Verification of Hardware combining
Multiplication, Division and Square Root

Colin D. Walter

Computation Department, U.M.I.S.T.,
PO Box 88, Sackville Street, Manchester M60 1QD, U.K.

e-mail: cdw@sna.co.umist.ac.uk

Index Terms: Computer arithmetic, multiplication, division, square root, re-
dundant number systems, recurrence relations.

Abstract

This note provides a proof, corrections and minor generalisation of algorithms
used by M. Ercegovac and T. Lang for implementing a hardware module that
combines multiplication, division and square root. A consequence of the proof
is the supply of initialisation conditions and bounds for register contents. Some
subtleties required of an implementation are also noted.

1 Introduction.

In [3] Ercegovac and Lang describe a hardware design which combines algorithms
for multiplication, division and square root and generates output digit serially.
The work described here emanates from problems one of my project students had
in proving the correctness of the design: without seeing a step-by-step derivation
of the algorithm it was difficult to know how to set about verifying it.

The same authors in [2] explain how “on-line” algorithms might be derived.
These are algorithms in which the inputs are consumed and the outputs gener-
ated digit serially at the same rate, most significant bit first. The techniques in
[2] are applicable in general for iterative arithmetic, including here, where most
inputs are provided entirely at initialisation, and the outputs produced one digit
at a time. However, at least for the square root, further ideas are necessary to
complete the details of the proof.

Recent advances in technology have triggered much research into arithmetic
by enabling increased speed to be gained at the cost of relatively cheap hard-
ware. The square root algorithm has, of course, been extensively studied. In
particular, a version of the algorithm here appears in [7], and ones using higher
bases appear in [4] and [8], where different initialisation complexities arise. The
use of Newton-Raphson iteration for the square root is studied in [6]. Although

2 C. D. Walter, Hardware Verification

it has quadratic rather than linear convergence so that it is apparently faster,
the method involves more arithmetic per iteration (a full length squaring) which
destroys any advantage.

On the back of the square root case, at little further expense we have included
proofs for the multiplication and division algorithms. This makes sense because
some initialisation detail is missing in [3] and indeed the former produces an
answer which is out by a factor of 2. Combined modules for multiplication,
division and square root have also been studied in [10] where the radix is 4. The
multiplication method used there produces output digit serially starting as usual
with the least significant digit, but here it is in the opposite order, in order to
match the output of the other two algorithms. This type of multiplication has
already been discussed in [5], whilst division follows the normal paper and pencil
method.

We start with a derivation of some recurrence relations. This proves only the
partial correctness of the algorithms. Total correctness requires also a demon-
stration of convergence; more specifically, that run-time errors are not caused
by overflow. This second part of the proof reveals and exhibits some subtle de-
tail of what is required from a hardware implementation, including bounds on
register contents, and enables us to note some potential problems if the original
description is varied in any way.

2 Notation.

Since reals are generally expressed in sign/mantissa/exponent form, we will as-
sume all mantissa representations are shifted to make the first non-zero digit
correspond to a negative power of the radix 2, normally to 27 1. As calculations
with the exponents and signs are relatively straight-forward here, only operations
on the mantissas are considered further.

We adopt notation in which uppercase characters are used to denote real
numbers and lowercase characters to denote digits. So we consider number repre-
sentations M = ;2 m;27%, and sequences such as M[j] = >1_, m:27% (j > 0)
where m; is a digit. The latter arise for inputs and outputs whose digits are sup-
plied or generated serially.

The addition of two numbers can lead to arbitrarily long carry propagation
if a standard non-redundant binary output is demanded. However, considerable
speedup is derived by allowing a redundant representation for the output since
carry propagation can then be limited, thus enabling digit operations to be
performed in parallel. The algorithms here use a representation for the outputs
of an addition with digits in the range 0..2.

Speed is also achieved by ignoring less significant digits. This leads to less
precision in the digits of the outputs of the algorithms. The inexactitude is

Microprocessors & Microsystems, vol. 19, 1995, pp. 243-245 3

recovered in subsequent digits by allowing a wider range of digits for the outputs,
namely —1..1. By incorporating an appropriate constant delay into such outputs,
it is possible to convert to a different redundant representation, or generate two
converging non-redundant representations which bracket the value (see [1]).

3 The Recurrence Relations.

The derivation of the recurrence relations of Ercegovac and Lang [3] is straight-
forward. The key step is to define a residual error or partial remainder Wj] for
the j*® iteration. This is a measure of the difference between the desired opera-
tion on the inputs so far and the output generated so far. It is defined iteratively,
and at each iteration another output digit is chosen to approximately minimise
its next value. Convergence of the output to the right answer is guaranteed
if this scaled residual error is bounded, and this in turn relies on appropriate
normalisation of the inputs and definition of the output digits.

