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ADJACENCY MATRICES
COLIN D. WALTER'

Abstract. For a grapi” with vertex seV an algebra of adjacency matrices is defined and viewed
as an equivalence relation @< V with certain nice properties. This can be used in dlyos to find
automorphisms of graphs and isomorphisms between grhpdiso provides intersection numbers
independent of the labelling dhwhich determine the similarity class of the adjacencytalge

AMS(M OS) subject classification. 05C50

Introduction. This article has two main objectives. The first dsassociate as high a
dimensional algebra af x n matrices as possible with the adjacency matrix ofbelled
graphl” on n vertices. In this way a set of intersection numbsrgbtained which is an
invariant for the isomorphism class bf The other aim is to show that these intersection
numbers provide a finer decomposition into equivalence daskgraphs than do graph
spectra, even with the more general definition givene.hié therefore seems likely that nice
classification theorems must exist using these numigériyg more powerful results than
from spectra. Indeed the theory of distance transitvaphs illustrates this (see [1]).
However, such results are not given here. What is geovis the step from a given graph to a
coherent configuration as defined by D. G. Higman [4] amel @an then apply his theory. He
gives some applications.

The associated algorithm WhICh tests for isomorphism dayputing these numbers
(implicitly) has order at worsh® log n and can be applied recursively to the subgraphs
obtained by deleting vertices until isomorphism is esthbll or confuted. The calculation is
then producing generalised intersection numbers corresgpsdccessively to ordered pairs,
triples, quadruples, etc., of vertices. This points to tberect generalisation to yield
invariants which completely determine the isomorphisnsatdishe graph.

Sections 1 to 3 are definitions and elementary prope8msion 4 starts with a couple of
well-known results which can be traced back to FrobefdusFrom them is deduced that
intersection numbers are more discriminating than peetsum. In 8 5 these numbers are
shown to be equivalent to knowledge of the regular repratsem for which a symmetric
definition and an easy method of computation are gitestly, in § 6, the names of the
labels, hitherto ignored, are traced to ensure that amoiphism preserves not just the
equivalence classes of edges carrying the same labelsbuha label itself.

The starting point of this paper was a talk by Charle§oRnson on a joint work of his
with Morris Newman [5]. The author would especially likcethank T. J. Laffey for many
helpful conversations during its development.

The intersection numbers are obtained in the followag. LetA be an adjacency matrix
of a graphl". Any automorphism of acts as a similarity transformation by a permutation
matrix onA. Thus such transformations act trivially on the algejaaerated by all such for
the given graph. A generic matrix of this algebra can be teseartition the vertex s&tof I’
into subsetd/, V-, ..., 4, with the property that any automorphismlofestricted tov; maps
ontoV;. TheV; are unions of orbits under the automorphism group.

This can be expressed abstractly using equivalence redatioV x V: giving a “colour”
to each edge and vertex. There is a smallest refineafethis colouring ofV x V with a
property corresponding to closure under multiplicatiormatrices. This is called here the
completionof the colouring, but is just @herent configuratioin Higman’s terminology.

The formulae in terms of colours for the product of twatrices in this algebra define
the intersection numbers and determine the algebra umtlardly. Thus they are identical
for isomorphic graphs and can be used as a test for isomwrphie adjacency algebra
defined in this way is larger than the usual one, being gewkelsy all possible adjacency
matrices instead of a single 0, 1-matrix. It is big enoiwagbhow how closely connected are
the ideas of similarity, co-spectrality, and intet&getnumbers.

AddendumThe author would like to note that associating a coher@nfiguration with
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a graph is the subject of [10]. This does not seem to Hekm@lvn despite its reference in
[11]. The first few sections here describe the method.

1. Colourings.

DerFINITION 1.1. LetV be a finite set and an equivalence relation ovi x V with r
equivalence classes. Thens called anr-colouring or colouring of V and the equivalence
classes are called tlgeloursof c. The set of such classes will be denoted layd the class
of (i, ) OV xVbyc(, j). This should be distinguished froa({(i, j)), also called theolour of
(i, ), which is always the image ofi, j) under an injective map. Elements\bére identified
with the diagonal o¥ x V and calledsertices whilst off-diagonal elements are calledges

For example, lef be a graph oWV with edge sek. ThenTl yields a 3-colouring of/
whose colours ar¥, E, and V x V)\(E O V).

