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Abstra
t. In smart
ard en
ryption and signature appli
ations, random-

ized algorithms 
an be used to in
rease tamper resistan
e against atta
ks

based on averaging data-dependent power or EMR variations. Oswald

and Aigner des
ribe su
h an algorithm for point multipli
ation in ellip-

ti
 
urve 
ryptography (ECC). Assuming an atta
ker 
an identify and

distinguish additions and doublings during a single point multipli
ation,

it is shown that the algorithm is inse
ure for repeated use of the same se-


ret key without blinding of that key. Thus blinding should still be used

or great 
are taken to minimise the di�eren
es between point additions

and doublings.
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1 Introdu
tion

Side 
hannel atta
ks [6, 7℄ on embedded 
ryptographi
 systems show that sub-

stantial data about se
ret keys 
an leak from a single appli
ation of a 
rypto-

graphi
 fun
tion through data-dependent power variation and ele
tro-magneti


radiation [12, 13℄. This is parti
ularly true for 
rypto-systems whi
h use the


omputationally expensive fun
tion of exponentiation, su
h as RSA, ECC and

DiÆe-Hellman. Early atta
ks required averaging over a number of exponentia-

tions [9℄ to extra
t meaningful data, but improved te
hniques mean that single

exponentiations using traditional algorithms may be inse
ure. In parti
ular, it

should be assumed that the pattern of squares and multiplies 
an be extra
ted

fairly a

urately from side 
hannel leakage, perhaps by using Hamming weights

to identify operand re-use. Where the standard binary \square-and-multiply"

algorithm is used, this pattern reveals the se
ret exponent immediately.

In this 
ontext, Oswald and Aigner proposed a randomized point multipli
a-

tion algorithm [10℄ for whi
h there is no bije
tion between s
alar key values and

sequen
es of 
urve operations. They randomly swit
h to a di�erent pro
edure

for whi
h multipli
ations appear to o

ur instead for zero bits but not for one

bits. This alternative 
orresponds to a standard re
oding of the input bits to

remove long sequen
es of 1s and introdu
es other non-zero digits su
h as

�

1. On
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the one hand, the pattern of squares and multipli
ations is no longer �xed, so

that averaging power tra
es from several exponentiations does not make sense,

and, on the other hand, there is ambiguity about whi
h digit value is asso
iated

with ea
h multipli
ation.

This arti
le analyses the set of randomized tra
es that would be generated by

repeated re-use of the same unblinded key k. By aligning 
orresponding doublings

in a number of tra
es, the possible operation sequen
es asso
iated with bit pairs

and bit triples of the se
ret key k 
an be extra
ted. With only a few tra
es

(ten or so) this provides enough information to determine half the bits of k

unequivo
ally, and the rest with a very high degree of 
ertainty.

Previous work in this area in
ludes [11℄ and [14℄. In [11℄ Oswald takes a similar

but deterministi
 algorithm and shows how to determine a spa
e of possible keys

from one sequen
e of 
urve operations, but not how to 
ombine su
h results

from di�erent sequen
es. Here randomization minimises the inter-dependen
e

between 
onse
utive operations and so it is un
lear whether or not her te
hniques

lead to an intra
table amount of 
omputing. Okeya & Sakurai [14℄ treat the

simple version of the randomized algorithm and su

eed in 
ombining results

from di�erent multipli
ations by the same key. They require the key k to be re-

used 100+ log

2

k times. Here we treat the more 
omplex version of the algorithm

in an extended form whi
h might in
rease se
urity. The analysis of Okeya &

Sakurai is inappli
able here be
ause it depends on a �xed �nite automaton state

o

urring after pro
essing a zero bit. However, using new methods we �nd that a)

measurements from only O(10) uses of the se
ret key reveal the key by applying

theory whi
h 
onsiders pairs of bits at a time, b) software whi
h 
onsiders longer

sequen
es of bits 
an pro
ess just two uses to obtain the key in O(log k) time,

and 
) for standard key lengths and perfe
t identi�
ation of adds and doubles,

a single use will dis
lose the key in a tra
table amount of time. In addition, our

atta
k seems less sus
eptible to error: key bits are dedu
ed independently so

that any in
orre
t dedu
tions a�e
t at most the neighbouring one or two bits.

In 
omparison, the atta
k of Okeya & Sakurai re
overs bits sequentially, making

re
overy from errors more 
omplex.

Although only one algorithm is studied here, a similar overall approa
h 
an

be used to break most randomized re
oding pro
edures under the same 
ondi-

tions. The two main properties required are: i) after a given sequen
e of point

operations, the unpro
essed part k

0

of the key 
an only have one of a small,

bounded number of possible values (determined from k by the length of the

operation sequen
e but independent of other 
hoi
es); and ii) it is possible to

identify an asso
iated subset of tra
e suÆxes for whi
h all members 
orrespond

to the same value of k

0

. These also hold for the algorithm proposed by Liardet

& Smart [8℄, whi
h uses a sliding window of random, variable width. They seem

to be the key properties required in [16℄ to demonstrate similar weaknesses in

that algorithm.