Following the notation of [3] we denote inputs by X and Y and outputs by
P (product), @ (quotient) and S (square root). The basic definitions are most
conveniently written:

0 = XxY-P 0 = X-YxQ 0 = X/2—-(5xS5)/2
By taking approximations to about j places, they yield the expressions

27IW[j] = XxY[j+1] — P[j]
27 W[j] = X =V xQ[j]
279W[jl = X/2 = S[j]xSi]/2

for j > 0, which define W[j] as the weighted residual error at the end of the j*!
iteration. Since the output digits have only positive indices, the initial output

values satisfy
P] = Q[0] = S[O] = 0

In [3] it is assumed the inputs are in normalised non-redundant form, so that
Y[1] = 127! = 1/2 in the equation for multiplication. Hence the initial values
of W are respectively:

W0 = X/2
W] = X
wio] = X/2

The recurrence relations are obtained by using the formula M[j] = M[j—1] + 2 /m;
applied to Y, P, @ and S in the relations for W{j] and then subtracting the ex-
pressions for W[j—1]. Thus, for j > 1,

Wil = 2W[j—1] 4+ y;4+1X/2 — p;

W[jl =2W[j-1] - ¢;Y ,
Wil = 2W[j—1] = 5;S[j—1] = 2777 "s;?

4 C. D. Walter, Hardware Verification

The quantities on the right side of these relations show what data must
be available as input to the iteration, and hence most memory requirements
in an implementation. Hardware for implementing the algorithms needs two
registers for redundant representations (W and one of X, Y or S) plus a cyclically
rotatable binary register in which to store 277,

Comparing these algorithms with those described in [3], the recurrence rela-
tions for division and square root agree, but not that for multiplication: every
appearance of X in the multiplication algorithm here appears as X/2 in [3], so
that P =Y xX/2 is calculated there rather than the true product — even the
bound of X < 1/2 here appears as the bound X < 1 there. So we must record
this as an error in [3], although the normalisation of the output there should au-
tomatically correct the unwanted factor of 2. The initialisation for W[0], which
is omitted from [3], is given above.

4 Output Digits and Residual Error Bounds.

The output digits are chosen to minimise the next residual error as far as possible
using a minimal amount of computation. The redundant representation allows
some flexibility in their choice so that an estimate W[j]" of W[j] is only needed
to two places after the point. As W is the output from a carry save adder it has
digits in the range 0..2. Consequently,

Wil < Wi < Wil +1/2 (1)

Thus Wj]' + 1/4 is, on average, the best approximation to Wj]. So Ercegovac
and Lang define:

Lif W[i—-1]'> 0

p; = 0if W[i—1]' < —1/4or —1/2
1t W[j-1] < —3/4

G = sign(W[i-1) +1/4)

s; = sign(W[j—1]+1/4)

where sign maps onto the digit set {—1,0,+1} in the obvious way. By choosing
a more accurate approximation W’ it is possible to increase the number of zero
output digits so that the iterative step reduces from an addition to a simple left
shift, and performance can then be improved (see [9]).

Establishing the convergence of the algorithms requires choosing exactly the
right bounds for the residual error. They are obtained by selecting expressions
which will only just work in the proofs.

Theorem 1. f 0< X <1/2, 1/2<Y <1 and Y has the usual non-
redundant binary representation then the residual error in the multi-
plication algorithm is bounded by

1 < W[j] < 1-X/2 < 1 forall j>0.

Microprocessors & Microsystems, vol. 19, 1995, pp. 243-245 5

Theorem 2. Tf 0 < X < 1/2 and 1/2 <Y < 1 then the absolute value of
the residual error in the division algorithm is bounded by

W[j]] < Y < 1 foral j>0.

Theorem 3. (cf (7) in [7].) If 1/4 < X < 1 and either W][0] is in non-
redundant binary form when s; is computed or s; = 1 is forced, then

) W[jl—-277"t < S[j] < 1 forall j >0 ;

i) -1 < —S[j] < W[j]—-2 7 'forallj>1 .

