Data Dependent Power Use in Multipliers

Colin D. Walter
Comodo Research Laboratory,

7 Campus Road, Bradford, BD7 1HR, UK

e-mail: Colin.Walter@comodo.com

Abstract

Recent research has demonstrated the vulnerability of
certain smart card architectures to power and electro-
magnetic analysis when multiplier operations are insuffi-
ciently shielded from external monitoring. Here several
standard multipliers are investigated in more detail in or-
der to provide the foundation for understanding potential
weaknesses and enabling the subsequent successful repair
of those systems. A model is built which accurately predicts
power use as a function of the Hamming weights of inputs
without the combinatorial explosion of exhaustive simula-
tion. This confirms that power use is indeed data depend-
ent at least for those multipliers. Laboratory experiments
confirm that EMR also corresponds closely to these power
predictions over a wide range of frequencies.

Key Words — Differential power analysis, DPA, EMA,
smart card, multiplication, multiplier, RSA cryptosystem.

1 Introduction

Security is an increasingly important issue these
days, even for computer arithmetic. Typical RSA [11]
hardware performs long integer modular multiplications
AxB mod M using a modification of the standard pri-
mary school method for multiplication where modular re-
ductions are interleaved with the additions of digit multi-
ples of the multiplicand. Normally this is done using a k-
bit multiplier to compute digit products a; xb; and g; xm;.
Because switching gates in a circuit requires more power
than keeping them in their current states, the amount of
power consumed during a multiplication is data dependent.
With sufficiently sensitive monitoring equipment, such vari-
ations can be observed and perhaps used to deduce prop-
erties of the data being processed. This is called power
analysis [6]. It has serious economic consequences if it can

*Work partly undertaken while the authors were at UCL Crypto Group
(DICE), Université catholique de Louvain, Louvain-la-Neuve, Belgium.

David Samyde*
FemtoNano,
Paris

e-mail: David.Samyde@FemtoNano . com

be applied to attack an electronic purse on a smart card, a
signature key on a credit card or rights keys on pay-per-
view cards. Electro-magnetic radiation (EMR) from the
gate switching also leaks substantial information, especially
when conducted along power supply lines and network ca-
bles [1, 5, 9, 10]. With detectable radiation typically carry-
ing 15 metres or more, this is a security problem not just for
smart cards, but particularly also for certificate authorities
that are frequently signing with private keys.

Some defences against such side channel leakage are
mentioned by Anderson [2], including dual rail logic and
bus encryption [3], which may cure the most major source
of data dependent power variation, namely the bus. Ran-
dom transformations of inputs, random register re-location,
randomising algorithms, random noise generators, random
clock fluctuations and concurrent calculations on another
processor are further methods used to blind calculations and
data movements so that recovery of secret keys becomes
more difficult during their deliberately limited lifespan.

Since they occupy a substantial part of most CPUs and
cryptographic co-processors, multipliers now become one
of the strongest sources of data leakage which may need
protection. On a chip with no security measures and little
other than a multiplier, Sommer [7] observed a correlation
between power traces and values by looping through a par-
ticular cycle of values. Here power variations for several
standard multipliers are investigated. This confirms that at-
tacks such as that in [12] should indeed be possible at least
for small multipliers. Complexity issues can be used to
show that larger multipliers are less vulnerable to such at-
tacks, but different designs also vary in vulnerability.

The investigation was based initially on simulations
which computed gate switching activity in software mod-
els of some multipliers. Then several smartcard multipliers
were tested in order to confirm the predicted connection be-
tween power use and gate switching and verify that similar
properties held for EMR. This data agreed with the sim-
ulations, and so it is reasonable to conclude that the sim-
ulations predict what might be measured successfully and
non-invasively by EMR probes or RF scanning devices.

The problem with exhaustive simulations is combinato-
rial explosion: O(2**k?) for a k-bit multiplier as a result
of initialisation with two arguments followed by the O(k?)
multiplication of two further arguments. For larger cases
which may be met in practice, less accurate random sam-
pling must be performed. This prompts the need for more
efficient models to aid the design of less leaky hardware.

Often an attacker just needs information about the Ham-
ming weight of arguments, as in [12], to recover a secret
key: the weights of individual digits are sufficient to iden-
tify re-use of long integer arguments in an exponentiation,
and this may be enough to determine the precise operations
in the exponentiation scheme, and hence reveal the secret
exponent used. So, for cases when Hamming weights are of
interest, a model is constructed which predicts power use in
only O(k®) time. This is tailored to the precise construction
of the target multiplier to give very accurate results.

The model has to make a strong assumption to achieve
such a large reduction in computational complexity, namely
that certain groups of bits generated within the multiplier
have independent values. In reality this is far from the case,
but the accuracy was still verifiable in two ways. First, the
model and simulation were compared for small multipli-
ers. Then the model was compared with multipliers used
in practice by obtaining power and EMR traces in the labo-
ratory. In both cases the results matched closely.

