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Abstract. The MIST algorithm generates randomly different addition
chains for performing a particular exponentiation. This means that power
attacks which require averaging over a number of exponentiation power
traces becomes impossible. Moreover, attacks which are based on recog-
nising repeated use of the same pre-computed multipliers during an in-
dividual exponentiation are also infeasible. The algorithm is particularly
well suited to cryptographic functions which depend on exponentiation
and which are implemented in embedded systems such as smart cards.
It is more efficient than the normal square-and-multiply algorithm and
uses less memory than 4-ary exponentiation.
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1 Introduction

Recent progress in side channel attacks [4], [5] on embedded cryptographic sys-
tems has exposed the need for new algorithms which can be implemented in
more secure ways than those currently in use. This is particularly true for expo-
nentiation, which is a major process in many crypto-systems such as RSA and
Diffie-Hellman. Timing attacks on modular multiplication can usually be avoided
easily by removing data-dependent conditional statements [12]. But, with tim-
ing variations removed, power attacks on exponentiation become easier. Initial
power attacks required averaging over a number of exponentiations [5]. Although
the necessary alignment of power traces can be made more difficult by the inser-
tion of obfuscating, random, non-data-dependent operations, the data transfers
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between operations usually reveal the commencement of every long integer op-
eration very clearly. Fortunately, such attacks can be defeated by modifying the
exponent e to e4+rg where r is a random number and g is the order of the (multi-
plicative) group in which the exponentiation is performed [4]. This results in a
different exponentiation being performed every time.

However, the author showed recently [11] that there were strong theoretical
grounds for believing that, given the right monitoring equipment [2], it would
be possible to break the normal m-ary exponentiation method [3] and related
sliding windows techniques using a single exponentiation. This method relies on
being able to recognise the same multipliers being reused over and over, namely
the pre-computed powers of the initial text, and requires no knowledge of the
modulus, input text or output text. It renders useless the choice of e+rg as a
counter-measure, even for the case of m = 2, namely the standard square-and-
multiply algorithm.

In an embedded system, the re-use of the same multipliers is useful because
it reduces data movement. However, if such re-use is dangerous, other methods
must be employed. Performing square-and-multiply in the opposite direction,
namely consuming exponent bits from least to most significant, is the obvious
starting point. With a random variation in the exponent as a counter-measure,
this seems to defeat the attacks mentioned so far. Unfortunately, long integer
squares and multiplications are among the easiest operations to distinguish in
integer RSA [7]. Even the movement of data is different for the two operations.
Thus an exponentiation algorithm is required which does not reveal its exponent
through knowledge of the sequence of squares and multiplies.

A novel exponentiation algorithm is presented here which avoids all of the
above-mentioned pitfalls. It can also be combined with most other counter-
measures, such as using e+rg instead of e. It relies on the generation of random
addition chains [3] which determine the operations to be performed, and is based
on previous work by the author [9] for finding efficient exponentiation schemes.
This earlier work required extensive computation to establish near optimal add-
ition chains, and so it is by no means obvious that the method can be used
on-the-fly without an impractical overhead. Clearly, such computation can be
performed in the factory prior to the production of an embedded crypto-system,
and then each individual item can be issued with a different embedded addition
chain which, although efficient, must be re-used on each exponentiation and is
incompatible with the e+rg counter-measure [1].

Here we develop that algorithm to the point where it is possible to efficiently
generate fresh, efficient addition chains for any exponent and every exponent-
iation. The main aim here, besides presentation of the algorithm itself, is to
establish that it has a time complexity better than square-and-multiply, and
to note that, as far as space is concerned, only three long integer registers are
required for executing the addition chain operations.
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2 The Mist Algorithm

For notation, let us assume that M has to be computed. D will always represent
a “divisor” in the sense of [9], and R a residue modulo D. A key ingredient of
this algorithm is that we can efficiently compute both A% and AP from A using
a single addition chain. A set of divisors is chosen in advance, and an associated
table of these addition chains is stored in memory. Several variables are used in
the code below. There are three which contain powers of M, namely StartM,
TempM and ResultM. Rather than destroy the initial value of E, we also use a
variable called RemE which represents the power to which StartM still has to
be raised before the exponentiation is complete. When the divisor set consists of
the single divisor 2, the algorithm simplifies to the following right-to-left binary
exponentiation algorithm, that is, to the standard version of square-and-multiply
in which the least significant exponent bit is processed first:

