1 and l−1 respectively in k. So v(a1) = q and Χ’ = a’0v is surjective. Note
that the ideals a1 generate the ls cosets of the principal genus in Ik, and give rise to an
elementary abelian factor group of the class group of k.

The second part comes from Theorem 3.4 and the last part from Lemma 1.11.

3.6 THEOREM. (cf Fröhlich [4] Theorem 3). Let ls’ be the order of Χ’ (Ik
N), and let lt’

be the number of strongly ambiguous classes. Then t’ ≥ max (s’, t−(l+1)/2) and the class

number of k = «( l m ) is divisible by
ls+t’−s’  .

Proof. By Theorem 3.5(i) the genus group provides ls cosets of the principal genus
and by (ii) of the same theorem the ambiguous ideals provide l t’−s’ classes in the principal
genus. The lower bound on t’ is just Corollary 1.7(i) with Theorem 3.5(ii).

Remark. s, t, and s’ can be calculated very easily from m and the definition of Χ’ and
so the given lower bound for t’ immediately yields a divisor of the l-class number.

This theorem is given in greater generality, though without proof, by Barrucand and
Cohn in [1] Theorem 9.1.
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