Several 
ounter-measures exist against this type of atta
k. As well as stan-

dard blinding by adding a random multiple of the group order to the exponent,
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di�erent algorithms 
an be employed, su
h as [3, 5℄. Moreover, formulae for point

additions and doublings 
an be made indistinguishable [1, 2, 4, 8℄.

2 The Oswald-Aigner Exponentiation Algorithm

This se
tion 
ontains a brief outline of the Oswald-Aigner algorithm [10℄ in terms

of the additive group of points on an ellipti
 
urve E. Rational integers are

written in lower
ase while points on the 
urve are written in 
apitals and Greek


hara
ters denote probabilities. The algorithm 
omputes the point P = kQ for

a given positive integer k (the se
ret key) and a given point Q on E.
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Fig. 1. Finite automaton for an extension of the algorithm. rb is a random bit.

The algorithm randomly introdu
es alternative re-
odings to the represent-

ation of k. It 
an be viewed as pre-pro
essing bits of k from right to left into a

new digit set f�1; 0;+1;+2g. Then the resulting s
heme for point multipli
ation


an be performed in either dire
tion. The 
onversion uses a 
arry bit set initially

to 0. When this bit is summed with the 
urrent bit of k, the result 0, 1 or 2 
an

be re-
oded in di�erent ways: 0 always gives a new digit 0 with 
arry 0; 1 
an

give either new digit 1 and 
arry 0, or new digit

�

1 with 
arry 1; and 2 gives either

new digit 0 and 
arry 1, or new digit 2 and 
arry 0. Fig. 1 illustrates this as a

�nite automaton for a slight extension of the original right-to-left algorithm. It

has 4 states, numbered 0 to 3 with the 
arry being 1 if, and only if, the state is

2. For the transition from state 2 to state 1, the normal order of doubling and

adding is reversed. This a
hieves the pro
essing for digit value 2. The extension

here allows a new transition from state 0 to state 2; the original algorithm is the
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spe
ial 
ase in whi
h the random bit rb = 1 always for state 0. The extension

also allows the random bits to be biased for ea
h state. However, if the same dis-

tribution of random bits is used for ea
h of the states 0, 1 and 3, the automaton

simpli�es to just two states, obtained by merging states 0, 1 and 3.

Figure 2 provides equivalent 
ode for the asso
iated right-to-left point multi-

pli
ation. A left-to-right version is also possible, and 
an be atta
ked in the same

way.

P  O ; /* O is the zero of the ellipti
 
urve */

State  0 ;

While k > 0 do

{

If (k mod 2) = 0 then


ase State of

{

0,1,3 : Q  2Q ; State  0 ;

2 : P  P+Q ; Q  2Q ; State  3 ;

}

else


ase State of

{

0,1,3 : If rb = 0 then /* rb is a Random Bit */

{ P  P-Q ; Q  2Q ; State  2 }

else

{ P  P+Q ; Q  2Q ; State  1 } ;

2 : If rb = 0 then /* rb is a Random Bit */

{ Q  2Q ; P  P+Q ; State  1 }

else

{ Q  2Q } ;

} ;

k  k div 2 ;

} ;

If State = 2 then P  P+Q ;

Fig. 2. Oswald & Aigner's randomized signed binary exponentiation (extended).

3 EÆ
ien
y Considerations

De�nition 1. Let �, �, 
 and Æ be the probabilities that the random bit rb is


hosen to be 1 when the 
urrent state is 0, 1, 2 or 3 respe
tively.

These probabilities 
an be 
hosen to improve eÆ
ien
y or, as we shall see, se
-

urity. For a key k whose bits are sele
ted independently and at random from a

uniform distribution, the matrix of transition probabilities between states of the
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automaton is then
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Lemma 1. The transition matrix has an eigen-ve
tor (

1

2

��;

1

2

�2�, 2�; �) where

� =

2����

12�2��4��4
+2Æ

. Its elements are the probabilities asso
iated with ea
h state.

Moreover, 0 � � �

1

4

.