DerFINITION 1.2. Forn = (VO and a commutative ring containing the integerz, let
My(R) be the set of x n matrices with entries iR whose rows and columns are indexed by
V. Any injective mapc — Rwith c(i, j) — c((i, j)) defines a matriA = (g;) 0 M\(R) by a; =
c((i, j)). Such a matrix is called adjacency matrixf c. Conversely, given a matrix A =)

0 MWR) there is a uniquely determined colouring for whicks an adjacency matrix, namely
that given byc(i, j) = c(k, 1) = a = aq for all i, j, k, | O V. The colouring so obtained is
denotedca. If the set of distinct entries oA are algebraically independent ovér(as a
subring ofR) thenA is called ageneric matrixof the colouring it defines. A set of generic
matrices (not necessarily for the same colouring)atedindependenif the entries in each
matrix are distinct from the entries in every othaatrix and the set of distinct entries from
all the matrices is algebraically independent c&er

LEMMA 1.3.Let ¢ d be colourings of VThen c=d if, and only if ¢((i, j)) = c((k, |)) =
d(@, j)) =d((k, 1)) for all i, j, k, | O V.

Examplel.4. The colourings with adjacency matrices

2 3 1 3 2]
A=p 127 and AT = 2 1 30
B o3 1f B2 1f

are equal.
DerFINITION 1.5. (i) There is @artial ordering< of colourings given by

c<dif, and only if,c(i, j) O d(i, j) for all (i,j) OV x V.
(i) The sumor join c + d is defined by

(c+d)(i,j)=c(i, ) n d(i,])

and themeet cl d is defined so thatc(O d)(i, j) is the smallest union of colours of
containing {, j) which is also a union of colours @f

(i) The rank of a colouring is the numbefic of equivalence classes afClearly 1<
COcO< n? for n = VL

LEMMA 1.6. (i) Thecolourings of V form a lattice underwith meet and join as above

(i) c +d is the least upper bound for ¢ andml particular, c<c+d and d< c+d. Also
c + d is the colouring defined by the sum of independent generic matricesaiud d
Moreover c +d=cifd<c.

(i) c Od is the greatest lower bound for ¢ andml particular, c0d<c and cO0d<d
with cOd=cif c<d.

(iv) Themap o— [cis order preservingi. e ¢ < d implies[c < Od. Alsac O dO <
(e < Oc+d0 <0clD d.

DerINITION 1.7. (i) There is a unique minimal colourikg corresponding to the zero
matrix. This is a 1-colouring witty(i,j)) =V x V.

(i) There is a unique maximal colourimg which is defined by(i, j) = {(i, j)}. It has
[VCF colours.
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(ii) The identity colouring cis that which corresponds to the identity matrix. Iaig-
colouring withg(i,i) =V OV x Vandc(i,j) =V xV\Vfori #]j.

DEFINITION 1.8. Thetranspose colouring'ds defined byc'(i, j) = c(j, i) whereS' = {(i,
i) 4G, i) O S for any subseSof V x V. A colouringc is calledsymmetridf ¢ = ¢" andtotally
symmetricif c(i, j)" = c(i, j) for all i, j O V. Becausej(i) O c(i, j)', cis totally symmetric
precisely where(i, j) =c(j, i) for alli, j O V.

Remarkl.9. Supposd is a generic matrix for. ThenA' is a generic matrix foc'.

Example 1.4 illustrates a symmetric colouring which doesarise from a symmetric
matrix. The totally symmetric colourings are charasesl by having symmetric adjacency
matrices, whilst the symmetric colourings are charesdrby having their set of adjacency
matrices closed under the transpose mapping.

The productcd of two colourings is defined as that obtained from thedpct of
independent generic matrices toandd. Hence we have the following definition.

DerINITION 1.10. Theproduct cdof two colouringsc, d of V is defined by its injective
image

cd((i, j)) = {c(i, t) x d(t, )Tt O V}
or, equivalently,

cd((i, )) = {( c((i, 1), d((t, 1)) )X O V}

where the elements are counted with appropriate maitiplAll such sets from here on will
be assumed to have multiplicities attached to their elememrtshey are multisets or bags

In computations as in Example 1.4 the valagfs, j)) are usually integers. Then the
product clasd(i, j) consists of those directed edges) yielding the saméNC+tuple of
pairs €(i, t), d(t, j)) sorted into order. Thus, @ d are the colourings in Example 1.4, then
cd(2,3) is the set of edges giving the triple (13, 21, 32).nkge matrices are used, one has
X3y +tX1ys+Xoy1 representing this class. Ordering the terms lexicographieald recording
only subscripts yields the previous triple.