The main conclusions are: i) power use in standard mul-
tipliers is closely related to input Hamming weights; ii) the
simplifications described here enable fairly accurate models
of power use to be constructed, so that designs can be tested
more easily in the search for less leaky hardware; and iii)
that some multiplier designs (such as one with binary Booth
re-coding) leak less information about Hamming weights
than others (such as the standard add-and-shift multiplier).

2 Notation

Most smart card cryptographic processors make use of a
single, unpipelined k-bit multiplier, where typically k¥ = 16
although & = 32 is becoming the norm. Then the long inte-
gers used in public-key cryptography are represented using
k-bit digits. The RSA crypto-system uses modular expo-
nentiation to encrypt, decrypt, sign and verify [11]. The
attacker’s aim is to recover the factorisation of the modulus
M or, equivalently, the secret decryption exponent.

The exponentiation is comprised of modular multiplica-
tions R < (AxB+C') mod M which loop round the code:

R + rxR+a;xB
q < R divM
R < R-—qxM

(or a similar variation such as is given by Montgomery [8]).
Here R holds the partial product, a; is a digit of A in base

r = 2F, and ¢ is the digit multiple of M which must be sub-
tracted to keep R within any required bounds. The first as-
signment breaks down into a number of sequential multiply-
accumulate operations on digits with carry digit c:

rj+rxc < rxrj+a;xb;j+c @))]

The hardware for this leaks data which an attacker can
extract by observing variations in current or EMR. The
question here is whether or not he can determine the Ham-
ming weight of a;, say, by averaging over the b; in (1) since,
by [12], this would enable him to determine which multi-
plier A is used in the exponentiation. With the standard
square-and-multiply or m-ary exponentiation methods, this
easily leads to reconstruction of the secret exponent.

A significant complication is that power variation from
gate switching depends not just on the input data but also
on the initial state of the multiplier. Some technique, such
as averaging, is needed to remove such dependencies on
the initial state and other irrelevant inputs. The repeated
re-use of data in (1) provides just the opportunity for this.
The main problem faced by implementors is the removal of
such handles by which attackers are able to isolate useful
subsets of observations over which averaging proves pro-
ductive: the handle used in [12] was based on the Hamming
weight of digits. So part of our interest here is in how aver-
aged data from the multiplier determines Hamming weight.

3 Multiplier Simulation

Two software simulations of k-bit multipliers were built
with variable & in order to verify empirical claims by previ-
ous authors that gate switching activity was related to the
Hamming weights of the inputs. The simulated circuits
were constructed from logic gates, 3-bit to 2-bit full adders
(Fig. 1) and 2-bit half adders using a standard Wallace tree
configuration and carry-propagate adder. They followed the
add-and-shift model ([4], Fig. 3.1) and the binary Booth-
recoding model ([4], Fig. 3.4). Pipelined multipliers were
not considered as they are too large for smart cards and si-
multaneous processing of several multiplications is likely
to mask much of the effect of interest here that designers
need to eliminate. (Indeed, pipelining may be an effective
counter-measure to power attacks on the multiplier.)

For convenience, we assume that the power consumed by
switching AND, OR and XOR gates is the same and identical
whichever way they are switched. Then, to obtain a good
overall picture, it suffices to count gates which are switched
without any weighting for different power use. So the num-
ber of gates switched between the registers was recorded,
but no term was included for switching within the registers,
nor any for the multiplexing of input bits which is required
to feed the initial AND gates. Such switching activity sim-
ply increases the strength of our conclusions. Furthermore,

the accumulation of the carry digit ¢ was ignored: it makes
little difference to the results except that further averaging
would be necessary to eliminate the variation caused by it.

v
A

l><—@<—
S2)

%
Y

Figure 1. A 3-bit Counter (Full Adder).

Different constructions were tried corresponding to the
different groups of three bits which can be chosen for each
full adder. Their effect on the simulation results were not
usually substantial. So similar results would seem to hold
for every multiplier within a major design class, whatever
its detailed layout. However, the initial simulation model
was over-simplified and gave poor results. Thus,

o the multiplier model used in simulations should match
the hardware design as closely as possible.

Ideally, the gates in the simulation would be initialised
by executing an initial product, say ¢xd. For each choice of
c and d, the product a xb would then be performed and the
number of gate switches counted. For each a, the average
would be computed as b, ¢ and d varied over all values and
this used to characterise a. This is only possible for small
multipliers, and was done for all the results here with & < 8.
For larger multipliers some simplifications had to be made:
only a subset of random values ¢ and d were chosen, and,
when necessary, only a random set of values for b were used
to derive data supposedly characteristic of a.

For such input sets, the number of gate changes from
high to low or low to high were counted. These were aver-
aged for a given first argument a and also for a given second
argument b. The first arguments a (the multipliers) and the
second arguments b (the multiplicands) were then ordered
according to these averages and used to create tables, such
as Table 1, and graphs, such as Fig. 2, for different k.

