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Abstract. Insmartcard encryption and signature applications, random-
ized algorithms can be used to increase tamper resistance against attacks
based on averaging data-dependent power or EMR variations. Oswald
and Aigner describe such an algorithm for point multiplication in ellip-
tic curve cryptography (ECC). Assuming an attacker can identify and
distinguish additions and doublings during a single point multiplication,
it is shown that the algorithm is insecure for repeated use of the same se-
cret key without blinding of that key. Thus blinding should still be used
or great care taken to minimise the differences between point additions
and doublings.
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1 Introduction

Side channel attacks [6,7] on embedded cryptographic systems show that sub-
stantial data about secret keys can leak from a single application of a crypto-
graphic function through data-dependent power variation and electro-magnetic
radiation [12,13]. This is particularly true for crypto-systems which use the
computationally expensive function of exponentiation, such as RSA, ECC and
Diffie-Hellman. Early attacks required averaging over a number of exponentia-
tions [9] to extract meaningful data, but improved techniques mean that single
exponentiations using traditional algorithms may be insecure. In particular, it
should be assumed that the pattern of squares and multiplies can be extracted
fairly accurately from side channel leakage, perhaps by using Hamming weights
to identify operand re-use. Where the standard binary “square-and-multiply”
algorithm is used, this pattern reveals the secret exponent immediately.

In this context, Oswald and Aigner proposed a randomized point multiplica-
tion algorithm [10] for which there is no bijection between scalar key values and
sequences of curve operations. They randomly switch to a different procedure
for which multiplications appear to occur instead for zero bits but not for one
bits. This alternative corresponds to a standard recoding of the input bits to
remove long sequences of 1s and introduces other non-zero digits such as 1. On
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the one hand, the pattern of squares and multiplications is no longer fixed, so
that averaging power traces from several exponentiations does not make sense,
and, on the other hand, there is ambiguity about which digit value is associated
with each multiplication.

This article analyses the set of randomized traces that would be generated by
repeated re-use of the same unblinded key £. By aligning corresponding doublings
in a number of traces, the possible operation sequences associated with bit pairs
and bit triples of the secret key k can be extracted. With only a few traces
(ten or so) this provides enough information to determine half the bits of k
unequivocally, and the rest with a very high degree of certainty.

Previous work in this area includes [11] and [14]. In [11] Oswald takes a similar
but deterministic algorithm and shows how to determine a space of possible keys
from one sequence of curve operations, but not how to combine such results
from different sequences. Here randomization minimises the inter-dependence
between consecutive operations and so it is unclear whether or not her techniques
lead to an intractable amount of computing. Okeya & Sakurai [14] treat the
simple version of the randomized algorithm and succeed in combining results
from different multiplications by the same key. They require the key & to be re-
used 100+ log, k times. Here we treat the more complex version of the algorithm
in an extended form which might increase security. The analysis of Okeya &
Sakurai is inapplicable here because it depends on a fixed finite automaton state
occurring after processing a zero bit. However, using new methods we find that a)
measurements from only O(10) uses of the secret key reveal the key by applying
theory which considers pairs of bits at a time, b) software which considers longer
sequences of bits can process just two uses to obtain the key in O(logk) time,
and c) for standard key lengths and perfect identification of adds and doubles,
a single use will disclose the key in a tractable amount of time. In addition, our
attack seems less susceptible to error: key bits are deduced independently so
that any incorrect deductions affect at most the neighbouring one or two bits.
In comparison, the attack of Okeya & Sakurai recovers bits sequentially, making
recovery from errors more complex.

Although only one algorithm is studied here, a similar overall approach can
be used to break most randomized recoding procedures under the same condi-
tions. The two main properties required are: i) after a given sequence of point
operations, the unprocessed part k' of the key can only have one of a small,
bounded number of possible values (determined from k by the length of the
operation sequence but independent of other choices); and ii) it is possible to
identify an associated subset of trace suffixes for which all members correspond
to the same value of k'. These also hold for the algorithm proposed by Liardet
& Smart [8], which uses a sliding window of random, variable width. They seem
to be the key properties required in [16] to demonstrate similar weaknesses in
that algorithm.