This is an easy exer
ise for the reader. Taking the dot produ
t of this eigen-

ve
tor with the ve
tor (

1

2

;

1

2

; 1�

1

2


;

1

2

) of average additions asso
iated with ea
h

state provides the expe
ted number of additions per bit:

1

2

+(1�
)�. The number

of doublings is 
onstant at one per bit. So, to minimise the total time we require

(1�
)� = 0, i.e. (1�
)(2����) = 0, i.e. disallow either the transition from state

2 ba
k to state 1, or both transitions to state 2 from states 0 and 1. Avoiding these

extremes provides greater randomness. In parti
ular, � and/or � should be kept

away from 1 so that states 2 and 3 are rea
hable. In the limit as ��
Æ!1 (whi
h

optimises eÆ
ien
y), on average there is half an addition per bit of k. Thus, a

typi
al addition 
hain has a little over

1

2

log

2

k additions (or subtra
tions). Even

a modest bias towards eÆ
ien
y, su
h as taking � = � = 
 = Æ �

3

4

, 
hanges

this by just 2% or less.

4 The Atta
k

4.1 Initial Hypotheses, Notation & Overview of the Atta
k

The atta
k here assumes suÆ
iently good monitoring equipment and a suÆ-


iently weak implementation. Spe
i�
ally it is assumed that:

{ Adds and doublings 
an always be identi�ed and distinguished 
orre
tly in

side 
hannel leakage from a single point multipli
ation; and

{ Side 
hannel tra
es are available for a number of di�erent uses of the same,

unblinded key value.

For ease in 
al
ulating probabilities, we assume adds and doublings 
an always

be distinguished. Similar results hold if this is only usually the 
ase. By the �rst

hypothesis,

{ every side-
hannel tra
e tr 
an be viewed as a word over the alphabet fA;Dg

where A denotes the o

urren
e of an addition andD that of a doubling. Here, as

expe
ted, the tra
e is written with time in
reasing from left to right. However,

this is the opposite of the binary representation of the se
ret key k whi
h is

pro
essed from right to left, so that the re-
oding 
an be done on the 
y (Fig. 2).

For example, if the ma
hine were to 
y
le round only states 0 and 1 giving the
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sequen
e of operations for square-and-multiply exponentiation, then the tra
e

would be essentially the same as the binary, but reversed: every o

urren
e of

0 would appear as D, and every o

urren
e of 1 would appear as AD. So the

binary representation 11001 would generate the tra
e ADDDADAD. There is

one D for every bit, and we index them to 
orrespond:

De�nition 2. The position of an instan
e of D in a tra
e is the number of

o

urren
es of D to its left.

Thus, the leftmost D of ADDDADAD has position 0 and arises from pro
essing

the rightmost bit of 11001, whi
h has index 0.

The atta
k 
onsists of a systemati
 treatment of observations like the follow-

ing. The only transition whi
h pla
es D before rather than after an asso
iated

o

urren
e of A is the transition (21). Hen
e, every o

urren
e of the substring

DAAD in a tra
e tr 
orresponds to traversing transition (21) then (12) or (11) in

the �nite automaton. This must 
orrespond to pro
essing a bit 1 to rea
h state

2, and then two further 1 bits. The tra
e 
an be split between the two adja
ent

As into a pre�x and a suÆx. There is a 
orresponding split in the binary repre-

sentation of the se
ret key k su
h that the suÆx of k has a number of bits equal

to the number of Ds in the pre�x of tr. This enables the position of the substring

111 to be determined in k. Moreover, by the next lemma, most o

urren
es of

111 
an be lo
ated in this way if enough tra
es are available: DAAD appears

exa
tly when the middle 1 is represented by the transition (21).

Lemma 2. If 11 o

urs in the binary representation of k then the probability

of the left-hand 1 being represented by transition (21) in a tra
e for k is � =

4�(1�
).

Proof. 4� is the probability of being in state 2 as a result of the right-hand 1

and 1�
 is the (independent) probability of sele
ting transition (21) next. ut

4.2 Properties of the Tra
es

Figure 3 lists the transitions and operation sequen
es whi
h 
an o

ur for ea
h

bit pair, in
luding the probability of ea
h. It assumes that initial states have the

probabilities determined by Lemma 1, and that neighbouring bits are unknown.

The �gure enables one to see whi
h bit pairs 
an arise from given patterns in a

tra
e, and to 
al
ulate their probabilities:

Lemma 3. Let k

i

denote the bit of k with index i, and � be as in Lemma 1.

Then,

i) For a given tra
e, if the Ds in positions i and i+1 are not separated by any

As, then the bit pair k

i+1

k

i

is 00 with probability (2�2�(1�
))

�1

, whi
h is at

least

1

2

. If the Ds are separated by one or more As in any tra
e, then the bit pair

is 
ertainly not 00.

ii) For a given tra
e, if the Ds in positions i and i+1 are separated by one A,

then the bit pair k

i+1

k

i

is 10 with probability

1

2

. If the Ds are separated by no
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As or two As in any tra
e, then the bit pair is 
ertainly not 10.

iii) For a given tra
e, if the Ds in positions i and i+1 are separated by two As,

then the bit pair k

i+1

k

i

is 
ertainly 11. The probability of two As when the bit

pair is 11 is 2�(1�
), assuming bit k

i�1

is unknown.

iv) For a set of n tra
es, suppose the Ds in positions i and i+1 are separated by

no As in some 
ases, by one A in some 
ases, and by two As in no 
ases. Then

the bit pair k

i+1

k

i

is 01 with probability (1+(1�2�(1�
))

n

)

�1

.

