
Veri�
ation of Hardware
ombining

Multipli
ation, Division and Square Root

Colin D. Walter

Computation Department, U.M.I.S.T.,

PO Box 88, Sa
kville Street, Man
hester M60 1QD, U.K.

e-mail:
dw�sna.
o.umist.a
.uk

Index Terms: Computer arithmeti
, multipli
ation, division, square root, re-

dundant number systems, re
urren
e relations.

Abstra
t

This note provides a proof,
orre
tions and minor generalisation of algorithms

used by M. Er
egova
 and T. Lang for implementing a hardware module that

ombines multipli
ation, division and square root. A
onsequen
e of the proof

is the supply of initialisation
onditions and bounds for register
ontents. Some

subtleties required of an implementation are also noted.

1 Introdu
tion.

In [3℄ Er
egova
 and Lang des
ribe a hardware design whi
h
ombines algorithms

for multipli
ation, division and square root and generates output digit serially.

The work des
ribed here emanates from problems one of my proje
t students had

in proving the
orre
tness of the design: without seeing a step-by-step derivation

of the algorithm it was diÆ
ult to know how to set about verifying it.

The same authors in [2℄ explain how \on-line" algorithms might be derived.

These are algorithms in whi
h the inputs are
onsumed and the outputs gener-

ated digit serially at the same rate, most signi�
ant bit �rst. The te
hniques in

[2℄ are appli
able in general for iterative arithmeti
, in
luding here, where most

inputs are provided entirely at initialisation, and the outputs produ
ed one digit

at a time. However, at least for the square root, further ideas are ne
essary to

omplete the details of the proof.

Re
ent advan
es in te
hnology have triggered mu
h resear
h into arithmeti

by enabling in
reased speed to be gained at the
ost of relatively
heap hard-

ware. The square root algorithm has, of
ourse, been extensively studied. In

parti
ular, a version of the algorithm here appears in [7℄, and ones using higher

bases appear in [4℄ and [8℄, where di�erent initialisation
omplexities arise. The

use of Newton-Raphson iteration for the square root is studied in [6℄. Although

2 C. D. Walter, Hardware Veri�
ation

it has quadrati
 rather than linear
onvergen
e so that it is apparently faster,

the method involves more arithmeti
 per iteration (a full length squaring) whi
h

destroys any advantage.

On the ba
k of the square root
ase, at little further expense we have in
luded

proofs for the multipli
ation and division algorithms. This makes sense be
ause

some initialisation detail is missing in [3℄ and indeed the former produ
es an

answer whi
h is out by a fa
tor of 2. Combined modules for multipli
ation,

division and square root have also been studied in [10℄ where the radix is 4. The

multipli
ation method used there produ
es output digit serially starting as usual

with the least signi�
ant digit, but here it is in the opposite order, in order to

mat
h the output of the other two algorithms. This type of multipli
ation has

already been dis
ussed in [5℄, whilst division follows the normal paper and pen
il

method.

We start with a derivation of some re
urren
e relations. This proves only the

partial
orre
tness of the algorithms. Total
orre
tness requires also a demon-

stration of
onvergen
e; more spe
i�
ally, that run-time errors are not
aused

by over
ow. This se
ond part of the proof reveals and exhibits some subtle de-

tail of what is required from a hardware implementation, in
luding bounds on

register
ontents, and enables us to note some potential problems if the original

des
ription is varied in any way.

2 Notation.

Sin
e reals are generally expressed in sign/mantissa/exponent form, we will as-

sume all mantissa representations are shifted to make the �rst non-zero digit

orrespond to a negative power of the radix 2, normally to 2

�1

. As
al
ulations

with the exponents and signs are relatively straight-forward here, only operations

on the mantissas are
onsidered further.

We adopt notation in whi
h upper
ase
hara
ters are used to denote real

numbers and lower
ase
hara
ters to denote digits. So we
onsider number repre-

sentationsM =

P

1

t=1

m

t

2

�t

, and sequen
es su
h asM [j℄ =

P

j

t=1

m

t

2

�t

(j � 0)

where m

t

is a digit. The latter arise for inputs and outputs whose digits are sup-

plied or generated serially.