RIGHT-TO-LEFT SQUARE-AND-MULTIPLY EXPONENTIATION ALGORITHM

{ Pre-condition: £ >0 }
RemE = E
StartM =M ;
ResultM := 1 ;
While RemE > 0 do
Begin
If (RemE mod 2) = 1 then
ResultM := StartMXxResultM ;

StartM := StartM? ;

RemE = RemE div 2 ;

{ Loop invariant: M¥ = Start MEemE x Result M }
End ;

{ Post-condition: ResultM = MF }

Thus StartM contains the initial value M raised to a power of 2, and it is the
starting point for each loop iteration. ResultM is the partial product which con-
tains M raised to the power of the processed suffix of E and ends up containing
the required output.

Without the essential random feature made possible by a larger divisor set,
this is an insecure special case of MIST. In fact, we are assuming that the attacker
can distinguish between squares and multiplies. Hence he can read off the bits of
the exponent in the above from the sequence of long integer instructions which he
deduces. However, unlike the left-to-right version of square-and-multiply, both
arguments in the conditional product are now changed for every multiplication.
This, at least, makes an attack of the type [11] impractical.

Next is the generalisation of this, which is named “MIST” because of its
use in obscuring the exponent from side channel attacks. For convenience and
comparison, the processing of the exponent F is presented as being performed
within the main loop. In practice, it must be scheduled differently. As will be
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pointed out below, the illustrated processing order is insecure from the point of
differential power analysis because it can reveal the random choice of the divisor
D, which must remain secret. In fact, the choices of divisors and computations
with the exponent must be done initially in a secure way, or at least interleaved
with the long integer operations in a more considered way. To be even more
precise, the complete schedule of long integer operations, i.e. the addition chain
which determines the exponentiation scheme, should be computed with great
care in order to hide the choice of divisors.

THE MIST EXPONENTIATION ALGORITHM
{ before proper re-scheduling of addition chain choices }

{ Pre-condition: £ >0 }
RemE = E
StartM := M ;
ResultM := 1 ;
While RemE > O do
Begin

Choose a random “divisor” D ;

R := RemE mod D ;

If R # 0 then

ResultM := StartM?xResultM ;

StartM := StartM ;

RemE := RemE div D ;

{ Loop invariant: M¥ = Start MEemE x Result M }
End ;

{ Post-condition: ResultM = MF }

Observe that there are no powers of M which are repeatedly re-used during
the exponentiation, so that the attack described in [11] on a single exponentiation
is inapplicable in its current form. Also, the random choice of divisors achieves
different exponentiation schemes on successive runs and so makes impossible the
usual averaging process required for differential power analysis [5].

For the proof of correctness, it is immediate that the stated invariant

ME = StartMB™F x ResultM

holds at the start of the first iteration of the loop. Because initial and final values
of RemFE for one loop iteration satisfy

RemEriiai = D X RemErpjnag + R

it is easy to check that if the invariant holds at the start of an iteration then
it holds again at the end of the iteration. Consequently, the invariant holds at
the end of every iteration. In particular, at the end of the last iteration, we
have RemE = 0 and hence, by simplifying the invariant, ResultM = M¥F. So
ResultM yields the required result on termination. Needless to say, termination
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is guaranteed because only divisors greater than 1 are allowed, and so RemE
decreases on every iteration.

The choices of divisor set and associated addition chains for each residue R
are made with security and efficiency in mind. In particular, for efficiency the
choice of addition chain for raising to the power D always includes R so that
the computation of StartMP provides StartM?® en route at little or no extra
cost. Thus, these two power computations are not performed independently, as
might be implied by the code. They are to be implemented so that StartM?P
uses all the work done already to compute StartM*. So, in the case of RSA, the
main cost of a loop iteration is only the cost of computing StartMP plus the
conditional extra multiplication involving ResultM. In terms of space, an extra
long integer variable TempM is required to enable the addition chain operations
to be carried out. Its value is always a power of the value of StartM at the
beginning of the main loop above, but its value does not need to persist between
successive iterations of the loop. Of course, on the final iteration, once StartM¥E
has been computed there is no need to continue to compute the rest of StartM?P.
Likewise, the initial multiplication of ResultM by 1 can be easily omitted.