Bit Operation State Probabilities;

Pair Patterns Sequen
es given the bit pair

00 D:D 000; 100; 300 1�2�

AD:D 230 2�

10 D:AD 001; 002

1

2

��

D:AD 101; 102

1

2

�2�

AD:AD 231; 232 2�

D:AD 301; 302 �

01 AD:D; AD:AD 010; 023 (

1

2

��)�; (

1

2

��)(1��)

AD:D; AD:AD 110; 123 (

1

2

�2�)�; (

1

2

�2�)(1��)

DA:D; D:AD 210; 223 2�(1�
); 2�


AD:D; AD:AD 310; 323 �Æ; �(1�Æ)

11 AD:AD; AD:AD 011; 012 (

1

2

��)��; (

1

2

��)�(1��)

AD:DA; AD:D 021; 022 (

1

2

��)(1��)(1�
); (

1

2

��)(1��)


AD:AD; AD:AD 111; 112 (

1

2

�2�)�

2

; (

1

2

�2�)�(1��)

AD:DA; AD:D 121; 122 (

1

2

�2�)(1��)(1�
); (

1

2

�2�)(1��)


DA:AD; DA:AD 211; 212 2�(1�
)�; 2�(1�
)(1��)

D:DA; D:D 221; 222 2�
(1�
); 2�


2

AD:AD; AD:AD 311; 312 �Æ�; �Æ(1��)

AD:DA; AD:D 321; 322 �(1�Æ)(1�
); �(1�Æ)


Fig. 3. All possible operation sequen
es for all bit pairs, and their probabilities given

the bit pair o

urs. (Bit pairs are pro
essed right to left and operations left to right.)

Proof. i) First, by inspe
tion of the �nite automaton, the only possible opera-

tion sequen
es for 00 are ADD and DD. So the Ds are always adja
ent. The

intervention of an A will prove that the bit pair is not 00.

Suppose there is no intervening A between the two spe
i�ed Ds. Using Figure

3, if the bit pair is 00 then the probability of this is �

00

= 1; if the bit pair is

10 then the probability is �

10

= 0; if the bit pair is 01 then the probability is

�

01

= (

1

2

��)�+(

1

2

�2�)�+�Æ; and if the bit pair is 11 then the probability is

�

11

= (

1

2

��)(1��)+(

1

2

�2�)(1��)+ 2�
+�(1�Æ). Thus, the 
orre
t dedu
tion

of 00 is made with probability

�

00

=(�

00

+�

10

+�

01

+�

11

) = 1=(2�2�(1�
)) �

1

2

.
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ii) Similarly, from Figure 3 the bit pair 10 must always in
lude the operation A

on
e between the two o

urren
es of D, but this is not the 
ase for any other

bit pair. Thus the absen
e of an A, or the presen
e of two As, guarantees the bit

pair is not 10. However, suppose there is exa
tly one A between the spe
i�ed Ds.

By Figure 3, if the bit pair is 00 then the probability of this is �

0

00

= 1��

00

= 0;

if the bit pair is 10 then the probability is �

0

10

= 1��

10

= 1; if the bit pair

is 01 then the probability is �

0

01

= 1��

01

; and if the bit pair is 11 then the

probability is �

0

11

= 1��

11

�2�(1�
). Thus, the 
orre
t dedu
tion of 10 is made

with probability

�

0

10

=(�

0

00

+�

0

10

+�

0

01

+�

0

11

) =

1

2

.

iii) This part is immediate from Figure 3.

iv) Finally, by parts (i) and (ii), a bit pair whi
h in
ludes both the possibilities

of no As and of one A between the spe
i�ed Ds 
annot be 00 or 10; it must be

01 or 11. The probability of not having two As in any tra
e when the digit pair

is 01 is 1, of 
ourse. By Fig. 3 the probability of not having two As in any of the

n tra
es when the digit pair is 11 is �

n

= (1�2�(1�
))

n

. Hen
e the probability

of the pair being 01 rather than 11 is 1=(1+�

n

). ut

We must be a little 
areful in the appli
ation of this lemma. Firstly, ea
h

part assumes no knowledge of bit k

i�1

. Knowing it 
hanges the probabilities.