THEOREM 1.11. (i) Thesum and product operations satisfy the usual associative and
distributive axioms of ringsAddition is commutative but multiplication is not commutative if
V> 1.

(i) cg=candcc=c.

(ii) ce< dfif c<dande<ffor colourings ¢d, e, f.

(iv) c +d<cdif c2 ¢ andd=c.

Proof (i) Generic matrices which determine colourings satiké/ named axioms of ring
theory. Hence the colourings themselves satisfy tlhggems. ForCV[] > 1 let ¢ be the
colouring with generic matrid = (a;) such thaiy; = x anda; =y for i # 1. Easilycc’ # c'c
since the former is a 4-colouring and the latter tr@dwuring.

(iiy (k, ) O cq (i, j) implies

{ ok ) xat NXOVY = {ci, ) xat )0V}

Equating terms which contain the diagoWat ¢ (t, t) givesc(k, I) =c(i, j) and hencek( I) O
c(i, J). Thusca(i, j) O c(i, j) andcg = ¢c. By symmetryc, c = c.

(i) (k, ) O df(i, j)implies{ d(k, t) x f(t, DOt O V } = { d(i, t) x f(t, j)Ct O V } and hence
{ckt)yxet, DOV} ={c(i,t) x et, )t OV}. Therefore k, 1) O ce(i, j). Thusdf(i, j) O
cq(i, j) andce< df, as required.

(iv) From (i) and (iiil)c<cg <cdandd< ¢ d<cd, givingc +d < cd.
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LEMMA 1.12. (|)

(ii) (cd) Z d'c and( (c+d) =c'+d";

(iii) cc"andc+c’ aresymmetrlc;

(iv) c<dimpliesc’ < d' andviceversa;

(v) el e

PROPOSITION1.13.Letc" be the product of ¢ with itself r times fofl Z, r > 0,and set’
=¢. Taken=0VO> 1.

(i) If c=c, then there is a positive integer< n? such that € =c™" for all r = 0.

(i) For each colouringe there are positive integers, p bounded by functions ofsuch
that ¢ =™ forallr >m.

Proof. (i) By Theorem 1.11(ii) and (i)’ < c'c,<c™*forallr=2 0. If =c’ <c' < ..<c
then 2 =0c°0 < Oc'0< ...<Oc'0 by Lemma 1.6(iv) and $&@' 0> r+1. Now[Ic'0< n® yieldsr
< n®. Hence there is a maximal value m with this property, i.ec™ = ¢™* which givesc™ =
c™ forallr = 0.

(ii) This is automatic from the finitude of the numbéicolourings for fixedh.

DerINITION 1.14. In Proposition 1.13 the minimalsatisfying (i) is called therder of c,
and the minimal value qf satisfying (ii) is called theeriod of c.

Thecompletionofcis ¢ = (c+c' +¢ )”2 for n=[V[J, andc is calledcompleteif ¢ = c.
Remarksl.15. Note that + ¢’ + ¢, = ¢ . Thus, by Proposition 1.13, its period is 1 and
= (c + ¢" + ¢)™ wherem is the order oft + c' + ¢. In computations € is obtained by

successively squaring+ c' + ¢;. Therth squaring givesc(+ ¢ + ¢ )2r and soc results after
at most log(n®~1) steps. The computation terminates when squaring retuensame
colouring.

c is the maximal colouring obtainable frazrusingc, and the operations so far defined
because of the next theorem.

THEOREM 1.16. ()c?=¢C; c+Cc=c;and C
(i) fci< ¢, ;< cthenge € ¢, +C <
(i) If c<sdthenc < d,

(iv) T=rc,

(V) ca=c=c¢candc=c

(vi) cis complete ifand only if c= ¢, ¢’ =candc® =c.

THEOREM 1.17.Suppose c is the totally symmeticor 3-colouring of a regular graph

with adjacency matrix A and is the colouring associated witH. Ahen for n = OV, € = co
+C+ ... +Ch-1.

Proof. By Theorem 1.16¢; < ¢ and therefore, < ¢ wherec, = co+ ¢; + ...+Cny. Nowce
has generic matrixl + yJ + zA with JA = AJ = dJ for somed O Z andJ* = nJ. So any
polynomial inl, J, Ais a linear combination &, A%, ..., A" andJ by the Cayley-Hamilton

theorem. Sincec = (c + ¢)' for i large enoughg has an adjacency matrix of this form and

< Cp, giving C = Cp.