The addition of two numbers
an lead to arbitrarily long
arry propagation

if a standard non-redundant binary output is demanded. However,
onsiderable

speedup is derived by allowing a redundant representation for the output sin
e

arry propagation
an then be limited, thus enabling digit operations to be

performed in parallel. The algorithms here use a representation for the outputs

of an addition with digits in the range 0::2.

Speed is also a
hieved by ignoring less signi�
ant digits. This leads to less

pre
ision in the digits of the outputs of the algorithms. The inexa
titude is

Mi
ropro
essors & Mi
rosystems, vol. 19, 1995, pp. 243-245 3

re
overed in subsequent digits by allowing a wider range of digits for the outputs,

namely �1::1. By in
orporating an appropriate
onstant delay into su
h outputs,

it is possible to
onvert to a di�erent redundant representation, or generate two

onverging non-redundant representations whi
h bra
ket the value (see [1℄).

3 The Re
urren
e Relations.

The derivation of the re
urren
e relations of Er
egova
 and Lang [3℄ is straight-

forward. The key step is to de�ne a residual error or partial remainder W [j℄ for

the j

th

iteration. This is a measure of the di�eren
e between the desired opera-

tion on the inputs so far and the output generated so far. It is de�ned iteratively,

and at ea
h iteration another output digit is
hosen to approximately minimise

its next value. Convergen
e of the output to the right answer is guaranteed

if this s
aled residual error is bounded, and this in turn relies on appropriate

normalisation of the inputs and de�nition of the output digits.

Following the notation of [3℄ we denote inputs by X and Y and outputs by

P (produ
t), Q (quotient) and S (square root). The basi
 de�nitions are most

onveniently written:

0 = X�Y � P 0 = X � Y�Q 0 = X=2� (S�S)=2

By taking approximations to about j pla
es, they yield the expressions

2

�j

W [j℄ = X�Y [j+1℄� P [j℄

2

�j

W [j℄ = X � Y�Q[j℄

2

�j

W [j℄ = X=2� S[j℄�S[j℄=2

for j � 0, whi
h de�ne W [j℄ as the weighted residual error at the end of the j

th

iteration. Sin
e the output digits have only positive indi
es, the initial output

values satisfy

P [0℄ = Q[0℄ = S[0℄ = 0

In [3℄ it is assumed the inputs are in normalised non-redundant form, so that

Y [1℄ = y

1

2

�1

= 1=2 in the equation for multipli
ation. Hen
e the initial values

of W are respe
tively:

W [0℄ = X=2

W [0℄ = X

W [0℄ = X=2

The re
urren
e relations are obtained by using the formulaM [j℄ =M [j�1℄ + 2

�j

m

j

applied to Y , P , Q and S in the relations for W [j℄ and then subtra
ting the ex-

pressions for W [j�1℄. Thus, for j � 1,

W [j℄ = 2W [j�1℄ + y

j+1

X=2� p

j

W [j℄ = 2W [j�1℄� q

j

Y

W [j℄ = 2W [j�1℄� s

j

S[j�1℄� 2

�j�1

s

j

2

4 C. D. Walter, Hardware Veri�
ation

The quantities on the right side of these relations show what data must

be available as input to the iteration, and hen
e most memory requirements

in an implementation. Hardware for implementing the algorithms needs two

registers for redundant representations (W and one ofX , Y or S) plus a
y
li
ally

rotatable binary register in whi
h to store 2

�j

.

Comparing these algorithms with those des
ribed in [3℄, the re
urren
e rela-

tions for division and square root agree, but not that for multipli
ation: every

appearan
e of X in the multipli
ation algorithm here appears as X=2 in [3℄, so

that P = Y�X=2 is
al
ulated there rather than the true produ
t { even the

bound of X < 1=2 here appears as the bound X < 1 there. So we must re
ord

this as an error in [3℄, although the normalisation of the output there should au-

tomati
ally
orre
t the unwanted fa
tor of 2. The initialisation for W [0℄, whi
h

is omitted from [3℄, is given above.