In most 
ases, the di�eren
es are small enough to be 
onsidered negligible; for

a

urate �gures the table 
an be used to sele
t just the 
ases starting in states

0 or 3 when the pre
eding pro
essed bit is 0, and the 
ases starting in states 1

or 2 when that bit is 1. The only 
ase where a qualitative di�eren
e o

urs is

for 11 when AA only o

urs if k

i�1

= 1. In the 
ase of k

i�1

= 0 this means we


annot distinguish 01 from 11 so easily. This is a typi
al problem to solve when

re
onstru
ting the whole key.

Se
ondly, dedu
tions from di�erent tra
es are not independent. For example,

suppose all of n tra
es have one A between the Ds in positions i and i+1. From

(ii) of the lemma it is tempting to dedu
e that the bit pair is 10 with probability

1�(

1

2

)

n

. However, the probability of this may still only be

1

2

. In parti
ular, this

happens when the parameters � = � = Æ = 0 are sele
ted. Then the bit pairs 10

and 01 would always have exa
tly one A between the Ds, and bit pairs 00 and 11

would never have any As. So 01 and 10 would be equally likely with probability

1

2

if exa
tly one A always o

urred. The independent de
isions whi
h 
an be


ombined are those based on the independent 
hoi
es of random bits, as in (iv).

4.3 Re
onstru
ting the Key

For this se
tion we assume the default values whi
h give the original algorithm,

namely � = 1 and � = 
 = Æ =

1

2

. This means � =

1

14

. Later we 
onsider

alternatives whi
h might improve se
urity. Then Figure 3 immediately yields:

Lemma 4. For the above default values of the parameters,

i) the bit pair 01 has no intervening A between the asso
iated Ds of a tra
e with

probability

9

14

and one intervening A with probability

5

14

;
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ii) the bit pair 11 has no intervening A between the asso
iated Ds with probability

2

7

, one intervening A with probability

9

14

, and two As with probability

1

14

.

The 
hoi
es whi
h lead to the probabilities in the previous lemma are made

independently for ea
h tra
e. Hen
e, for n tra
es and a pair 01, there are no As

in every tra
e with probability (

9

14

)

n

and one A in every tra
e with probability

(

5

14

)

n

. A similar result holds for the pair 11. By averaging:

Lemma 5. For the default values of the parameters and n tra
es, in every tra
e

a bit pair of the form �1 has:

i) no As between the asso
iated Ds with probability f(

9

14

)

n

+ (

2

7

)

n

g=2 ; and

ii) one A with probability f(

5

14

)

n

+ (

9

14

)

n

g=2.

To re
onstru
t the key k, �rst 
lassify every bit pair as 00 if there are no

intervening As in any tra
e, 10 if there is always one intervening A, 11 if there is

an intervening AA, and, otherwise, �1 if there is a variable number of intervening

As. This 
orre
tly 
lassi�es all pairs 00 and 10, and pairs 
lassed as 11 or �1 are


ertainly all 11 or of the form �1 respe
tively. For n = 10 both probabilities in

the lemma are bounded above by

1

2

(

9

14

)

10

� 1=166. Thus about 1 in 83 bits pairs

01 and 11 will be in
orre
tly 
lassi�ed as 00 or 10. Also, by the next lemma,

1�(

6

7

)

10

>

3

4

of pairs 11 will be lo
ated 
orre
tly by o

urren
es of AA when

they are the left pair in triplets 111. The proof of it goes ba
k to Lemma 2.

Lemma 6. For the default values of the parameters and n tra
es, the bit pair

11 has at least one tra
e exhibiting AA with probability 1�(

6

7

)

n

if it has a 1 to

the right and with probability 0 if it has a 0 to the right.

This is now enough information to dedu
e almost all the bits of a standard

length ECC key. Every bit whi
h is dedu
ed as the right member of a pair �1 is


orre
tly 
lassi�ed as 1 sin
e the mixture of patterns used in the 
lassi�
ation

is not possible for pairs of the form �0. However, about 1 in 83+1 of the bits

whi
h are dedu
ed to be right members of a pair �0 is in
orre
tly 
lassi�ed as 0

be
ause not all the possible patterns for the bit pair have o

urred. In an ECC

key of, say, 192 bits, about two bits will then be in
orre
t.

Ea
h bit b belongs to two pairs: �b and b�, say. Tra
es for the pair �b have

been used to 
lassify b. In half of all 
ases, there is a 0 bit to the right and

the 
hara
teristi
 patterns of tra
es for the pair b0 
an be used to 
ross-
he
k

the 
lassi�
ation. In the other half of 
ases the patterns for b1 also indi
ate the


orre
t value for b as a result of the ratios between the numbers of o

urren
es

of ea
h pattern. However, the patterns observed for overlapping bit pairs are not

independent. Although unlikely, one set of patterns may reinfor
e rather than


ontradi
t a wrong dedu
tion from the other set. There is no spa
e for further

detail, but the following is now 
lear:

Theorem 1. Suppose ellipti
 
urve adds and doubles 
an be distinguished a

u-

rately on a side 
hannel. If the original Oswald-Aigner exponentiation algorithm

is used with the same unblinded 192-bit ECC key k for 10 point multipli
ations

then approximately half the bits 
an be dedu
ed unambiguously to be 1, and the

remaining bits dedu
ed to be 0 with an average of at most about two errors.
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This theorem says that a typi
al ECC se
ret key 
an usually be re
overed on

a �rst attempt using a dozen tra
es with very little 
omputational e�ort beyond

extra
ting the add and double patterns from ea
h tra
e. By 
he
king 
onsisten
y

between dedu
tions of overlapping bit pairs, most errors should be eliminated.