Remark1.18. Complete colourings are the same as coherent catiing in the sense
of D. G. Higman [4]. The intersection numbers he hagust the multiplicities of the various
terms in each entry of a product of two independent gemaatrices. Thus completion
provides a natural and easy way of associating a cohawafijuration with any graph. The
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completion ¢ is the minimal coherent configuration which is a refieatmofc. If ¢ is totally
symmetric then it is an association scheme in émse of Bose and Shimamoto [2]clis

obtained from a strongly regular graph, ther c (see J. J. Seidel [8]).

2. Automorphisms.

DEFINITION 2.1. LetS, denote the group of permutations\bfS, acts naturally otV x V
by o( i, ) = (di, gj). ThusdT is well-defined for subsefEof V x Vando O S,. In particular,
a colouringc with classes;, ¢, ..., ¢ yields a colouringot with classesoc,, oc,, ..., ot
whereac, = {(adi, g)) [0(i, j) O ¢« }. The trict) automorphism groupwut*c of a colouringc
is the subgroup dd, consisting of permutations which leave the colours fixed,

o0 Aut* c = ocg =¢ for each coloug; of c.

Of less interest here is the group Aut { o0 S,/[Joc = ¢} which may include automorphisms
which permute the colours nontrivially. For a matkix (a;) with associated colouring gA
= (oa;) is associated witlit and so has entriesa; = as 1 0. Then, obviously, Autt = {o
O S/OoA = A} whilst Aut c consists of those for which dA is also an adjacency matrix af

LEMMA 2.2. (i) oc+od = o(c+d); (oc)(od) = o(cd) ; o(c') = (ov)' for 0 Sy ;

(i) Aut* (c+d) = Aut* c n Aut*d;

(i) Aut* (cd) = Aut*c n Aut*difc=zc and d>¢ ;

(iv) Aut* (c"=Aut* c;

(v) c<d impliesAut* ¢ O Aut* d.

Proof. (i), (iv) and (v) are clear.

(i) If A, B are independent generic matricesdpd then

o Aut* (c+d) = oA+B)=A+B = ((A=AandoB=B) = o Aut* c n Aut* d.

(ii) Here o O Aut* ¢ n Aut* d implies o(AB) = (0A)(oB) = AB and soo [0 Aut* cd.
Thus, Aut*c n Aut* d O Aut* cd without restriction. Assuming (v) and using (i) with
Theorem 1.11(iv) gives Auté n Aut* d = Aut* (c + d) O Aut* cd and so equality must hold.

THEOREM 2.3. Aut*c = Aut* (c +c' +¢ ) = Aut* c.

3. Complete colourings.

LEMMA 3.1.Suppose s complete

(@) c(i, j) Z2c(k 1) if & # Aa (Kronecker deltg.

(iiy If c(i, J) = c(k, 1) then there is a permutatiom [0 S, with di, t) = c(k, ot) and ¢t, j) =
c(ot, ) foralltO V.

(iii) If c(i, j) = c(k, 1) then i, i) = c(k, K) and &, j) =c(l, I).

Proof. (i) is immediate front = ¢;. Using the definition of product ard = ¢ gives {(i, 1)
x c(t, )t OV} = c4((i, j) = cA((k 1)) = {c(k t) x c(t, DTt O V}. Any bijection between these
two bags which preserves colours determines a suitablé S, in (ii). In particular,
restrictingo to diagonal classes yields (iii).

THEOREM 3.2 [3, 82.10if V=V, 0 Vo 00 ... [0 V; is the partition of V induced by the
diagonal classes of a complete colouring ¢ then each blogk/\Vis a union of colours of.c

CoOROLLARY 3.3. With the hypotheses and notation of TheoBBthe permutationo [
Sy in LemmaB.1(ii) satisfiesoV, =V, for each i

COROLLARY 3.4. Suppose Vand 4 are diagonal classefossibly equalfor a complete
colouring ¢ Then{c( i, )0t 0 V,} and{c(t, j))OtO Vq} are independent oflil V; and jO V,
respectively Themultiplicities of a colour gin i x V, and \f x j are related by

e n (I XVz)[m ViO=Ocx n (V]_XJ)[D] Vo[
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If ¢ O Vi % V, then[V;O and [V, divide Co [

Proof. Fori, i’ O V4, c(i, i) =c(i’, I'). So, by Lemma 3.1, there isal1 S, with c(i, t) = ¢(
I’, ot) for allt O V. By Corollary 3.3,0 restricts too, : V. - Vo. Hence £(i, )OOt O Vo} is
independent of (I V;. Independence for the second set follows similarlpyapplying the
transpose. This immediately gives the equation relatingdfipticities, both sides having
cardinalityClck n Vi x V,[ The last part is now clear.