For security reasons, some care is necessary in the initial choice of divisor
set and addition chains, and in how and when the divisors are chosen for each
exponentiation. The selection of the divisor and associated addition chain in-
structions can be performed by the CPU on-the-fly while the exponentiation is
performed in parallel by the co-processor, or it can be done in advance when
there is no co-processor. At any rate, these computations must be scheduled so
as not to reveal the end points of each iteration of the main loop. Otherwise, the
number and type of long integer operations during the loop iteration may leak
the values of D and R, enabling E to be reconstructed.

A typical safe set of divisors is {2,3,5}. If the exponent is represented using
a radix which is a multiple of every divisor (say 240 in this case if an 8-bit
processor is being used) then the divisions of the exponent by D become trivial.
So, over and above the operations for executing the addition chain, the cost of
the algorithm is little more than that for calling the random number generator
to select each D.

3 The Addition Sub-Chains and Space Requirements

When divisor choices are made during pre-processing, the sequence of operations
to perform the exponentiation is stored as an addition chain [3]. For a safe
implementation, the pattern of squares and multiplies in this chain must not
reveal too much about the divisors and residues. However, for the complexity
considerations of this and the following section, we only need to look at the
subchain associated with a single divisor. Such subchains can be concatenated
to yield an addition chain for the whole exponentiation, if desired.

Let us choose the divisor set to be {2,3,5}. The full list of minimal addition
subchains can be represented as follows:
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1+1=2 for divisor 2 with any residue R
1+1=2, 142=3 for divisor 3 with any residue R
14+1=2, 14+2=3, 2+3=5 for divisor 5 with any residue except 4
14+1=2, 24+2=4, 1+4=5 for divisor 5 with any residue except 3

The third case corresponds to using an initial M' to compute M? with one
multiplication, then M?® with another multiplication, and finally M® with a
third multiplication. The first three addition chains provide M® when R is 0,
1, 2 or 3: for 0 < R < D the chain already contains the value of R, while the
case R = 0 requires no multiplication and so 0 does not need to appear. The
last addition chain can be used when R = 4. Minimal here means that any other
addition chains which give a power equal to the divisor are longer. The subchains
above are minimal. To achieve the fastest exponentiation, we will not include
longer chains. However, there may be extra cryptographic strength in extending
the choice in such a way.

There is no instruction which updates the value of ResultM in the above add-
ition subchains, but it can be represented explicitly using the following notation.
Suppose we number the registers 1 for StartM, 2 for TempM and 3 for ResultM .
Then the subchains can be stored as sequences of triples ijk € {1,2,3}3, where
17k means read the contents from registers 7 and j, multiply them together, and
write the product into register k. In particular, ResultM will always be updated
using a triple of the form ¢33 and 3 will not appear in triples otherwise. Now,
adding in the instruction for updating ResultM yields the following as a possi-
ble list of subchains, with one representative for each divisor/residue pair [D, R].
Such a table requires only a few bytes of storage.

B W N ON O = O

(

(112, 133)
(112, 121)
(112, 133, 121)
(112, 233, 121)
(
(
(
(

112, 121, 121)

112, 133, 121, 121
112, 233, 121, 121
112, 121, 133, 121
(112, 222, 233, 121

Table 3.1. A Choice for the Divisor Sub-Chains.

o adowwwo N

— — — —

Many other choices are possible. In particular, we might prefer to preserve
the location of StartM to be in register 1 from one divisor to the next. This
could be achieved by choosing (133, 111) instead of (112, 133) for [2,1]. Then
subchains of triples ijk could be concatenated without modification to provide
the complete exponentiation scheme. However, for the given subchain, the new
value for StartM is in register 2 instead of register 1. Rather than waste time
copying, the computation should continue with 2 as the address for StartM, and
the next subchain then has to be updated with the register addresses 1 and 2
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interchanged. However, as noted in the penultimate section, this apparently less
obvious choice for [2,1] makes the implementation more secure against differential
power analysis.

Following this last remark, it is clear that we could provide an additional
source of randomness by writing the product into any register whose current
contents are no longer required [6]. Thus the purpose of each register can be
changed. If we include every possible minimal addition subchain with such vari-
ations, then we obtain 2, 6, 2, 6, 4, 4, 16, 8, 4 and 4 possibilities respectively for
the 10 divisor/residue cases. The storage is still only a few bytes, but it provides
an extra source of randomness which may provide added security.