However, it is 
omputationally feasible to test all variants of the dedu
ed key for

up to two or three errors. The 
orre
t one from this set 
an surely be established

by su

essfully de
rypting some 
iphertext.

4.4 Se
ure Parameter Choi
es?

From the last se
tion, it is 
lear that greater se
urity 
ould only arise from

making it less easy to distinguish between pairs of the form �0 and those of the

form �1. This requires 
hoosing parameters for whi
h 01 and 11 are less likely

to exhibit both no As and one A between the relevant Ds. From Fig. 3, the

probability of no As for 01 and the probability of one A for 11 are the same, viz.

� = (

1

2

��)� + (

1

2

�2�)� + �Æ:

So this must be made 
lose to 0 or 
lose to 1. For example, 
hoosing � =

� = 1 makes � = 0 and so � = 1, whereas 
hoosing � = � = Æ = 0 makes

� = 0. Thus both limits are possible. In general, for � = 1 (the �rst 
ase) the

tra
es mat
h the pattern of operations for normal square-and-multiply, so we

expe
t ea
h A to 
orrespond to the multiply of a 1 bit. Although 00 and 01 are

indistinguishable from the patterns, and 10 and 11 are indistinguishable (unless

perhaps AA 
ould o

ur), the atta
ker now re
ognises that patterns for the pairs

0� have no intervening A and patterns for the pairs 1� have one intervening A.

This gives him ea
h bit unequivo
ally. At the opposite extreme, if � = 0 (the

se
ond 
ase) then 10 and 01 be
ome indistinguishable from the patterns as do

00 and 11 (again, unless perhaps AA 
ould o

ur). Now the atta
ker re
ognises

pairs with equal bits from pairs with di�erent bits. Knowing the �rst bit is 1, he


an dedu
e all the bits one by one from left to right, and hen
e the key k.

In general the atta
ker 
an exploit the 
omplementary frequen
ies of one A

for the pairs 01 and 11. Either they are 
lose enough to ensure n tra
es usually

display both patterns (as in the previous se
tion) or they are distin
t enough for

the patterns to be strongly biased in opposite dire
tions in the tra
e set (as in

the previous paragraph). He 
an then re
ognise either the equality of the se
ond

bits or the di�eren
e in the �rst bit respe
tively, and use the fa
t that ea
h bit

belongs to two pairs to 
ross-
he
k the dedu
tion of many bits. Consequently,

there are no se
ure 
hoi
es of the parameters under repeated use of the unblinded

key k.

Identi
al working to the previous se
tion shows that similar 
omputations


an be performed for keys of any length. With the 
hoi
e of parameters there,

the number of tra
es needed to a
hieve a spe
i�ed degree of 
on�den
e in the

determined bits is n = O(log log k) be
ause we want at most one error in (

14

9

)

n

=

O(log k) bits. The same 
al
ulations apply for any � whi
h is not 0 or 1, giving

the same size order for n. For the working above in this se
tion, mistakes are

only made when too many tra
es re
ord the opposite pattern to that expe
ted
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from the value of �. Then, for � 
lose enough to 0 or 1, the same bound on the

size of n 
an be obtained for limiting the errors. So,

Theorem 2. No 
hoi
e of algorithm parameters is se
ure for a reasonable key

length under the above atta
k if O((log k)

2

) de
ipherings are 
omputationally

feasible and O(log log k) tra
es are available from point multipli
ations using the

same unblinded key.

When adds and doubles are not distinguished with 100% 
ertainty, the pro-

portions of numbers of As 
an be used to assign a likelihood to the 
orre
tness

of the sele
ted bit pair. Those whi
h are most likely to be wrong 
an be modi�ed

�rst, thereby de
reasing the sear
h time to determine the 
orre
t key.

4.5 Counter-Measures

In the absen
e of a se
ure set of parameter 
hoi
es, further 
ounter-measures are

required. The most obvious 
ounter-measure is to restore key blinding. A small

number of blinding bits might still result in the atta
ker's desired 10 or so tra
es

for the same key eventually be
oming available. These might be identi�ed easily

within a mu
h larger set of tra
es by the large number of 
hara
ter subsequen
es

shared between their tra
es. So the size of the random number used in blinding


annot reasonably be less than the maximum lifespan of the key in terms of the

number of point multipli
ations for whi
h it is used. Thus 16 or more bits are

needed, adding around 10% to the 
ost of point multipli
ation.