The orders for multipliers and multiplicands are usually
slightly different because the inputs cannot be treated sym-
metrically. Typically this results from using a row of full
adders to combine three multiples of the multiplicand into
two. Then, in the add-and-shift multiplier, bits of multi-
plicand b are processed uniformly, but those of multiplier
a are not. As a result, we distinguish between the multi-
plicand (always b here) and the multiplier (always a here).
For obvious reasons, the difference between these is more
marked for the Booth-recoding case.

4 Gate Count Digit Order

Of interest here is the order of the digits according to the
number of gates switched. We write ag <4. a; when the
average switched gate count (gc) for digit ag is less than
that for a; in a specified situation. Not only was it verified
by the simulation that the (averaged) gate count is indeed
closely related to the Hamming weight of the argument, but
more detailed patterns emerged for the ordering of individ-
ual digits according to these gate switching counts.

e The Hamming Weight Principle: Let HW(a) denote
the Hamming weight of a digit a, i.e. the sum of its bits.
Then HW(aop) < HW(aq) implies ag <4¢ a1.

For the add-and-shift multiplier, this principle held without
exception for both arguments and for all values of k that
were investigated, whether by exhaustive simulation as in
the cases of k¥ < 8, or by random approximation as de-
scribed above for £ > 8. Indeed, for small k there is a visi-
ble jump in the average number of gates switched when the
Hamming weight of an argument is increased (see Fig. 2).
In the case of the Booth multiplier, the Hamming Weight
Principle also held without exception for the multipli-
cand and all tested values of k. However, the multiplier
argument, namely the input which is re-coded, behaved er-
ratically with respect to Hamming weight. A much bet-
ter measure was given by using Booth weight, which, in a
sense, corresponds to the Hamming weight of the recoding:

Definition 1 The Booth Weight of a number with binary
representation b,,...bibg is the sum of the weights of all
triples ba;11b2;ba;—1 (i € Z)where 000 has weight 0, 111
has weight 2 and all other triples have weight 1.

(Ends are padded with zeros as necessary.) In the Booth
multiplier with recoded multiplier, apart from the end con-
ditions, triple 000 leads to a string of Os being added to the
accumulating sum, triple 111 leads to a string of 1s being
added, and otherwise a shifted copy of the multiplicand,
or its complement, is added. On average, these contribute
weights in the ratio 0:2:1 respectively, as in the definition.
Here is an illustrative example showing the behaviour:

e For the Booth multiplier with k£ = 4, the average gate
countorderis 0,4, 1,5,7,3,6,2,12,8,13,9, 11, 10,
15, 14 for the multiplier a but 0, 2, 4, 1, 8, 6, 5, 10, 3,
12,9,7, 14,13, 11, 15 for the multiplicand b.

The Booth weights of multiplier @ are all in ascending order,
as are the Hamming weights of multiplicand b.

More detailed ordering of digits with equal Hamming
(or Booth) weight follows several rules-of-thumb. These
depend on the multiplier type, with exceptions arising from
how bits are grouped for feeding into the compressors. The
two add-and-shift multiplier “guidelines” below hold for
around 75% and 85% respectively of cases with k& < 8:

axb a 0 1 2 4 5 3 6 7
b Averages | 6.31 7.31 7.88 8.30 9.80 9.87 1041 1227
0 6.31 6.31 6.31 6.31 6.31 6.31 6.31 6.31 6.31
1 7.44 6.31 6.81 7.06 7.31 7.81 7.56 8.06 8.56
2 7.88 6.31 7.06 7.31 7.69 8.44 8.06 8.69 9.44
4 8.17 6.31 7.06 769 7.91 8.66 8.44 9.28 10.03
5 9.80 6.31 7.56 8.44 8.91 11.78 9.69 11.08 14.69
3 9.88 6.31 7.56 8.06 8.69 9.94 10.81 1297 14.72
6 10.39 6.31 7.81 8.69 9.28 10.78 13.16 12.00 15.13
7 12.27 6.31 831 944 1028 1469 1491 1494 19.31

Table 1. Average Gate Switching in a 3-bit Add-and-Shift Multiplier, with ordered Arguments.

I. Suppose ap and a; are odd digits with HW(ag) =
HW(a;) and ap < a;. Then usually 2¢ag >gc 2ia,
for ¢, 7 > 0 in the add-and-shift multiplier.