Several counter-measures exist against this type of attack. As well as stan-
dard blinding by adding a random multiple of the group order to the exponent,
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different algorithms can be employed, such as [3, 5]. Moreover, formulae for point
additions and doublings can be made indistinguishable [1,2, 4, 8].

2 The Oswald-Aigner Exponentiation Algorithm

This section contains a brief outline of the Oswald-Aigner algorithm [10] in terms
of the additive group of points on an elliptic curve E. Rational integers are
written in lowercase while points on the curve are written in capitals and Greek
characters denote probabilities. The algorithm computes the point P = k@ for
a given positive integer k (the secret key) and a given point () on E.

~~~~~
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Fig. 1. Finite automaton for an extension of the algorithm. rb is a random bit.

The algorithm randomly introduces alternative re-codings to the represent-
ation of k. It can be viewed as pre-processing bits of k from right to left into a
new digit set {—1,0,+1,42}. Then the resulting scheme for point multiplication
can be performed in either direction. The conversion uses a carry bit set initially
to 0. When this bit is summed with the current bit of &, the result 0, 1 or 2 can
be re-coded in different ways: 0 always gives a new digit 0 with carry 0; 1 can
give either new digit 1 and carry 0, or new digit 1 with carry 1; and 2 gives either
new digit 0 and carry 1, or new digit 2 and carry 0. Fig. 1 illustrates this as a
finite automaton for a slight extension of the original right-to-left algorithm. It
has 4 states, numbered 0 to 3 with the carry being 1 if, and only if, the state is
2. For the transition from state 2 to state 1, the normal order of doubling and
adding is reversed. This achieves the processing for digit value 2. The extension
here allows a new transition from state 0 to state 2; the original algorithm is the
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special case in which the random bit rb = 1 always for state 0. The extension
also allows the random bits to be biased for each state. However, if the same dis-
tribution of random bits is used for each of the states 0, 1 and 3, the automaton
simplifies to just two states, obtained by merging states 0, 1 and 3.

Figure 2 provides equivalent code for the associated right-to-left point multi-
plication. A left-to-right version is also possible, and can be attacked in the same
way.

P+ O; /* O is the zero of the elliptic curve */
State <+ 0 ;
While k > 0 do
{
If (k mod 2) = O then
case State of

{
0,1,3 : Q < 2Q ; State < 0 ;
2 : P« P+Q ; Q < 2Q ; State < 3 ;
}
else
case State of
{
0,1,3 : If rb = O then /* rb is a Random Bit */
{P <« P-Q; Q < 2Q ; State «+ 2 }
else
{P « P+ ; Q <« 2Q ; State + 1 } ;
2 : If rb = 0 then /* rbis a Random Bit */
{Q «+ 2Q ; P+ P+Q ; State < 1 }
else
{Q <201 ;

}
k « k div 2 ;
}
If State = 2 then P < P+Q ;

Fig. 2. Oswald & Aigner’s randomized signed binary exponentiation (extended).

3 Efficiency Considerations

Definition 1. Let «, 3, v and § be the probabilities that the random bit rb is
chosen to be 1 when the current state is 0, 1, 2 or 3 respectively.

These probabilities can be chosen to improve efficiency or, as we shall see, sec-
urity. For a key k& whose bits are selected independently and at random from a
uniform distribution, the matrix of transition probabilities between states of the
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automaton is then

1 1 1
3 3 0 35
a B 1= 4
2 2 2 2
l-a 1-8 ~» 1-4
2 2 2 2
1
0 0 L o

Lemma 1. The transition matriz has an eigen-vector (%—,u, %—2;1, 24, 1) where
_ 2—a—pf

K= 13 54—45-47123"

Moreover, 0 < u < %.

Its elements are the probabilities associated with each state.