4 Output Digits and Residual Error Bounds.

The output digits are
hosen to minimise the next residual error as far as possible

using a minimal amount of
omputation. The redundant representation allows

some
exibility in their
hoi
e so that an estimate W [j℄

0

of W [j℄ is only needed

to two pla
es after the point. As W is the output from a
arry save adder it has

digits in the range 0::2. Consequently,

W [j℄

0

� W [j℄ < W [j℄

0

+ 1=2 (1)

Thus W [j℄

0

+ 1=4 is, on average, the best approximation to W [j℄. So Er
egova

and Lang de�ne:

p

j

=

8

<

:

1 if W [j�1℄

0

� 0

0 if W [j�1℄

0

< �1=4 or � 1=2

�1 if W [j�1℄

0

� �3=4

9

=

;

q

j

= sign(W [j�1℄

0

+ 1=4)

s

j

= sign(W [j�1℄

0

+ 1=4)

where sign maps onto the digit set f�1; 0;+1g in the obvious way. By
hoosing

a more a

urate approximation W

0

it is possible to in
rease the number of zero

output digits so that the iterative step redu
es from an addition to a simple left

shift, and performan
e
an then be improved (see [9℄).

Establishing the
onvergen
e of the algorithms requires
hoosing exa
tly the

right bounds for the residual error. They are obtained by sele
ting expressions

whi
h will only just work in the proofs.

Theorem 1. If 0 � X < 1=2, 1=2 � Y < 1 and Y has the usual non-

redundant binary representation then the residual error in the multi-

pli
ation algorithm is bounded by

�1 � W [j℄ < 1�X=2 � 1 for all j � 0 :

Mi
ropro
essors & Mi
rosystems, vol. 19, 1995, pp. 243-245 5

Theorem 2. If 0 � X < 1=2 and 1=2 � Y < 1 then the absolute value of

the residual error in the division algorithm is bounded by

jW [j℄j � Y < 1 for all j � 0 :

Theorem 3. (
f (7) in [7℄.) If 1=4 � X < 1 and either W [0℄ is in non-

redundant binary form when s

1

is
omputed or s

1

= 1 is for
ed, then

i)W [j℄� 2

�j�1

< S[j℄ < 1 for all j � 0 ;

ii) �1 < � S[j℄ � W [j℄� 2

�j�1

for all j � 1 .

For the �rst two theorems the
ase of j = 0 follows dire
tly from the initial

onditions. The rest follows easily by indu
tion on j using (1) in a
ase by
ase

analysis of output digit values. For the square root algorithm the same line of

reasoning works providing that a suÆ
iently good lower bound on S[j℄ is known.

This is given by the lemma below, but �rst note that the extra initialisation prop-

erty is needed. Thus, if X = :01::: produ
es the representation W [0℄ =

�

1:1122:::

(= X=2) at the time s

1

is
al
ulated, then s

1

= 0 would result. Sin
e su
h X and

S would then satisfy X � 1=4 and S < 1=2, the relation X = S

2

ould not hold.

However, if W [0℄ has standard binary form then s

1

= 1 results. So for a
orre
t

algorithm s

1

= 1 must always hold independently of the representation of W [0℄

and it may need to be for
efully initialised.

We need to distinguish two
ases: we
all s

j

an initial zero of S if s

i

= 0

whenever i satis�es 1 < i � j and a non-initial zero of S if s

j

= 0 but s

i

6= 0 for

some i satisfying 1 < i < j.

Lemma. Given the initialisation of Theorem 3,

i) If s

j

is an initial zero then S[j℄ = S[1℄ = 1=2 ;

ii) If s

j

is the �rst non-zero digit with j > 1 then s

j

= 1 ;

iii) If s

j

is a non-initial zero then S[j℄ > 1=2 + 2

�j�1

.

Proof. Part (i) is immediate from s

1

= 1. Now suppose s

i

= 0 for 1 < i < j.