II. Normally, a <, 2a fori > 0.

For the add-and-shift case with k=3, these imply 5< 4.3 <
6 and 1< .2<,.4, which are readily verified (see Table 1).
With the Hamming Weight Principle, this gives a total or-
dering of all digits when k=3. Grouping bits in threes for
the 3-to-2 counters means that digits of the same weight
can behave quite differently, as is the case for weight 2 (see
Fig. 2). Hence there are higher order properties that might
be exploited to deduce more than just Hamming weight.
When k£ = 4 the order varies slightly between multiplier
and multiplicand, but the Hamming Weight rule still holds:

e For the add-and-shift multiplier with £ = 4, the aver-
age gate count order is 0, 1, 2, 4, §, 3,9, 5, 10, 6, 12,
11,7, 13, 14, 15 for the multiplier a but 0, 1, 2, 4, 8, 9,
3,5,10,12,6, 13,7, 11, 14, 15 for the multiplicand b.

The second rule-of-thumb always holds also, but the first
fails (at least for our multiplier) in a quarter of cases, such
as for the multiplicand pairs (3,5), (3,10) and (7,11).
Similar but more complex results apply to the multi-
plicand of the Booth multiplier, but other guidelines are
needed to characterise the order for the recoded argument.
A further principle relates the order of digits as & is in-
creased when the hardware is constructed in the same way:

III. For add-and-shift multipliers, if a< gca’ in k-bit arith-
metic, then usually a<,4.a’ in (k+1)-bit arithmetic.

Thus, the digit order for £k = 3 is contained within that of
k = 4 except that the pair (5,3) is reversed. Like the first
two, this rule is frequently violated. Re-ordering of digits is
inevitable: it is difficult to combine rows of full adders in a
consistent manner as k is increased.

It is now clear that there are general principles for any
multiplier which determine a broad ordering of the digits
under average gate switching, with the detailed order being
determined only once the multiplier is defined precisely.

Number of Gate Switchings

20 Digit 7
/. Digits
15 wt.2
10 1 Digits
wt. 1
Digit 0
5
0 1 2 4 5 3 6 7
First Argument Digit

Figure 2. Gate Switching for the Second
Argument of a 3-Bit Add-and-Shift Multiplier.

5 Hamming Weights

Gate count results for digit products axb can be trans-
lated easily into statistics relating Hamming weights by
averaging over all digits with the same Hamming weight.
Table 2 shows this for the 8-bit add-and-shift multiplier.
Fig. 3 illustrates the same data graphically. From this it
is clear that there is a close and potentially predictable
relationship between Hamming weight and average gate
switching activity. This relationship is close to linear in
each Hamming weight except for values close to 0. More-
over, from the above, digits of the same Hamming weight
behave in a broadly similar way. Thus, if one can obtain a
measure of the average gate switching activity for axb as b
varies uniformly over all digits, or uniformly over all digits
of a known Hamming weight, then it should be possible to
extract the exact Hamming weight of a. Fortunately for the
security of an embedded RSA cryptosystem, this does not
lead easily to a deduction of the value of a except in the
unusual circumstances of extreme Hamming weights: the
variance in average gate counts between individual digits
of the same weight is not high, and for the middle weights
there are many alternative choices which can be made. Be-
cause of this, increasing the digit size & makes life much
harder for the attacker. However, just an approximate Ham-
ming weight may be all that the attacker requires [12].

axb | HW(a) | O 1 2 3 4 5 6 7 8
Hw(b) | Av*e* | 77.30 8149 8826 9588 103.82 111.86 119.87 127.80 135.60
0 77.30 | 77.30 7730 7730 77.30 77.30 77.30 77.30 77.30 77.30
1 81.49 | 77.30 7835 79.40 80.45 8149 8254 8359 8464 85.69
2 88.24 | 77.30 79.40 8172 8447 87.84 9177 9554 9912 102.86
3 95.90 | 77.30 80.45 84.47 89.78 9568 101.56 107.76 114.15 120.10
4 |103.84 | 77.30 8149 87.83 9569 10359 111.84 120.02 128.21 136.04
5 |111.85 | 77.30 8254 91.77 101.56 111.81 121.97 132.06 14170 151.61
6 | 119.84 | 77.30 8359 9563 107.69 119.94 132.05 143.64 155.43 167.50
7 | 12775 | 77.30 8464 9927 113.91 12815 141.71 155.46 168.97 181.18
8 | 13560 | 77.30 8569 102.97 119.62 136.04 152.00 167.58 181.14 193.14

Table 2. Switching in 8-bit Add-and-Shift Multiplier averaged over Arguments of equal Hamming Wt.

Gates
200}

1751
1501

1254
100 -

75 ¥

Figure 3. Gate Switching in an 8-bit Multiplier
as a Function of input Hamming Weights.

6 Trees of 3-bit Counters

Full adders, i.e. 3-bit counters, form the main body of a
typical multiplier. This section studies how the distribution
of bits changes as the bits progress down a tree of counters.
The changes affect the number of gates that are switched:
interesting data-dependent activity occurs near the inputs,
but any non-uniformity in the distribution of input bits dis-
sipates lower down the tree so that, by the output, Os and
1s turn up with roughly equal probability. Multipliers con-
structed from other compressors behave similarly.