This is an easy exercise for the reader. Taking the dot product of this eigen-
11

vector with the vector (3, 3, 1—%7, %) of average additions associated with each
state provides the expected number of additions per bit: %+(1—7) . The number
of doublings is constant at one per bit. So, to minimise the total time we require
(I—y)p =0, ie. (1—y)(2—a—p) = 0, i.e. disallow either the transition from state
2 back to state 1, or both transitions to state 2 from states 0 and 1. Avoiding these
extremes provides greater randomness. In particular, o and/or 8 should be kept
away from 1 so that states 2 and 3 are reachable. In the limit as a8yd—1 (which
optimises efficiency), on average there is half an addition per bit of k. Thus, a
typical addition chain has a little over % log, k additions (or subtractions). Even
a modest bias towards efficiency, such as taking a = 3 = v = 6 > 3, changes

1
this by just 2% or less.

4 The Attack

4.1 Initial Hypotheses, Notation & Overview of the Attack

The attack here assumes sufficiently good monitoring equipment and a suffi-
ciently weak implementation. Specifically it is assumed that:

— Adds and doublings can always be identified and distinguished correctly in
side channel leakage from a single point multiplication; and

— Side channel traces are available for a number of different uses of the same,
unblinded key value.

For ease in calculating probabilities, we assume adds and doublings can always
be distinguished. Similar results hold if this is only usually the case. By the first
hypothesis,

— every side-channel trace tr can be viewed as a word over the alphabet {A, D}

where A denotes the occurrence of an addition and D that of a doubling. Here, as
expected, the trace is written with time increasing from left to right. However,
this is the opposite of the binary representation of the secret key k which is
processed from right to left, so that the re-coding can be done on the fly (Fig. 2).
For example, if the machine were to cycle round only states 0 and 1 giving the
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sequence of operations for square-and-multiply exponentiation, then the trace
would be essentially the same as the binary, but reversed: every occurrence of
0 would appear as D, and every occurrence of 1 would appear as AD. So the
binary representation 11001 would generate the trace ADDDADAD. There is
one D for every bit, and we index them to correspond:

Definition 2. The position of an instance of D in a trace is the number of
occurrences of D to its left.

Thus, the leftmost D of ADDDADAD has position 0 and arises from processing
the rightmost bit of 11001, which has index 0.

The attack consists of a systematic treatment of observations like the follow-
ing. The only transition which places D before rather than after an associated
occurrence of A is the transition (21). Hence, every occurrence of the substring
DAAD in a trace tr corresponds to traversing transition (21) then (12) or (11) in
the finite automaton. This must correspond to processing a bit 1 to reach state
2, and then two further 1 bits. The trace can be split between the two adjacent
As into a prefix and a suffix. There is a corresponding split in the binary repre-
sentation of the secret key k such that the suffix of k£ has a number of bits equal
to the number of Ds in the prefix of ¢r. This enables the position of the substring
111 to be determined in k. Moreover, by the next lemma, most occurrences of
111 can be located in this way if enough traces are available: DAAD appears
exactly when the middle 1 is represented by the transition (21).

Lemma 2. If 11 occurs in the binary representation of k then the probability
of the left-hand 1 being represented by transition (21) in a trace for k is m =

4p(l—=y).

Proof. 4p is the probability of being in state 2 as a result of the right-hand 1
and 1—+ is the (independent) probability of selecting transition (21) next. O

4.2 Properties of the Traces

Figure 3 lists the transitions and operation sequences which can occur for each
bit pair, including the probability of each. It assumes that initial states have the
probabilities determined by Lemma 1, and that neighbouring bits are unknown.
The figure enables one to see which bit pairs can arise from given patterns in a
trace, and to calculate their probabilities:

Lemma 3. Let k; denote the bit of k with index ¢, and p be as in Lemma 1.
Then,

i) For a given trace, if the Ds in positions i and i+1 are not separated by any
As, then the bit pair kiy1k; is 00 with probability (2—2u(1—v))~t, which is at
least % If the Ds are separated by one or more As in any trace, then the bit pair
1s certainly not 00.

ii) For a given trace, if the Ds in positions i and i+1 are separated by one A,
then the bit pair kiy1k; is 10 with probability % If the Ds are separated by no
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As or two As in any trace, then the bit pair is certainly not 10.