THEOREM 3.5. Therestriction ¢ of a complete colouring ¢ tg ¥ V; for a diagonal class
V; of ¢ is a complete colouring with one diagonal class

Proof. Clearlyc = ¢, andc = ¢ because these properties hold doSuppose(j, k) =
ci(r, 9. Thenc(j, k) = c(r, s) and by Corollary 3.3 the permutatian] S, defined in Lemma
3.1 restricts to a mag; : Vi — V, such that(j, t) = c(r, ait) andc(t, k) = c(ait, 9 for t O Vi.
Soc((j, K) = {c(j, ) x c(t, OO Vi} = {c(r, t) x c(t, 90t O Vi} = c((r, 9)). This means;® <
¢ and hence; = ¢®. Thusc; is complete.

Remark3.6 [3, 88]. In the same way a complete colouring strio a complete
colouring on any union of its diagonal classes.

DerINITION 3.7. The number of colours on the diagonal of a calguwri> ¢, is denoted
Idl. A complete colouring is calleggular if lldl = 1 (“homogeneous” in the terminology of
Higman).

Remark3.8.lIdP < Cc for complete colourings.

4. Adjacency algebras and determinants. If we regard a matrix iM\(R) as a map/ x
V - Rin the obvious way, then the adjacency matricesaflauringc are the mapg: V x
V - Rfor which everyg(r), rO R is either the empty set or a colour@fThe adjacency
matrices for all colouringsl < ¢ are the mapg: V x V - R which are constant on each
colour ofc, that is,@™(r) is a union of colours af for allr 0 R. Such matrices form a frée-
moduleM. = M¢(R) of rank Ccld. Certainlyl O M if, and only if,c = ¢.. Indeed,c < d if, and
only if, Mc 0 Mg. The most important observation is tivg is a ring if ¢ is completaVhenR
is a field andc is completeM is therefore an algebrdl: is theadjacency ring(or algebra)
overR of the colouringe.

THEOREM 4.1 (see e.g. Higman [4]For a subfield K of the complex humb&sand a
complete colouring the adjacency algebra ¥K) is semi-simple

For the rest of this section take= C. Since the only division ring ovet is C itself,

Wedderburn’s theorem says that for the decompositionzﬂ:lgi of 1 into minimal central

orthogonal idempotents arM; = Mcg there is a decompositidv. :Diﬂl M; of M¢into a

direct sum of full matrix algebrall; over C. If M; consists ofg x g matrices, then the
minimal irreducible left (or rightM;-modules have dimensicg and charactet;, say. The

vector spac€” on whichM_ acts decomposes @ = O, & C"whereg C"is a direct sum
of, say,z copies of the irreducibli®li-module with charactef;. If C¥ has charactef thenl =
s M z¢; and equating degrees gives (VO = Y, z¢ andcd= Y™, g°. Clearlyz
> 1 for each since the representation if in M\(C) is faithful.

By the Noether-Skolem theorem there is an invertibderix U [0 M\(C) suchthat for all
A0 M,

U'AU = diagD1(A), ..., Di(A), ...,Di(A), ...,Dm(A))
1__multiplicity z__1

is a block diagonal matrix witB;(A) affording i(A).
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For genericA, det D;(A) is irreducible as follows. SincBi(A) = (d:s) is generic forM;
every entry is distinct and independent of the otheed. detDi(A) = fg be a nontrivial
factorisation and = d;;. Without loss of generality de§= 1 and degg = 0. Choose entry
with deg g = 1 and degf = 0. Asfg contains a term which is a multiple xof we may assume
y = dy2 by row and column interchanges. Take = d; = 1, ds = O otherwise for ¢ s, and
dr = 1 forr > 2. Then deD;(A) specialises taxy —1 which fails to factorise in the required
way. So deD;(A) is irreducible.

Thus, if A is generic then|‘|i”;1 det Di(A)a is the factorization of deA into its

irreducible factors. Hence deé% determines thes and z (= 1) uniquely. They in turn
determineV; 0 M\(C) up to similarity.

Conversely, to obtain a determinant for a given sintjlaiGlass, pick a matrix
representation containing a generic matrix whose distinictes are linearly independent and
which generates the algebra.