The next theorem describes how a single counter exper-
iences a data-dependent amount of gate switching activity
and affects the probabilities of bits as they pass through.

Theorem 1 In a 3-bit full adder; let § be the number of in-
put bits set to 1 minus the resulting number of output bits
set to 1.

i) ¢ is either 0 or 1. If the input bits are independent with
probability p of being 1 and ¢ = 1—p, then § = 0 with
probability 3pg®+q° and § = 1 with probability p>+3p3q;

ii) If all inputs are independently and uniformly dis-
tributed then, on average, two gates are switched if § = 0,

and two and a half gates are switched if § = 1;

iii) Suppose the full adder has been initialised with input
bits which are independent with probability p of being 1,
and the following input bits are 1 independently with proba-
bility p'. Define q = 1—p and q' = 1—p'. Then the average
number of gates switched by the latter input is

p(3+2q) + 157 (4-p)* (5¢-p)

when 6 = 0 and, when § = 1, it is

(3+2p+4p*)q + 5= (3p—0)*(p—0) ;

iv) For the situation in (iii), the average difference in the
number of gates switched between cases § = 0 and 6 = 1
is: a) at least %for allp < % with equality for p = %
b) a decreasing function of p for most values of p', and
¢) positive for all p less than approximately 0.6.

Theorem 2 i) For inputs to a 3-bit counter which are inde-
pendent and equal to 1 with probability p, an (unspecified)
output bit is 1 with probability p3+%pq where ¢ = 1—p.

ii) Assume the output bits from 3-bit counters are inde-
pendent. If bits are fed in a random order from one row to
the next in a tree of 3-bit counters, then the probability of
an output bit from the final row being 1 tends monotonically
towards % as the number of rows is increased.

Proof. These are easy exercises for the reader. [
Theorem 2 provides probabilities of 1s down a tree of
adders and then, using Theorem 1(iii) with p’ = p, one
can obtain the average gate switching difference g; at depth
j. These are tabulated in Table 3 starting at p = %. De-
pendency on the initial distribution of data clearly dimin-
ishes as distance increases down the multiplier. Over three
successive counters, the position dependent differences are
approximately halved e.g. from 1.5417-0.5 to 1.0461-0.5

(where 0.5 is the limiting value).

i 0 1 2 3 4 5
p; 0.2500 0.2969 0.3393 0.3753 0.4045 0.4275
g; 1.5417 1.3635 1.1950 1.0461 0.9218 0.8221

J 6 7 8 9 10 11
p; 0.4453 0.4588 0.4690 0.4767 0.4825 0.4869
g; 0.7442 0.6843 0.6388 0.6044 0.5784 0.5589

Table 3. Probability p; of a 1 and the extra aver-
age Gate Switching ¢g; when a Bit is removed
by a counter at depth j in the Tree.

7 The Add-and-Shift Multiplier Model

The add-and-shift hardware multiplier was simulated
without pipelining or bit recoding. It is best described via
bit slices where the ith slice processes all bits corresponding
to 2¢. In order for the multiplier to compute a x b, multiplex-
ors first produce k copies of each bit from its two arguments.
These are then ANDed in pairs to create k? bits a;b;.

Bit slice 0 just outputs bit agby from its AND gate. For bit
slice ¢ with 0<i<k, there are i+1 input bits from AND gates
and ¢—1 carry bits from slice i—1. These are added using
(1—1) 3-bit counters and a single 2-bit counter, generating
one output bit and ¢ carries. Slice k has k—1 inputs from
the AND gates and k—1 carries in from slice k—1. These
are added using (k—2) 3-bit counters and a 2-bit counter
which generate k—1 carries up to slice k41 and one output
bit. Lastly, for bit slice 2k—¢ where 0<i<k, there are i—1
input bits from AND gates and ¢ carries in from the previous
slice. These are added using (i—1) 3-bit counters which
generate 1 —1 carries to the next slice and one output bit.

To minimise critical path lengths a Wallace tree was built
for each bit slice, i.e. the full adders were arranged so that
bits with the shortest critical path were always added to-
gether first. The multiplier contains k(k—2) full adders,
and the first row in the Wallace tree has about one third of
these. Subsequent rows have about %rds of the number in
the previous row. So, although the two theorems indicate
a decrease in the data-dependent gate switching as one de-
scends the tree, the decrease is of less importance because
so many of the 3-bit counters are at the top of the tree.

8 The Hamming Weight Multiplier

The simulation of Section 3 uses O(24*k?) time because
of the 2% choices for each of a, b, ¢ and d. This makes it in-
feasible to model 16-bit or larger multipliers. To investigate
behaviour in terms of Hamming weights, it is necessary to
build a multiplier which computes (average) gate switching
activity just from the weights of a, b, ¢ and d. Ideally this
should have polynomial, not exponential, time complexity
so that any expected size for a multiplier can be processed.