iii) For a given trace, if the Ds in positions ¢ and i+1 are separated by two As,
then the bit pair kiy1k; is certainly 11. The probability of two As when the bit
pair is 11 is 2u(1—), assuming bit k;—1 is unknown.

iv) For a set of n traces, suppose the Ds in positions i and i+1 are separated by
no As in some cases, by one A in some cases, and by two As in no cases. Then
the bit pair kiy1k; is 01 with probability (14+(1—2u(1—7))™) L.

Bit Operation State Probabilities,
Pair Patterns Sequences given the bit pair
00 D.D 000, 100, 300 1-2p
AD.D 230 2
10 D.AD 001, 002 i-p
D.AD 101, 102 i-2p
AD.AD 231, 232 24
D.AD 301, 302 B

01 | AD.D, AD.AD 010, 023 (3—wa, (3—p)(1-a)
AD.D, AD.AD 110, 123 (2=2p)8, (3—2p)(1-p)
DA.D, D.AD 210, 223 2u(1—7), 2uy
AD.D, AD.AD 310, 323 ué, p(1-4)

11 | AD.AD, AD.AD | 011, 012 (3—w)aB, (3—p)a(l-B)
AD.DA, AD.D 021, 022 | (3—p)(1—a)(1—7), (3—p)(1—a)y
AD.AD, AD.AD | 111, 112 (3—2p)B°, (3—2p)B(1-B)
AD.DA, AD.D 121, 122 |(3—2p)(1-B8)(1—7), (3—2u)(1-B)y
DA.AD, DA.AD | 211, 212 2u(1—7)8, 2u(1—y)(1-5)

D.DA, D.D 221, 222 2uy(1—7), 2uy?
AD.AD, AD.AD | 311, 312 wuéB, ps(1—pB)
AD.DA, AD.D 321, 322 p(1=0)(1—), u(1-08)y

Fig. 3. All possible operation sequences for all bit pairs, and their probabilities given
the bit pair occurs. (Bit pairs are processed right to left and operations left to right.)

Proof. 1) First, by inspection of the finite automaton, the only possible opera-
tion sequences for 00 are ADD and DD. So the Ds are always adjacent. The
intervention of an A will prove that the bit pair is not 00.

Suppose there is no intervening A between the two specified Ds. Using Figure
3, if the bit pair is 00 then the probability of this is mgp = 1; if the bit pair is
10 then the probability is 719 = 0; if the bit pair is 01 then the probability is
To1 = (l—u)a+(%—2u)ﬁ+u5; and if the bit pair is 11 then the probability is
m1 = (5—p)(1—a)+(3 —2p)(1—B)+ 2py+p(1—5). Thus, the correct deduction
of 00 is made with probability

moo/ (moo+m10+mo1+m11) = 1/(2—2pu(1—y)) >

[
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ii) Similarly, from Figure 3 the bit pair 10 must always include the operation A
once between the two occurrences of D, but this is not the case for any other
bit pair. Thus the absence of an A, or the presence of two As, guarantees the bit
pair is not 10. However, suppose there is exactly one A between the specified Ds.
By Figure 3, if the bit pair is 00 then the probability of this is #{, = 1—mgo = 0;
if the bit pair is 10 then the probability is 7], = 1—m = 1; if the bit pair
is 01 then the probability is 7y, = 1—m1; and if the bit pair is 11 then the
probability is 7], = 1—m11—2u(1—). Thus, the correct deduction of 10 is made
with probability
o/ (Tho+mio+mo +711) = 3.

ili) This part is immediate from Figure 3.

iv) Finally, by parts (i) and (ii), a bit pair which includes both the possibilities
of no As and of one A between the specified Ds cannot be 00 or 10; it must be
01 or 11. The probability of not having two As in any trace when the digit pair
is 01 is 1, of course. By Fig. 3 the probability of not having two As in any of the
n traces when the digit pair is 11 is m, = (1—2u(1—y))™. Hence the probability
of the pair being 01 rather than 11 is 1/(1+m,). a

We must be a little careful in the application of this lemma. Firstly, each
part assumes no knowledge of bit k;_;. Knowing it changes the probabilities.