THEOREM 4.2.For a complete colouring,M(C) is determined up to similarity by the
determinant of a generic matriand conversely

Warning4.3. R. Mathon [6] has some regular graphs on 25 verticeshwigld complete
3-colourings that are not isomorphic but have similaa@ahcy algebras ov€l. These also
appear in [10] and seem to have been computed independentlydrgigpeople.

Consider next maps: ¢ — C : ¢ — a from the colours; (1<i<r)ofcintoC. LetC*
denote the set of such maps. If for edcl) (0 V x V we are giverk such that(i, j) = ¢ then
the structure oA as an adjacency matrix is given &y= ax and we obtain a map det C°
- C: A det @;). Clearly, from Theorem 4.2:

COROLLARY 4.4. For a complete colouring,cdet ¢ determines the adjacency algebra
M¢(C) up to similarity and conversely

The maps irC°® form an algebra (the regular representation) isomonghid.(C) under
the operations induced by the mag (a;) — Ac whereA: : (i, ) — a;.

THEOREM 4.5.Suppose the partition of ¢ into diagonal and off-diagonal colours is given
for a complete colouring.@hen M(C) is determined up to similarity by multiplication @f
defined on its natural basis

Proof. By Corollary 4.4 it suffices to reconstruct detMultiplication can be described

giving the intersection numbeng such thatA.B; = Fc O C° satisfiesf; = 5, | njx ajby . If ¢
=V, is a diagonal colour then a colagjtbelongs to the block; x V; if, and only if, nj; = nj;
= 1. Solg = Z,j,knjik can be found where the sum is restricteglwath ¢; O V; x V. Let
A. O C®and computeX). for i ON. Then each trace TA]) can be calculated using Fr=

ZI |ci |a1 where the sum is over diagonal classes. Newtomniaitae then yield deA and we

obtain detc.

This theorem is implicit in Higmard[ 85]. There is a partial converse to the above which
is given in [9].

Remark4.6. Detc provides the spectrum of a graph, and, by virtue of the mbéf5, it
follows that the intersection numbers determine equixaleclasses of graphs which are at
least as fine as those given by the spectrum.

5. The regular representation of the adjacency algebra. The adjacency ringv; =
Mc(R) of a complete colouring is the set of mapg x V — R which are constant on colours
of ¢ with suitable multiplication. This gives the standaegresentation o as a ring of
matrices operating oR’. The regular representation is given by considekigs the seR’°
of maps from the set of coloursofo R. It is obtained as a ring of matrices as follows.



ADJACENCY MATRICES 25

DEFINITION 5.1. For a colouring and Ay = (a&;) U M\(R) the standard (i.e. adjacency
matrix) representation & [0 M., define the matriA. = (am) with entries indexed by colours
|, mofc by

am= 00202 5, |6 n 1] §) nomiag

These matriced. acting onR°® give theregular representation of M
Remark5.2. Higman [4] makes a slightly different definition foomplete colourings,
namely

am= 3 o[t 0 gy
where ¢, j) O m. This is independent of the choicetpf O V by virtue of Lemma 3.1(ii).
Summing over all such t,( j) to incorporate this symmetry yields, =

5ol 116, 1) 0 g Ths
am = 00" 0m02a’y .

In other words, rows and columns have been multipliecebin factors.

PROPOSITIONS.3. Let & be the colouring defined on a setlaf] vertices by the regular
representation of a colouringxc,. Then g is symmetrigrespectivelytotally symmetrigif,
and only if c is. Alsg, cr = C..

Proof. First observe that if (] ¢ andd is the diagonal colour in the same row dsenag
= EkjEF”ZDIEF”ZZi:(i,i)Dd > i:q.j)n & = ua for any ¢, j) O 1 and some constant # 0

dependent only oh Hence the mapaf) — (am) is one-one. It now suffices to notice from
the formula thatd;)" — (am)".

Finally, ay contains a nonzero multiple ef if i, t 0 V are chosen witht(i) O |, but for
noi cana; appear irm if | #m. Socg = ¢.