As in Theorem 1, let undashed characters such as p de-
note probabilities during initialisation and let dashed char-
acters such as p’ denote probabilities during execution. The
probability of a bit of input a being 1 is p' = HW(a). Let
us denote these bit probabilities for a, b, c and d by p', ¢', p
and g, respectively. Then the multiplier model is initialised
by computing c¢xd and then executing axb during which
gate switching is calculated probabilistically.

8.1 The Multiplexors and AND Gates

The contribution from the multiplexors and AND gates is
easy to assess exactly. Each of the initial 2k input bits is
first multiplexed to k£ AND gates at the top of the multiplier.
Those corresponding to the first argument (c then a) are
changed from 0 to 1 with probability (1—p)p’ and from 1
to 0 with probability p(1—p'). Thus, taking both arguments
into account, the multiplexors introduce a power variation
proportional to p+p'—2pp'+q+q¢'—2qq’. As this is linear
in p and ¢, the average over all initial conditions is given by
taking p = q = % The formula is then constant, showing
the power variation resulting from multiplexors is constant.
So this contribution is of no further concern.

On average, the AND gates will be initialised with
their outputs set to 1 with probability pg and, when
axb is computed, the AND gates output a 1 with prob-
ability p’'q’. So (1—pq)p'q' is the probability that an
AND gate will be switched from 0 to 1 and pg(1—p'q’)
is the probability that it will be switched in the op-
posite direction. So it will be switched with prob-
ability pg+p'q'—2pqp'q’. This must be multiplied
by k2 to obtain the expected number of AND gates
which will change state: HW(c)HW(d)+HW(a)HW(b) —
2k~2HW (c)HW (d)HW (a)HW (b). Averaging over all initial-
ising inputs c and d yields 1k*+1HW(a)HW(b).

This is a very reliable component of the total variation
in gate counts, almost independent of the multiplier con-
struction. It is a substantial part of the total data-dependent
variation of the multiplier. There are HW (a)HW (b) input 1s
to the counter tree, and this is an upper bound on the number
of 1s removed by the adder tree. Each removal of a 1 causes
a data dependent increase of about 1.2 gates switching for
an average initialisation (by Table 3 and an estimate of the
number of counters in each row). Comparing the resulting
total of 1.2HW(a)HW (b) gate switches with the total from
the AND gates, we expect AND gate switching to account
for about 0.5/(1.2+0.5), i.e. 30%, of the total data depend-
ent variation, which is what we find.

8.2 The Compressor Tree

To prevent combinatorial explosion in the counter tree,
some simplification is necessary.

HW(a)xHW(b) 0 1 2 3 4 5 6 7 8
0 73.54 73.54 73.54 73.54 73.54 73.54 73.54 73.54 73.54
1 73.54 7490 76.32 77.82 79.39 81.05 82.79 84.60 86.48
2 73.54 76.32 7939 8279 86.48 90.35 9432 98.30 102.25
3 73.54 77.82 82.79 88.40 9432 100.28 106.14 111.82 117.28
4 73.54 79.39 86.48 9432 10225 109.95 11728 12421 130.76
5 73.54 81.05 90.35 100.28 109.95 119.05 127.53 135.46 143.00
6 73.54 82.79 94.32 106.14 11728 127.53 136.99 14595 154.92
7 73.54 84.60 98.30 111.82 12421 13546 14595 156.46 168.34
8 73.54 86.48 10225 117.28 130.76 143.00 154.92 168.34 193.46

Table 4. Gate Switching Activity for the 8-bit Hamming Weight Add-and-Shift Multiplier.

e [ndependence Assumption for Counters: The inputs to
each full adder and each half adder are independent.

In practice this assumption is absurd because there are only
2k bits fed into the multiplier but k2 bits which are gener-
ated from them and processed by the counters. Moreover,
strong dependencies can persist if related bits are grouped
together for input into counter sub-trees.

It is necessary just to know the probability of input bits
to a counter being 1 in order to apply Thm. 2 to compute
the probability of output bits being 1. Then Thm. 1 with the
assumption enables the average number of gate changes to
be computed for the whole tree once input bit probabilities
are chosen for the initialisation and execution phases. Af-
ter averaging over all initial states, expected gate switching
activity was obtained, as in Table 4.

8.3 Evaluation

This model matches the actual values very well: the
maximum relative error between entries in Tables 2 and 4
is in the region of 7.5%. Moreover, for all small k the forms
of the discrepancies are similar, and therefore predictable.
For example, model values for input weights (0, ¢) are con-
sistently marginally smaller than true values by about 5%.
So it seems reasonable to assume that extrapolating to large
cases will yield fairly accurate results and that a standard
correction could be applied to remove most of the error.