In most cases, the differences are small enough to be considered negligible; for
accurate figures the table can be used to select just the cases starting in states
0 or 3 when the preceding processed bit is 0, and the cases starting in states 1
or 2 when that bit is 1. The only case where a qualitative difference occurs is
for 11 when AA only occurs if k;_1 = 1. In the case of k;—; = 0 this means we
cannot distinguish 01 from 11 so easily. This is a typical problem to solve when
reconstructing the whole key.

Secondly, deductions from different traces are not independent. For example,
suppose all of n traces have one A between the Ds in positions ¢ and i+1. From
(ii) of the lemma it is tempting to deduce that the bit pair is 10 with probability
1—(3)". However, the probability of this may still only be 3. In particular, this
happens when the parameters a = § = § = 0 are selected. Then the bit pairs 10
and 01 would always have exactly one A between the Ds, and bit pairs 00 and 11
would never have any As. So 01 and 10 would be equally likely with probability
% if exactly one A always occurred. The independent decisions which can be
combined are those based on the independent choices of random bits, as in (iv).

4.3 Reconstructing the Key

For this section we assume the default values which give the original algorithm,
namely & = 1 and 8 = v = § = 5. This means u = 7. Later we consider
alternatives which might improve security. Then Figure 3 immediately yields:

Lemma 4. For the above default values of the parameters,
i) the bit pair 01 has no intervening A between the associated Ds of a trace with
probability 19—4 and one intervening A with probability %;
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tz) the bit pair 11 has no intervening A between the associated D s with probabzlzty
7, one intervening A with probability > 11, and two As with probability L T1-

The choices which lead to the probabilities in the previous lemma are made
independently for each trace. Hence, for n traces and a pair 01, there are no As
in every trace with probability (19—4)” and one A in every trace with probability
(Z)™. A similar result holds for the pair 11. By averaging:

Lemma 5. For the default values of the parameters and n traces, in every trace
a bit pair of the form x1 has:

i) no As between the associated Ds with probability {(Z)™ + (2)"}/2 ;

it) one A with probability {(Z)™ + (£)"}/2.

To reconstruct the key k, first classify every bit pair as 00 if there are no
intervening As in any trace, 10 if there is always one intervening A, 11 if there is
an intervening AA, and, otherwise, x1 if there is a variable number of intervening
As. This correctly classifies all pairs 00 and 10, and pairs classed as 11 or 1 are
certainly all 11 or of the form %1 respectively For n = 10 both probabilities in
the lemma are bounded above by $(%)'® ~ 1/166. Thus about 1 in 83 bits pairs
01 and 11 will be incorrectly class1ﬁed as 00 or 10. Also, by the next lemma,
1—(2)1% > 2 of pairs 11 will be located correctly by occurrences of AA when
they are the left pair in triplets 111. The proof of it goes back to Lemma 2.

Lemma 6. For the default values of the parameters and n traces, the bit pair
11 has at least one trace exhibiting AA with probability 1—(%)” if it has a 1 to
the right and with probability 0 if it has a 0 to the right.

This is now enough information to deduce almost all the bits of a standard
length ECC key. Every bit which is deduced as the right member of a pair *1 is
correctly classified as 1 since the mixture of patterns used in the classification
is not possible for pairs of the form x0. However, about 1 in 8341 of the bits
which are deduced to be right members of a pair %0 is incorrectly classified as 0
because not all the possible patterns for the bit pair have occurred. In an ECC
key of, say, 192 bits, about two bits will then be incorrect.