Thus the space order required for MIST is low. In the next section we turn to
the time complexity, which we measure in terms of the number of multiplications
in the exponentiation scheme.

4 The Time Complexity

The usual square-and-multiply algorithm uses 1.5x |logy E | multiplicative oper-
ations (including squarings) on average and a maximum of at most 2x|log, F|.
In this section almost the same upper bound will be established for MisT, and
an improved average. In practice the variance is very small. Consequently, if a
pre-computed scheme involved more than 1.5x |log, F| multiplications, say, it
could be abandoned and an alternative scheme computed.

Theorem 4.1 Assume minimal subchains are provided as above for the
divisor set {2,3,5} and E > 0, and unnecessary initial and final multipli-
cations have been omitted. Then the maximum number of operations in
an addition chain for E is at most 2log, E with equality possible only
for E=1.

Proof. We use a proof by descent: assuming FE is a smallest counter-example,
we will construct a smaller counter-example E’ for which the theorem fails. Such
a contradiction will prove the theorem.

First assume that at least two divisors are required to reduce the minimal
counter-example E to 0. We will consider the three choices for the first divisor
of E in turn.

Suppose the first divisor is 3. Then E’ = E div 3 is the next value of RemFE
after £ and 3E’ < E. Let m be the number of multiplications for E, and k the
number for this first divisor 3. Then k = 2 or 3, so that & < 2(log, 3) ~ 2x1.585.
By assumption, m > 2logy E. So m > 2log,(3E") = 2logy(E’) 4 2(log, 3) gives
m—k > m—2(log, 3) > 2log,(E’). But m—Fk is the number of multiplications
for E’. Hence we obtain a smaller E for which the theorem does not hold. This
is a contradiction unless E' = 0. However, that is impossible as there is another
divisor in the exponentiation scheme.

Similarly, suppose the first divisor is 5 and E’ is the next value for RemkFE.
Then the associated subchain requires £k = 3 or 4 multiplications, so that k <
2(logy 5) &~ 2x2.322. Thus, a similar argument yields a contradiction again.
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Lastly, suppose the first divisor is 2 and E’ is defined again as the next value
for RemE. If F is odd, then 2E’ < F and the corresponding division requires
k = 2 = 2(log, 2) multiplications. By assumption, m > 2log, E > 2+2log, E’.
So the number of multiplications used by E’ is m—2 > 2log,(E’) and E’ is also
a failing instance unless E' = 0, which is a contradiction as there is still another
divisor to come. On the other hand, if F is even, then the corresponding division
requires k¥ = 1 multiplication. By assumption, m > 2log, E = 24+2log, E’. So
the number of multiplications used by E’ is m—1 > 2log,(E’) and E’ is also a
failing instance unless E’ < 0, which, as before, is a contradiction.

It remains to consider the cases of a single divisor reducing E to 0. For all
of these, the chosen divisor satisfies D > F since E div D = 0 and so R = F.
The only multiplications are those which construct M. For E = 1, 2, 3, 4 the
number of multiplications are 0, 1, 2 and 2 respectively, all of which satisfy the
theorem. Hence, by the method of descent, there are no failing instances, and
the theorem holds. m]

It may be worth noting that removal of a divisor 3 or 5 at any point from the
addition chain for F (other than the last) yields a chain for which the bound in
the theorem is tighter. The same is true when the divisor is 2 and the residue 0.
Thus, the tightest bounds (i.e. the most multiplications for given E) will occur
when only divisor 2 is chosen and the residue is always 1. Then E = 2"—1 for
some n and E requires n—1 subchains of 2 operations to reduce RemFE to 2! —1,
leading to 2n—2 operations in all. So 2x|log, F| would normally hold as an
upper bound. However, it requires more care to establish the exceptions for this
slightly better bound.

5 A Weighting for the Choice of Divisor

Suppose k is the number of multiplications required for the divisor/residue pair
(D, R). The result of picking divisor D is that RemFE is reduced by a factor
which is very close to D, especially when RemFE is large. So, we would expect
the total number of multiplications to be close to klogp E if (D, R) occurred for
every divisor. Consequently, the cost of using (D, R) is proportional to k/log D.
We might use this to bias the choice of divisor in an attempt to decrease the
number of multiplications. However, this is not the best measure because the
effect of larger divisors is longer lasting than that of smaller divisors. A small
divisor with many multiplications, which is expected to be followed by divisors
with an average number of multiplications, may be a better choice than picking
a larger divisor with a better, but poorer than average, ratio k/log D (see [9]).