There is a rather beautiful connection between Hamming
weights of inputs to a product and the average Hamming
weight of the result. This is illustrated in Fig. 4. The same
features appear for all word lengths k. The difference be-
tween these weights is, of course, the number of bits re-
moved by the counters, which is proportional to the aver-
age number of gates switched in the multiplier. So a useful
health check for the model is to construct a table of output
weights and compare it with these expected values.

In the model, the output digit is a vector of probabilities
associated with its bits. The sum of these is the average
Hamming weight predicted by the model for the output.
The table of these output weights was created for various

Figure 4. Average Hamming Weights of Prod-
ucts for a 16-bit Multiplier.

k up to k = 32. The same overall features were found
between the surface for the model and that for the true val-
ues: steep sides when one Hamming weight is small, a large
plateau region for the majority of values, and a small peak
just before the value (k, k). The only main feature missing
from the model is the slight depression near (k, k).

8.4 Extrapolated Results

It is now apparent that the Hamming weight model for
the add-and-shift multiplier describes an overall level of
data-dependent power consumption which has essentially
the same properties for multipliers of any size. Total gate
switching for weights (0, 0) and (k, k) is listed in Table 5.
In all cases where k£ < 12 the model gives values for (0, 0)
which are almost exactly 95% of the correct values, and so it
is possible to predict the true values for (0,0) when k > 12.
For (k, k) the values for the model seem to increase at a
slightly faster rate than the actual values, thereby providing
an upper bound on actual values above k = 8.

Switching for weights (0,0) always gives the minimal

k 4 5 6 7 12 16 24 32 48 64
Actual(0,0) | 13.81 24.47 38.71 56.46 77.30 194.8 3535 8228 1486 3395 6081
Model(0,0) | 13.13 23.24 36.70 53.66 7354 186.9 353.1 842.0 1540 3563 6422
Actual(k, k) | 40.12 68.23 103.05 14440 193.14 456.3 824.5 1887 3380 7662 13669
Model(k, k) | 39.57 67.65 102.65 144.40 193.46 458.6 834.7 1921 3453 7851 14030

Table 5. Minimum and Maximum Gate Switching Activity, namely that for Hamming Weights (0, 0) and

(k, k). (Predicted Values in italics).

activity, and that for (k, k) gives the maximal activity. For
all small £ this coincides with the minimum and maxi-
mum for digit-by-digit averages. So we can assume that the
table also accurately predicts minimum and maximum gate
switching activity during any multiplication performed by
a multiplier built according to the specification in Section
7 when averaged over all possible initialisations. Without
such averaging the extremes are greater: for example, axb
followed by axb should result in no gate switching at all.

As the total number of gates in the model multiplier is
quadratic in k, namely 6k —8k, it seems worth trying to fit
a quadratic curve to the values in Table 5: gate switching for
(0,0) is approximated by 1.52k?—1.99%k—2.87 in the ac-
tual multiplier, compared with 1.58%?—3.45k+1.37 in the
Hamming weight model; and that for (k, k) is approximated
by 3.37k%—2.03k—5.79 in the actual multiplier, compared
with 3.46k2—3.01k—3.88 in the model. These functions fit
within the bounds imposed by the hardware. As they also
provide a very good fit to all ten (resp. 15) points used rather
than just three (with about 3% relative error in the worst
case), they were used to suggest approximations for the true
values which were too costly to compute in Table 5. Thus,
on average between about a quarter and just over a half of
the gates are switched during each multiplication.

9 The Booth-Hamming Weight Multiplier

Following the above simplifications, a binary Booth
multiplier was also built for simulating power consumption
as a function of the Hamming weight of one input, and the
Booth weight of the other, recoded input. However, the sim-
plifications used for the add-and-shift multiplier failed to
produce a sufficiently accurate model of the behaviour here.
The problem seems to lie in the independence assumption:
a sizeable proportion of the addends are not the random bits
of the multiplicand (or its complement) but strings of all Os
or all 1s. Further research is merited here.

For the Booth-recoding multiplier behaviour is much
more consistent over the re-coded input when measured us-
ing Booth weight instead of Hamming weight. Moreover,
average gate switching for any pair of digits shows much
less variance than for the add-and-shift multiplier. Conse-

Power & EMR

Figure 5. Combined Power & EMR Trace Re-
sults for 16-Bit Multiplier.

quently there is much less variation between the behaviour
of different Hammming/Booth weight classes here than for
the add-and-shift multiplier. So this multiplier should be
more resistant to a weight-based side channel attack.

10 Laboratory Results

To verify the accuracy of our models in practice rather
than compared with a simulation, power and EMR from
several hardware multipliers were measured following prac-
tices described in [9, 10]. We had access to unpipelined
add-and-shift 16- and 32- and 64-bit multipliers. Data was
loaded in one cycle, the product computed in the next, and
the output written to memory in the third. Our model ap-
plies to the middle cycle.