Each bit b belongs to two pairs: b and bx, say. Traces for the pair b have
been used to classify b. In half of all cases, there is a 0 bit to the right and
the characteristic patterns of traces for the pair b0 can be used to cross-check
the classification. In the other half of cases the patterns for b1 also indicate the
correct value for b as a result of the ratios between the numbers of occurrences
of each pattern. However, the patterns observed for overlapping bit pairs are not
independent. Although unlikely, one set of patterns may reinforce rather than
contradict a wrong deduction from the other set. There is no space for further
detail, but the following is now clear:

Theorem 1. Suppose elliptic curve adds and doubles can be distinguished accu-
rately on a side channel. If the original Oswald-Aigner exponentiation algorithm
is used with the same unblinded 192-bit ECC key k for 10 point multiplications
then approximately half the bits can be deduced unambiguously to be 1, and the
remaining bits deduced to be 0 with an average of at most about two errors.
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This theorem says that a typical ECC secret key can usually be recovered on
a first attempt using a dozen traces with very little computational effort beyond
extracting the add and double patterns from each trace. By checking consistency
between deductions of overlapping bit pairs, most errors should be eliminated.
However, it is computationally feasible to test all variants of the deduced key for
up to two or three errors. The correct one from this set can surely be established
by successfully decrypting some ciphertext.

4.4 Secure Parameter Choices?

From the last section, it is clear that greater security could only arise from
making it less easy to distinguish between pairs of the form %0 and those of the
form x1. This requires choosing parameters for which 01 and 11 are less likely
to exhibit both no As and one A between the relevant Ds. From Fig. 3, the
probability of no As for 01 and the probability of one A for 11 are the same, viz.
™= (3= + (5-21)8 + uo.

So this must be made close to 0 or close to 1. For example, choosing a =
B = 1 makes p = 0 and so 7 = 1, whereas choosing a = f = § = 0 makes
m = 0. Thus both limits are possible. In general, for # = 1 (the first case) the
traces match the pattern of operations for normal square-and-multiply, so we
expect each A to correspond to the multiply of a 1 bit. Although 00 and 01 are
indistinguishable from the patterns, and 10 and 11 are indistinguishable (unless
perhaps AA could occur), the attacker now recognises that patterns for the pairs
0+ have no intervening A and patterns for the pairs 1x have one intervening A.
This gives him each bit unequivocally. At the opposite extreme, if 7 = 0 (the
second case) then 10 and 01 become indistinguishable from the patterns as do
00 and 11 (again, unless perhaps AA could occur). Now the attacker recognises
pairs with equal bits from pairs with different bits. Knowing the first bit is 1, he
can deduce all the bits one by one from left to right, and hence the key k.

In general the attacker can exploit the complementary frequencies of one A
for the pairs 01 and 11. Either they are close enough to ensure n traces usually
display both patterns (as in the previous section) or they are distinct enough for
the patterns to be strongly biased in opposite directions in the trace set (as in
the previous paragraph). He can then recognise either the equality of the second
bits or the difference in the first bit respectively, and use the fact that each bit
belongs to two pairs to cross-check the deduction of many bits. Consequently,
there are no secure choices of the parameters under repeated use of the unblinded
key k.

Identical working to the previous section shows that similar computations
can be performed for keys of any length. With the choice of parameters there,
the number of traces needed to achieve a specified degree of confidence in the
determined bits is n = O(loglog k) because we want at most one error in ()" =
O(log k) bits. The same calculations apply for any 7 which is not 0 or 1, giving
the same size order for n. For the working above in this section, mistakes are
only made when too many traces record the opposite pattern to that expected
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from the value of 7. Then, for 7 close enough to 0 or 1, the same bound on the
size of n can be obtained for limiting the errors. So,

Theorem 2. No choice of algorithm parameters is secure for a reasonable key
length under the above attack if O((logk)?) decipherings are computationally
feasible and O(loglogk) traces are available from point multiplications using the
same unblinded key.

When adds and doubles are not distinguished with 100% certainty, the pro-
portions of numbers of As can be used to assign a likelihood to the correctness
of the selected bit pair. Those which are most likely to be wrong can be modified
first, thereby decreasing the search time to determine the correct key.