Examples5.4. The following are generic adjacency matrices pairéld their regular
matrix images:

@ ¢c ¢ b d dO
%: acd b d% Ba b 2 \/Edg
& c a d d bO ob a J2d J2cp,
] and ;
go d d a ¢ c EVEC J2d a+c b+d%
%ﬂbdcacg B/2d J2c b+d a+cqH
f[d d b ¢ c af
Ba b J2d 0 0 o%
m b d dO ob a J2d 0 0 0
0 0
b oa d dp g N2g V29 e+t 0 0 00D
Edg g e f% 1o 0 0 e f \/EgD
9 g f er Do o o f e +2¢t

0 0
50 0 0 +2d +2d a+bp

LEMMA 5.5.1f ¢ is completethe map(a;) — (am) from the standard to the regular
representation is an R-module ring monomorphism

Proof. The property for addition is clear. Supposg) (and @’j)) are two adjacency
matrices with images,) and @'im). Using the formula in Remark 5.2y¢) = (am)(@’m) has
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bm=> c@,n@nm =

S el AR 3 vl n llag H m S vtk) o ma}

where {, j) O n. Summing over allt(j) O nand alln [ c yields

bm = 702 e 0 0 6K 0 g 3

which is thelm-entryof the image ofd;)(a’;). As in Proposition 5.3, the map is one-one.
THEOREM b5.6.Let W, V,, ..., Vi be the diagonal colours of a complete colouring c

~1/2 ~1/2) -1/2
n

Suppose inis the number of colours in ¥V, so thatlc| = zit:lni . Then the matrices giving

the regular representation of JiC) are block diagonal with blocks of sizexm; for 1<i <t.

Proof. Supposé, mO cwith | OV, xV.If mOV; xVthenam, = 0 becauset|(i) n || =0
whenever {; j) O m. The closure under the transpose map described in PiopoSiB
ensures thad, = 0 also. This establishes the block diagonal nature ofridigices, each
block being indexed by th& colours inV; x V for its rows and columns.

Any mapf: V - Wof finite sets can be used to obtain a colouring\bffom a colouring
onV. In terms of graphs the mdpeplaces each sét'(w) of vertices inV by a single vertex
w [0 fV. In practice f can be viewed as an equivalence relatio’Vavhich identifies various
vertices.

DerFINITION 5.7. (i) For subset§, T of V we definec(S T) = {c(s, )s O S t O T},
counting eacla(s, t) with the appropriate multiplicity.

(i If f: V - Wis a map of finite sets arda colouring orV thenfc is the colouring orfV
defined byfe((i, j)) = o(f 71,  7Y).

(i) In casef is written as an equivalence relatiomrV (mappingV to \7) we writec for

the colouringic on V.
LEMMA 5.8.If A = (a;) is a generic matrix for the colouring ¢ on V andis an

equivalence relation on V them has adjacency matrix with entries
~ =12 -1/2 v
@ = M T iy pvay foru vV
Note howeveythat Aneed not be generic for ¢

Proof. Putaw = % i, Zm v&j foru v V. Then Gu) is an adjacency matrix far. For
any linear functiorf = % . jDV/]ij & of theaj's let [f || =5 ; jDV‘/‘ij ‘ Then & = v and

| awl| = b[*? MY Henceau, = ayy if, and only if, &, = ay. So(aw) is also an adjacency
matrix.
THEOREM 5.9.Define an equivalence relation ~ on V by i ~ pifid only if ¢(1, 1) = c(1,

j) where cis a complete colouring_et A— A be the map MR) - Mz(R) given in Lemma
5.8.Then Ais the first block of Ain the regular representation when the indices are paired
c(1,i) with T.

Proof. Let (a;) be an adjacency matrix far ( ar) the image under ~ andyf) the first
block of the regular matrix.

Write I” instead oft(1, i) to index the regular matrix block. So
ar = 0oL, )00, T2 iorjeray
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= OOtoe(d, j) 0201, )TV iorjoray = ar
since\V,[II i O = Oc(1,i)OwhereV, is the first diagonal colour.
Remarks 5.10. Naturally, Theorem 5.9 is the fastest way to obthe regular

representation. Moreover, this representation is indig@rof the vertex numbering. By the
definitions, it is entirely determined by the intersectimmbers, and conversely.

6. |somorphisms.

DEFINITION 6.1. Letc andd be colourings o andW respectively. Arisomorphismfrom
ctodis a bijectiorf : V . Wsuch thafc = d in the notation of Definition 5.7. If, in addition,
@:c - dis a bijection between the coloursméndd thenf is called apisomorphismf f
induces @ on the colours. In particular, ¥ = W and ¢ = d then an isomorphism is an
automorphism and vice-versa; and wlggs the identity, then gisomorphism is just a strict
automorphism. In generdlwill map the diagonal colours afonto the diagonal colours df
and applying the transpose to colours commutes with thef inalpices on colours. We will
require@ to have these properties.

If c andd arise from two graphs thepis usually the map which matches properties of
one graph with those of the other. Then the existefice @isomorphism fromc to d is
equivalent to the graphs being isomorphic. By viewingV - W as a re-naming of
subscripts, we have (cf. Lemma 2.2(i)) the next lemma.