For each pair of Hamming weights, five random inputs a
and b were chosen with those weights, and the current and
electromagnetic traces of the multiplication cycle obtained
after an unknown initialisation which we assumed was ran-
dom. Thus there were 52 traces to be averaged for each
Hamming weight pair. The traces consisted of 12-bit cur-
rent and EMR measurements made at 35 times the (internal)
clock frequency of the multiplier. They included informa-
tion about the execution address and the last instruction ex-

ecuted, so this was removed using an accurate template. As
the traces still included further noise from other sources, an
average of two traces for each input pair was taken. Thus,
the average of 2x 35 points was taken as the data dependent
output for each multiplication.

The results from the 16-bit case are illustrated in Fig. 5.
As expected from the theory, there is a remarkable corre-
spondence between this and the average Hamming weight
of the products as illustrated in Fig. 4. An attacker with
a side channel value can therefore predict a small set of
possible Hamming weight pairs for the arguments using the
Hamming weight multiplier above or perhaps reference val-
ues from the target multiplier itself.

11 Conclusion

By simulation, theoretical modelling and laboratory ex-
perimentation, it has been confirmed that the variation in
power used by an add-and-shift multiplier and the EMR it
generates are closely related to the Hamming weights of the
inputs when averaged over all possible initial states. This is
a potential weak point which attackers of embedded cryp-
tosystems may try to exploit to extract secret keys.

A model was derived which determines power usage ac-
curately from the Hamming weights of inputs. It executes
in polynomial time with respect to the number of bits, con-
trasting markedly with the exponential time required to con-
sider all input bit patterns in a full simulation. Hence it can
be used to predict behaviour accurately in larger multipliers
for which a full simulation is computationally infeasible.

The same construction principles may be applicable to
build Hamming (and Booth) weight multipliers which will
predict side channel leakage from any multiplier design.
Research is on-going for a binary Booth recoding multi-
plier, but it was clear that gate switching exhibited less vari-
ation than in the add-and-shift case. Although more com-
plex in construction, this seems to make such multipliers
more resistant to side channel attack.

References

[1] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi.
The EM side-channels. In B. Kaliski, C. Kog, and C. Paar,
editors, Cryptographic Hardware and Embedded Systems —
CHES 2002, volume 2523 of Lecture Notes in Computer Sci-
ence, pages 29-45. Springer-Verlag, 2002.

[2] R. Anderson and M. Kuhn. Tamper resistance - a caution-
ary note. Proc 2nd USENIX Workshop on Electronic Com-
merce, Oakland, California, pages 1-11, 18th-21st Novem-
ber 1996.

[3] R. M. Best. Microprocessor for executing enciphered pro-
grams. US Patent 4,168,396, 8th September 1979.

(4]

(3]

(6]

(7]

(8]
(9]

[10]

(11]

[12]

[13]

M. Flynn and S. Oberman. Advanced Computer Arithmetic
Design. John Wiley & Sons Inc., New York, 2001. ISBN
0-471-41209-0.

K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic
analysis: Concrete results. In C. Kog, D. Naccache, and
C. Paar, editors, Cryptographic Hardware and Embedded
Systems — CHES 2001, volume 2162 of Lecture Notes in
Computer Science, pages 251-261. Springer-Verlag, 2001.
P. Kocher, J. Jaffe, and B. Jun. Differential power analysis.
In M. Wiener, editor, Advances in Cryptology — Crypto ’99,
volume 1666 of Lecture Notes in Computer Science, pages
388-397. Springer-Verlag, 1999.

R. Mayer-Sommer. Smartly analyzing the simplicity and the
power of simple power analysis on smartcards. In C. Paar
and C. Kog, editors, Cryptographic Hardware and Embed-
ded Systems (Proc CHES 2000), volume 1965 of Lecture
Notes in Computer Science, pages 78-92. Springer-Verlag,
2000.

P. L. Montgomery. Modular multiplication without trial di-
vision. Math. Computation, 44:519-521, 1985.

J.-J. Quisquater and D. Samyde. Electromagnetic analysis
(EMA): Measures and counter-measures for smart cards. In
Smart Card Programming and Security (E-smart 2001), vol-
ume 2140 of Lecture Notes in Computer Science, pages 200—
210. Springer-Verlag, 2001.

J.-J. Quisquater and D. Samyde. Eddy current for magnetic
analysis with active sensor. Proc. e-Smart 2002, Nice, pages
183-194, September 2002.

R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Comm. ACM, 21:120-126, 1978.

C. D. Walter. Sliding Windows succumbs to Big Mac attack.
In C. Kog, D. Naccache, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems — CHES 2001, volume
2162 of Lecture Notes in Computer Science, pages 286—-299.
Springer-Verlag, 2001.

C. D. Walter and S. Thompson. Distinguishing exponent
digits by observing modular subtractions. In D. Naccache,
editor, Topics in Cryptology — CT-RSA 2001, volume 2020
of Lecture Notes in Computer Science, pages 192-207.
Springer-Verlag, 2001.