4.5 Counter-Measures

In the absence of a secure set of parameter choices, further counter-measures are
required. The most obvious counter-measure is to restore key blinding. A small
number of blinding bits might still result in the attacker’s desired 10 or so traces
for the same key eventually becoming available. These might be identified easily
within a much larger set of traces by the large number of character subsequences
shared between their traces. So the size of the random number used in blinding
cannot reasonably be less than the maximum lifespan of the key in terms of the
number of point multiplications for which it is used. Thus 16 or more bits are
needed, adding around 10% to the cost of point multiplication.

Identical formulae for additions and doublings are increasingly efficient and
applicable to wider classes of elliptic curves, those of Brier and Joye [1] in part-
icular. These should make it more difficult to distinguish adds from doubles.

Another favoured counter-measure is the add-and-always-double approach.
Then the pattern of adds and doubles is not key dependent. Each occurrence
of DD has an add inserted to yield the pattern DAD, but the add output is
discarded without having been used. This can also be done for the Oswald-Aigner
algorithm provided, in addition, an extra double is performed to convert each
DAAD into DADAD. The output of this double is likewise ignored.

Alternatives algorithms exist. That described by Joye and Yen [5] is another
add-and-always-double algorithm. There are also several randomized methods [3,
15] which seem to be more robust because they do not satisfy the two properties
identified in the introduction as those to which the above attack can be applied.

5 One Trace

It is interesting to speculate on how much data leaks from a single point multi-
plication since the above counter-measures should prevent re-use of identical
values for the same key. Oswald [10] noted that for some deterministic re-coding
algorithms in which several non-zero digits generate indistinguishable As, the
operation patterns resulting from numbers of up to 12 bits could only represent
at most 3 keys. By breaking a standard ECC key into 12-bit sections, this means
very few keys actually generate an observed patterns of operations. Moreover,
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these can be ordered according to their likelihood of occurrence, and this con-
siderably reduces the average search time for the correct key. Hence the key can
be recovered quite easily.

Is the same possible here? In [10] she also writes that the same attack is
possible on randomized algorithms with weaker results, but provides no detail.
Randomized algorithms have much weaker inter-dependencies between adjacent
operation patterns. This should substantially increase the number of keys which
match a specific pattern of point operations. The key Lemma 3 above does not
provide certainty for many bits unless a number of traces are available; only
the infrequent instances of AA seem to allow definite determination of any bits
from one trace. Of course, an analysis of sub-sequences of more than two bits is
possible, as in [14], but, besides better probabilities, this gives no further insight
into whether it is computationally feasible to recover the key from a single trace.

Instead, software was written to enumerate all the keys which could represent
a given string. On average, for the extended version of the algorithm, the trend
up to 16-bit keys indicates clearly that a little over O({l/E) keys will match a
given pattern — under 20 match a given 16-bit pattern. This would appear to
ensure the strength of the algorithm when a key is used just once but only if the
key has at least 2% bits or there is considerable ambiguity in the side channel
about whether the operations are adds or doubles. The original algorithm has
fewer random choices, and so has even fewer keys matching a given pattern.
Thus, a standard ECC key could be recovered from a single trace in feasible
time if adds and doubles are clearly distinguishable.

6 Conclusion

One of several, similar, randomized exponentiation algorithms has been investi-
gated to assess its strength against a side channel attack which can differentiate
between elliptic curve point additions and point doublings. Straightforward the-
ory shows that at most O(10) uses of the same unblinded key will enable a secret
key of standard length to be recovered easily in a computationally feasible time.
No choice of parameters improves security enough to alter this conclusion. Using
longer bit sequences than the theory, it is also clear that software can search
successfully for keys when just one side channel trace is available. However, this
number may need increasing if adds and doubles might be confused or standards
for key lengths are increased.

The main property which is common to algorithms which can be attacked
in this way seems to be that the next subsequence of operations at a given
point in the processing of the key must be chosen from a small, bounded set of
possibilities which is derived from the key and the position, but is independent
of previous choices. Hence, our overall conclusion is that such algorithms should
be avoided for repeated use of the same unblinded key if adds and doubles can
be differentiated with any degree of certainty. Furthermore, for typical ECC key
lengths, a single use may be sufficient to disclose the key when adds and doubles
are accurately distinguishable.
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