Then W [j�1℄ = 2

j�2

(X�2

�2

) � 0. Hen
e W [j�1℄

0

> W [j�1℄�1=2 � �1=2. So

s

j

6= �1, giving part (ii). However, if s

j

is a non-initial zero and s

i�1

is the last

initial zero then

S[j℄ � S[i�1℄+2

�i

� (2

�i�1

+ :::+2

�j+1

) = 1=2+2

�j+1

> 1=2+2

�j�1

:

Corollary. With the initialisation given in the theorems and earlier, all

three algorithms
onverge to the
orre
t answer, and jW [j℄j � 1 for all

j � 0.

This is
lear, given S[j℄ � 1� 2

�j

. It is worth remarking that jW [j℄j = 1

ould a
tually arise, but only for multipli
ation (for example, take X = 1=4 and

Y = 1=2 with j � 3).

6 C. D. Walter, Hardware Veri�
ation

5 Summary and Con
lusions.

We have proved the total
orre
tness of the algorithms used in [3℄ subje
t to a

orre
ting fa
tor of 2 in the
ase of multipli
ation, and a guarantee that s

1

= 1

in the
ase of the square root. The re
urren
e relations for them were derived

in x3, where the initial
onditions, omitted from [3℄, are
lari�ed. The de�nition

of the output digits is given at the start of x4. The inputs are subje
t to the

range and representation restri
tions stated in the theorems. As these are less

demanding than those in [3℄ the theorems have been slightly generalised. The

serially produ
ed output is always within 1 in the most re
ent digit position of

being the
orre
t in�nite pre
ision answer. Finally, in all
ases, the residual error

W [j℄ has absolute value at most 1 and so hardware registers of the right size
an

now be supplied.

Referen
es

[1℄ Milos D. Er
egova
 & Tomas Lang, \On-the-
y
onversion of redundant into
on-

ventional representations", IEEE Trans. Comput., vol. C-36, pp. 895-897, July

1987.

[2℄ Milos D. Er
egova
 & Tomas Lang, \On-Line Arithmeti
: A Design Methodology

and Appli
ations in Digital Signal Pro
essing", VLSI Signal Pro
essing III, R. W.

Brodersen, H. S. Mos
ovitz eds., pp. 252-263, IEEE Press, New York, 1988.

[3℄ Milos D. Er
egova
 & Tomas Lang, \Implementation of a Module
ombining Mul-

tipli
ation, Division and Square Root", Pro
. IEEE Intern. Symp. on Cir
uits and

Systems, 1989, pp. 150-153.

[4℄ Milos D. Er
egova
 & Tomas Lang, \Radix-4 Square Root Without Initial PLA",

IEEE Trans. Comput., vol. C-39, pp. 1016-1024, August 1990.

[5℄ Milos D. Er
egova
 & Tomas Lang, \Fast Multipli
ation Without Carry-Propagate

Addition", IEEE Trans. Comput., vol. C-39, pp. 1385-1390, November, 1990.

[6℄ Reza Hashemian, \Square Root Algorithms for Integer and Floating point Num-

bers", IEEE Trans. Comput., vol. C-39, pp. 1025-1029, August 1990.

[7℄ Stanislaw Majerski, \Square Rooting Algorithms for High Speed Digital Cir
uits",

IEEE Trans. Comput., vol. C-34, pp. 724-733, August 1985.

[8℄ Paolo Montus
hi & Luigi Ciminiera, \On the eÆ
ient implementation of higher

radix square root algorithms", Pro
. 9th IEEE Symposium on Computer Arith-

meti
, Santa Moni
a, CA, pp. 154-161, 1989.

[9℄ Paolo Montus
hi & Luigi Ciminiera, \Redu
ing Iteration Time When Result Digit

is Zero for Radix 2 SRT Division and Square Root with Redundant Remainders",

IEEE Trans. Comput., vol. 42, pp. 239-246, February 1993.

[10℄ J. H. Zurawski & J. B. Gosling, \Design of a high-speed square root, multiply and

divide unit", IEEE Trans. Comput., vol. C-36, pp. 13-23, 1987.