Suppose « is the average number of multiplications required to reduce E
by a factor of 2. Then reducing F by a factor F' will require «log, F' multi-
plications, on average. For the usual square-and-multiply algorithm o = 1.5,
for 4-ary exponentiation a = 1.375, and for the sliding window version of 4-ary
exponentiation o = 1.333... Here we can manage just a little better than o = 1.4
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with appropriate choices for the divisors'. Comparing (3,0) with (5,0) we find 3
multiplications will reduce E by a factor of 5 when (5,0) is chosen, whereas the
same factor of 5 takes 24+alog,(5/3) multiplications on average if (3,0) is chosen
instead. Equating these costs, 3 = 24+alogy(5/3), provides the cross-over point
o/ =1/log,(5/3) = 1.357 at which one becomes a better choice than the other.
Since o < «, for speed we should choose (5,0) in preference to (3,0) although
the ratios k/log D suggested the opposite preference. In a similar way, for the
expected range of a, (3,0) is preferred to (5, R) for R # 0; (5, R) to (3, 5) for R,
S #0; (3,R) to (2,1) for R # 0; and (5, R) to (2,1) for R # 0. This yields the
following order of desirability for the pairs (D, R):

(2,0) < (5,0) < (3,0) < (5,1) = (5,2) = (5,3) = (5,4) < (3,1) = (3,2) < (2,1)
So (2,0) will lead to the shortest chains, and (2,1) to the longest.

Once more we caution that this is only a better approximation than the pre-
vious one. Successive divisors are not independent, so that the above argument
is not quite accurate. This is clear from an example. We consider the extreme
case where divisibility by a divisor always leads to the choice of that divisor. If 5
is chosen as the divisor and its residue is 0 then its residue mod 30 was 5 or 25.
Residue 5 mod 30 leads to the next residue mod 30 being 1, 7, 13, 19 or 25, and
residue 25 mod 30 leads to it being 5, 11, 17, 23 or 29. Hence 5 becomes the most
likely choice for the next divisor as divisibility by 2 or 3 cannot to occur. Indeed,
the dependence is inherited by the next residue beyond this as well, since these
residues favour 5 as the next divisor and so 5 or 25 as the following residue.

Choosing one of the three divisors with equal probability leads to an in-
efficient process. So we make a choice which is biased towards the better pairs
(D, R). For non-trivial reasons outlined in the penultimate section, it is less safe
cryptographically to make a deterministic choice of divisor even if the exponent
is modified randomly on every occasion. So 2 is not chosen whenever its residue
is 0. Instead, we might use code such as the following for choosing the divisor
non-deterministically. (Random returns a fresh random real in the range [0,1].)

D :=0 ;
If Random(x) < 7/8 then
If O = RemE mod 2 then D := 2 else

If O = RemE mod 5 then D := 5 else
If O = RemE mod 3 then D := 3 ;
If D = 0 then
Begin
p := Random(x) ;
If p < 6/8 then D := 2 else
If p < 7/8 then D := 3 else
D :=5 ;

End ;

! Choose D = 2 if the residue is 0, else D = 3 if the residue is 0, else D = 5 if the
residue is 0, else D = 2. However, the probabilities of these choices need reducing to
less than 1 in order to yield randomly different exponentiation schemes.
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The parameters, such as 6/8 and 7/8, are free for the implementor to choose,
and might even be adjusted dynamically. This is the code which will be used for
calculating the various parameters of interest in the rest of this article, such as
«, which turns out to be 1.4205 here. So a good implementation of MIST can be
expected to have a time efficiency midway between the square-and-multiply and
4-ary exponentiation methods.

6 A Markov Process

As the successive residues of RemFE mod 30 are not independent, we must study
them as forming a Markov process. By forming the probability matrix of output
residues against input residues and iterating a number of times, it is possible to
obtain the limiting relative frequencies of the residues. These are given in Table
6.1, from which it is apparent that the residues do not occur with equal frequency,
and so, as one would expect, the probabilities of divisors and divisor /residue pairs
are also not what we might initially expect from the code above.