Identi
al formulae for additions and doublings are in
reasingly eÆ
ient and

appli
able to wider 
lasses of ellipti
 
urves, those of Brier and Joye [1℄ in part-

i
ular. These should make it more diÆ
ult to distinguish adds from doubles.

Another favoured 
ounter-measure is the add-and-always-double approa
h.

Then the pattern of adds and doubles is not key dependent. Ea
h o

urren
e

of DD has an add inserted to yield the pattern DAD, but the add output is

dis
arded without having been used. This 
an also be done for the Oswald-Aigner

algorithm provided, in addition, an extra double is performed to 
onvert ea
h

DAAD into DADAD. The output of this double is likewise ignored.

Alternatives algorithms exist. That des
ribed by Joye and Yen [5℄ is another

add-and-always-double algorithm. There are also several randomized methods [3,

15℄ whi
h seem to be more robust be
ause they do not satisfy the two properties

identi�ed in the introdu
tion as those to whi
h the above atta
k 
an be applied.

5 One Tra
e

It is interesting to spe
ulate on how mu
h data leaks from a single point multi-

pli
ation sin
e the above 
ounter-measures should prevent re-use of identi
al

values for the same key. Oswald [10℄ noted that for some deterministi
 re-
oding

algorithms in whi
h several non-zero digits generate indistinguishable As, the

operation patterns resulting from numbers of up to 12 bits 
ould only represent

at most 3 keys. By breaking a standard ECC key into 12-bit se
tions, this means

very few keys a
tually generate an observed patterns of operations. Moreover,
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these 
an be ordered a

ording to their likelihood of o

urren
e, and this 
on-

siderably redu
es the average sear
h time for the 
orre
t key. Hen
e the key 
an

be re
overed quite easily.

Is the same possible here? In [10℄ she also writes that the same atta
k is

possible on randomized algorithms with weaker results, but provides no detail.

Randomized algorithms have mu
h weaker inter-dependen
ies between adja
ent

operation patterns. This should substantially in
rease the number of keys whi
h

mat
h a spe
i�
 pattern of point operations. The key Lemma 3 above does not

provide 
ertainty for many bits unless a number of tra
es are available; only

the infrequent instan
es of AA seem to allow de�nite determination of any bits

from one tra
e. Of 
ourse, an analysis of sub-sequen
es of more than two bits is

possible, as in [14℄, but, besides better probabilities, this gives no further insight

into whether it is 
omputationally feasible to re
over the key from a single tra
e.

Instead, software was written to enumerate all the keys whi
h 
ould represent

a given string. On average, for the extended version of the algorithm, the trend

up to 16-bit keys indi
ates 
learly that a little over O(

4

p

k) keys will mat
h a

given pattern { under 20 mat
h a given 16-bit pattern. This would appear to

ensure the strength of the algorithm when a key is used just on
e but only if the

key has at least 2

8

bits or there is 
onsiderable ambiguity in the side 
hannel

about whether the operations are adds or doubles. The original algorithm has

fewer random 
hoi
es, and so has even fewer keys mat
hing a given pattern.

Thus, a standard ECC key 
ould be re
overed from a single tra
e in feasible

time if adds and doubles are 
learly distinguishable.

6 Con
lusion

One of several, similar, randomized exponentiation algorithms has been investi-

gated to assess its strength against a side 
hannel atta
k whi
h 
an di�erentiate

between ellipti
 
urve point additions and point doublings. Straightforward the-

ory shows that at most O(10) uses of the same unblinded key will enable a se
ret

key of standard length to be re
overed easily in a 
omputationally feasible time.

No 
hoi
e of parameters improves se
urity enough to alter this 
on
lusion. Using

longer bit sequen
es than the theory, it is also 
lear that software 
an sear
h

su

essfully for keys when just one side 
hannel tra
e is available. However, this

number may need in
reasing if adds and doubles might be 
onfused or standards

for key lengths are in
reased.

The main property whi
h is 
ommon to algorithms whi
h 
an be atta
ked

in this way seems to be that the next subsequen
e of operations at a given

point in the pro
essing of the key must be 
hosen from a small, bounded set of

possibilities whi
h is derived from the key and the position, but is independent

of previous 
hoi
es. Hen
e, our overall 
on
lusion is that su
h algorithms should

be avoided for repeated use of the same unblinded key if adds and doubles 
an

be di�erentiated with any degree of 
ertainty. Furthermore, for typi
al ECC key

lengths, a single use may be suÆ
ient to dis
lose the key when adds and doubles

are a

urately distinguishable.