For the first two theorems the case of 7 = 0 follows directly from the initial
conditions. The rest follows easily by induction on j using (1) in a case by case
analysis of output digit values. For the square root algorithm the same line of
reasoning works providing that a sufficiently good lower bound on S[j] is known.
This is given by the lemma below, but first note that the extra initialisation prop-
erty is needed. Thus, if X = .01... produces the representation W[0] = 1.1122...
(= X/2) at the time sy is calculated, then s; = 0 would result. Since such X and
S would then satisfy X > 1/4 and S < 1/2, the relation X = S? could not hold.
However, if W0] has standard binary form then s; = 1 results. So for a correct
algorithm s; = 1 must always hold independently of the representation of W[0]
and it may need to be forcefully initialised.

We need to distinguish two cases: we call s; an initial zero of S if s; =0
whenever i satisfies 1 < i < j and a non-initial zero of S if s; = 0 but s; # 0 for
some i satisfying 1 <i < j.

Lemma. Given the initialisation of Theorem 3,

i) If s; is an initial zero then S[j] = S[1] =1/2 ;

ii) If s; is the first non-zero digit with j > 1 then s; =1 ;
iii) If s; is a non-initial zero then S[j] > 1/2 4 277~!

Proof. Part (i) is immediate from s; = 1. Now suppose s; =0 for 1 <i < j.
Then W[j—1] = 2/72(X—2"2) > 0. Hence W[j—1]' > W[j—1]-1/2 > —1/2. So
s; # —1, giving part (ii). However, if s; is a non-initial zero and s;_; is the last
initial zero then

Sli] > Sli—-1+27 =2 .42 = 1/24279F > /242707

Corollary. With the initialisation given in the theorems and earlier, all
three algorithms converge to the correct answer, and |[W[j]| <1 for all
J=0.

This is clear, given S[j] <1—279. It is worth remarking that |W[j]| =1
could actually arise, but only for multiplication (for example, take X = 1/4 and
Y =1/2 with j > 3).

6 C. D. Walter, Hardware Verification

5 Summary and Conclusions.

We have proved the total correctness of the algorithms used in [3] subject to a
correcting factor of 2 in the case of multiplication, and a guarantee that sy =1
in the case of the square root. The recurrence relations for them were derived
in §3, where the initial conditions, omitted from [3], are clarified. The definition
of the output digits is given at the start of §4. The inputs are subject to the
range and representation restrictions stated in the theorems. As these are less
demanding than those in [3] the theorems have been slightly generalised. The
serially produced output is always within 1 in the most recent digit position of
being the correct infinite precision answer. Finally, in all cases, the residual error
W{j] has absolute value at most 1 and so hardware registers of the right size can
now be supplied.

References

[1] Milos D. Ercegovac & Tomas Lang, “On-the-fly conversion of redundant into con-
ventional representations”, IEEE Trans. Comput., vol. C-36, pp. 895-897, July
1987.

[2] Milos D. Ercegovac & Tomas Lang, “On-Line Arithmetic: A Design Methodology
and Applications in Digital Signal Processing”, VLSI Signal Processing III, R. W.
Brodersen, H. S. Moscovitz eds., pp. 252-263, IEEE Press, New York, 1988.

[3] Milos D. Ercegovac & Tomas Lang, “Implementation of a Module combining Mul-
tiplication, Division and Square Root”, Proc. IEEE Intern. Symp. on Circuits and
Systems, 1989, pp. 150-153.

[4] Milos D. Ercegovac & Tomas Lang, “Radix-4 Square Root Without Initial PLA”,
IEEE Trans. Comput., vol. C-39, pp. 1016-1024, August 1990.

[65] Milos D. Ercegovac & Tomas Lang, “Fast Multiplication Without Carry-Propagate
Addition”, IEEE Trans. Comput., vol. C-39, pp. 1385-1390, November, 1990.

[6] Reza Hashemian, “Square Root Algorithms for Integer and Floating point Num-
bers”, IEEE Trans. Comput., vol. C-39, pp. 1025-1029, August 1990.

[7] Stanislaw Majerski, “Square Rooting Algorithms for High Speed Digital Circuits”,
IEEE Trans. Comput., vol. C-34, pp. 724-733, August 1985.

[8] Paolo Montuschi & Luigi Ciminiera, “On the efficient implementation of higher
radix square root algorithms”, Proc. 9th IEEE Symposium on Computer Arith-
metic, Santa Monica, CA, pp. 154-161, 1989.

[9] Paolo Montuschi & Luigi Ciminiera, “Reducing Iteration Time When Result Digit
is Zero for Radix 2 SRT Division and Square Root with Redundant Remainders”,
IEEE Trans. Comput., vol. 42, pp. 239-246, February 1993.

[10] J. H. Zurawski & J. B. Gosling, “Design of a high-speed square root, multiply and
divide unit”, IEEE Trans. Comput., vol. C-36, pp. 13-23, 1987.