0 0.02914032 1 0.03448691 2 0.01660770
3 0.05345146 4 0.01884630 5 0.03655590
6  0.02920902 7 0.04100675 8 0.02436897
9 0.04985984 10 0.02011853 11  0.04919923
12 0.02014301 13 0.04214864 14 0.03407472
15 0.03681055 16 0.01526795 17 0.03368564
18 0.03160194 19 0.03600811 20 0.03187408
21 0.04915191 22 0.02166433 23  0.04323007
24 0.03197409 25 0.02706484 26 0.03224476
27 0.04020936 28 0.02102305 29 0.04897205

Table 6.1. The limit probabilities of residues mod 30.

From this table the probability pp g of each divisor/residue pair (D, R) can
be obtained as well as the probability p.g of selecting a divisor with a non-zero
residue and the probability pp of each divisor D:

(D, R) 0 1 2 3 4
2 0.35012341  0.27101192 - - -
3 0.18867464  0.02086851  0.02419582 - -
5 0.09792592  0.01202820  0.01060216  0.01227849  0.01229092

Table 6.2. The limit probabilities pp r of the divisor/residue pairs (D, R)

P = 0.62113534
ps = 0.23373897
ps = 0.14512570

Table 6.3. The limit probability pp for each divisor D.
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7 Average Properties of the Addition Chain

The probabilities in the above tables are fairly accurate after only a small number
of divisors have been applied. So the following results hold very closely for any
exponents related to integer RSA decryption.

Theorem 7.1 The average subchain length is just under 1.89 operations
per divisor as E — oo.

Proof. With probability ps o = 0.35012341 the subchain has length 1, with
probability pso+p2,1 = 0.45968656 the subchain has length 2, with probabil-
ity ps,0+p3,1+p3,2 = 0.14299025 the subchain has length 3, and with probabil-
ity ps,14+ps2+Ps53+ps.4 = 0.04719977 the subchain has length 4. The average
length of a subchain is therefore 1(p2o) + 2(p3,0+p2.1) + 3(P5,0+P3,1+P3,2) +
4(p5’1+p5’2+p5,3+p5’4) = 1.88726638. O

Theorem 7.2 The average number of subchains in the addition chain
for E is approximately 0.75x log, E as E — oo.

Proof. Using the divisor probabilities listed in Table 6.3, the average decrease in
size of RemE due to a single subchain is by the factor 2P23Ps5Ps = 21{0.6211353 x
log, 2 + 0.233739x log, 3 + 0.1451257x log, 5} a~ 21328574 Hence the average
number of subchains is about 10gy4(1 328574y £ = 0.75268656 x log, E. O

Theorem 7.3 The average number of operations in the addition chain
for E is approximately 1.42x log, E as E — oco. This is about 3% above
the 1.375 x log, E of the 4-ary method, and noticeably less than the
1.5x logy E of the square-and-multiply method.

Proof. Using the results of the last two theorems, the average number of oper-
ations for the whole addition chain is approximately

1.88726638 x 0.75268656 x logy £~ 1.42052005x logy E

For small exponents F the approximations are slightly more inaccurate be-
cause modular division by the divisor produces a result which differs more from
rational division. However, each subchain reduces the exponent by at least the
divisor. Hence exact calculations here should yield an upper bound on the aver-
age.

Lastly, we note that the number of multiplications in the exponentiation
schemes for a given exponent E does vary between different executions. The
variance is usually small but depends on the method of picking divisors. Typi-
cally, the choice of divisors is restricted, as here, in order to improve efficiency,
and this reduces the variance. Indeed, in the limit, deterministic choices lead to
zero variance for fixed F.
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8 Data Leakage

Because of the difficulty of successfully hiding all the differences between squar-
ing and non-squaring multiplications, the MIST algorithm has been created in
order to make it impossible to deduce the secret exponent E from leaked know-
ledge of the sequence of square or multiply instructions which perform an expo-
nentiation. A detailed exposition of how easy it is to reconstruct the exponent
from this and other related data is beyond the scope of this article. However, we
will outline some of the issues. Fuller details will be published elsewhere.