220 CT-RSA 2004, LNCS 2964, pp. 208{221,





Springer-Verlag, 2004

Referen
es

1. E. Brier & M. Joye, Weierstra� Ellipti
 Curves and Side-Channel Atta
ks, Publi


Key Cryptography, P. Paillier & D. Na

a
he (eds), LNCS 2274, Springer-Verlag,

2002, pp. 335{345.

2. C. Gebotys & R. Gebotys, Se
ure Ellipti
 Curve Implementations: An Analysis of

Resistan
e to Power-Atta
ks in a DSP Pro
essor, CHES 2002, B. Kaliski, C� . Ko�


& C. Paar (eds), LNCS 2523, Springer-Verlag, 2003, pp. 114{128.

3. K. Itoh, J. Yajima, M. Takenaka & N. Torii, DPA Countermeasures by improving

the Window Method, CHES 2002, B. Kaliski, C� . Ko�
 & C. Paar (eds), LNCS 2523,

Springer-Verlag, 2003, pp. 303{317.

4. M. Joye & J.-J. Quisquater, Hessian Ellipti
 Curves and Side Channel Atta
ks,

CHES 2001, C� . Ko�
, D. Na

a
he & C. Paar (eds), LNCS 2162, Springer-Verlag,

2001, pp. 402{410.

5. M. Joye & S.-M. Yen, The Montgomery Powering Ladder, CHES 2002, B. Kaliski,

C� . Ko�
 & C. Paar (eds), LNCS 2523, Springer-Verlag, 2003, pp. 291{302.

6. P. Ko
her, Timing Atta
k on Implementations of DiÆe-Hellman, RSA, DSS, and

other Systems, Advan
es in Cryptology { Crypto '96, N. Koblitz (ed), LNCS

1109, Springer-Verlag, 1996, pp. 104{113.

7. P. Ko
her, J. Ja�e & B. Jun, Di�erential Power Analysis, Advan
es in Cryptology

{ Crypto '99, M. Wiener (ed), LNCS 1666, Springer-Verlag, 1999, pp. 388{397.

8. P.-Y. Liardet & N. P. Smart, Preventing SPA/DPA in ECC Systems using the

Ja
obi Form, CHES 2001, C� . Ko�
, D. Na

a
he & C. Paar (eds), LNCS 2162,

Springer-Verlag, 2001, pp. 391{401.

9. T. S. Messerges, E. A. Dabbish & R. H. Sloan, Power Analysis Atta
ks of Modular

Exponentiation in Smart
ards, Pro
. CHES 99, C. Paar & C� . Ko�
 (eds), LNCS

1717, Springer-Verlag, 1999, pp. 144{157.

10. E. Oswald & M. Aigner, Randomized Addition-Subtra
tion Chains as a Counter-

measure against Power Atta
ks, CHES 2001, C� . Ko�
, D. Na

a
he & C. Paar (eds),

LNCS 2162, Springer-Verlag, 2001, pp. 39{50.

11. E. Oswald, Enhan
ing Simple Power-Analysis Atta
ks on Ellipti
 Curve Crypto-

systems, CHES 2002, B. Kaliski, C� . Ko�
 & C. Paar (eds), LNCS 2523, Springer-

Verlag, 2003, pp. 82{97.

12. J.-J. Quisquater & D. Samyde, Ele
troMagneti
 Analysis (EMA): Measures and

Counter-Measures for Smart Cards, Smart Card Programming and Se
urity (e-

Smart 2001), I. Attali & T. Jensen (eds), LNCS 2140, Springer-Verlag, 2001, pp.

200{210.

13. J.-J. Quisquater & D. Samyde, Eddy 
urrent for Magneti
 Analysis with A
t-

ive Sensor, Pro
. Smart Card Programming and Se
urity (e-Smart 2002), Ni
e,

September 2002, pp. 183{194.

14. K. Okeya & K. Sakurai, On Inse
urity of the Side Channel Atta
k Countermeasure

using Addition-Subtra
tion Chains under Distinguishability between Addition and

Doubling, Information Se
urity and Priva
y (ACISP 2002), L. Batten & J. Seberry

(eds), LNCS 2384, Springer-Verlag, 2002, pp. 420{435.

15. C. D. Walter, MIST: An EÆ
ient, Randomized Exponentiation Algorithm for

Resisting Power Analysis, Pro
. CT-RSA 2002, B. Preneel (ed), LNCS 2271,

Springer-Verlag, 2002, pp. 53{66.

16. C. D. Walter, Breaking the Liardet-Smart Randomized Exponentiation Algorithm,

Pro
. Cardis '02, San Jos�e, November 2002, Usenix Asso
iation, Berkeley, 2002,

pp. 59{68.