Standard power analysis attacks [5] average traces over a number of ex-
ponentiations in order to determine information such as which operations are
multiplications and which are squares. This requires the same exponentiation
scheme to be used every time. However, assuming the choice of divisors does
vary from one exponentiation to the next (or at least changes with sufficient
frequency), such an averaging process cannot be carried out here.

Differences between squaring and multiplying are so great that one should
assume that they can be correctly distinguished for a single exponentiation. In
the case of the standard square-and-multiply methods, such knowledge can be
translated immediately into the bit sequence for E. But here the equivalent
process requires first parsing the sequence of squares and multiplies into divisor
subchains in order to deduce each choice of divisor/residue pair. Then E is
reconstructed by working backwards from the final value of 0. However, the
subsequences are identical for various pairs, such as for [2,1] and [3,0], and
for [3,1], [3,2] and [5,0]. It is easy enough to verify that these ambiguities put
the number of possibilities for E far outside the limits of feasible computation,
making MIST secure against such an attack. This was one reason for choosing
the less obvious subchain for [2,1] given in Table 3.1.

The m-ary and sliding windows methods of exponentiation can be defeated
for a single exponentiation if the power attack described in [11] can be applied.
That attack depends on identifying the re-use of multiplicands. In particular,
whenever a digit 7 is encountered in the exponent, a multiplication is performed
using the pre-computed value M?. Then careful averaging of the power trace
subsections enables multiplications which involve the same power M? to be iden-
tified, and this leads to recovery of the exponent E.

The same attack has an analogue here. Every multiplication here involves a
new power of M. More precisely, StartM and ResultM represent higher powers
of M every time they are updated. So the possibilities of two multiplications
sharing the same multiplicand are mostly limited to local considerations. If op-
erations which share a common argument can be identified, it usually becomes
possible to determine uniquely the subchains which correspond to each divisor.
Of course, a careless implementation of MIST might do this anyway: for exam-
ple, if the exponentiation is halted in every iteration of the main loop while
determination of the next divisor is made. However, although knowledge of arg-
ument sharing now distinguishes [3,1], [3,2] and [5,0], it does not distinguish
[2,1] from [3,0]. Thus it does not necessarily determine the divisor which was
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chosen. A more careful estimate of the number of exponents E which satisfy all
the operand sharing requirements shows that such an attack is still infeasible.

Finally, it would be nice to make deterministic choices of the divisor. In part-
icular, one would like to pick [2, 0] when possible because of its higher efficiency.
However, this is generally a bad idea, and was deliberately avoided in the code
suggested in Section 5. This is because when such choices are used to prune the
possible values of F which are deduced from knowledge of operand sharing, it
may become feasible to recover E.

The choices of the divisor set {2,3,5} and the addition subchains in Table
3.1 have been made with some care to ensure such attacks as the above leave
an infeasible number of values which E might be. Small divisors lead to short
addition subchains and hence more ambiguity over which divisor occurred, but
large divisors may lead to characteristic patterns which identify conditions under
which the search tree for F can be pruned to a computationally feasible size.

9 Conclusion

An exponentiation algorithm “MIST” has been presented which has a variety
of features which make it much more resilient to attack by differential power
analysis than the normal m-ary or sliding window methods. MIST uses randomly
different multiplication schemes on every run in order to avoid the averaging
which is normally required for power analysis attacks to succeed. It also avoids
re-using multiplicands within a single exponentiation, thereby defeating some of
the more recent power analysis attacks.

There are many different ways in which to program the random selection
of the so-called divisors of the algorithm. For the code presented here, about
1.42]og, E multiplications are required for the exponent F, thereby making it
more efficient than square-and-multiply. Three read/write registers are required
for storing intermediate powers, together with somewhat less memory for storing
a pre-computed addition chain which determines the exponentiation scheme.
Otherwise there is little extra overhead in terms of either space or time. In a
processor/co-processor set-up, the additional minor computing associated with
the exponent can be carried out on the processor in parallel with, and without
holding up, the exponentiation on the co-processor.

As with all algorithms, poor implementation can lead to data leakage. The
main sources of such weakness have been identified. In particular, divisor sets
and addition subchains must be chosen carefully and a predictable choice of any
divisor must be avoided.

MisT is compatible with most other blinding techniques, and independent
of the methods used for other arithmetic operators. So, in conjunction with
existing methods, it offers a sound basis for high specification, tamper resistant
crypto-systems.
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