LEMMA 6.2.Let f: V — W be injective and, d colourings on VThen

(i) a generic matrix for c is generic for fc

(ii) f(cd) =f(c)f(d) ; f(c+d) =f(c)+ f(d) ; f(c") = (fo)" ;

(i) f(T) =fc;

DEFINITION 6.3. Letc, d be symmetric colourings ¢,. Supposeap: ¢ — dis a bijection of
colours which restricts to a bijection between the diagoalours and which commutes with
the transpose map. There is an induethodule isomorphism® : R® - R of regular
representations. [ commutes with multiplication, then it extends to gorid : R® _ R®:
AB . ®(A)P(B) for A, B O R. This yields a bijectiop?: ¢ — d?. Equivalently, if for alli,
jO0 Vthere are, s0 Wwith {gc(i, t) x ¢c(t, ) Ot OV} ={ d(r, t) xd(t, 90t O W} thenghas
a natural refinement to a bijectigr’ : ¢ — o, namely@?c¥(i, j) = d(r, 5. Note, however,
that @2 can be found from the multiplicatior® x R° - R® andR¢ x R® _. R without
referring back to the standard representation. In the saay, it may be possible to define

@":c" - d"forallr > 0. Then iteratively one obtains a bijectign: ¢ — d inducing® :

R° — R If this is anR-ring isomorphism, i.e. preserves multiplication, or eglgiatly, ¢ =

@ then we saypis complete

There is an obvious correspondence between adjacenogasat= (g; ) [ M¢(R) andB
= (brs) O My(R) when there is a bijectiop: ¢ — d namely that withe; = bys wheneverge(i, j)
=d(r, 9. Again, let®: M(R) - My(R) denote the map. We sayandd arecospectrallunder
@) if, and only if, detA = det®A for all A 0 M R), (i.e. if, and only if, det = detdy®) and
@gives a bijection between diagonal colours.

THEOREM 6.4.Suppose fV - W is agisomorphism of the colourings d. Then there

is a natural way of refininggto a complete bijectiop: ¢ — d independently of f so thatsf
a g-isomorphism front to d.

Proof. ¢ andd are isomorphic undefr by 6.2(iii). Since (AB) =f(A)f(B) for all A, B O
M(R), @?: ¢ - o may be defined by ?c%(i, j) = d®(fi, fj) = {d(fi, t) x d(t, it O W} =
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{ (i, ) x ¢z(t, )0t O V}. So @ is obtained by iteration, and it is complete.
THEOREM 6.5. Supposepis a bijection between the colours ofand d and ¢ can be

refined to a complete bijectiop: ¢ — d of colours Then M(C) and M(C) are similar, and

c and d are cospectrgunderg. If V4, ..., V, are the diagonal colours of and ¢V, =V, for
all i then there is a unitary matrix ,Uhecessarily block diagonal under the partition given by

the \f's, such that WA = AU for all adjacency matrices A of. didere A and®A have
identical characteristic polynomial§here is also a block diagonal matrix, Mith rational

entries such that {$PA = AUy, for all such matrices AMoreover U and U, may be chosen to
have row and column sums equallto

Proof. The regular representations are identical except fomttexing by ¢ or d. Now
apply Theorems 4.2 and 4.5.
There is a unitary matrixJ [0 M\(C) independent of the choice &f such that®A =

U™AU. Decomposing into blocks under the diagonal colours gves i A = 5 AUy

If A'is a generic matrix whose elements are independetiosétinU, then equating terms
from the blockA; yields U ®A; = AU andU; = 0 fort # i. HenceU is block diagonal with
unitary diagonal blocks.

The matrixUg, is obtained by observing that without loss of generalitiias algebraic
number entries and then summid@A = AU over all conjugatesA = J = @A gives the row
and column sum property.

ALGORITHM 6.6. The graph isomorphism problem is that of finding a petmoatanatrix
U such thatU®A = AU for corresponding adjacency matrides®A of two graphs. This has
been translated into finding a permutatibnV - W of the vertex sets which is @
isomorphism of the appropriate colouringsd. By Theorem 6.4 there must be a complete

bijection@: ¢ - d. A basic check for isomorphism therefore involves itegdyiforming

¢, & and (f' to obtaing: ¢ — d. This establishes that the regular representations are the
same so that the standard representations by adjacgetyad are similar and the graphs co-
spectral. The partitioning of the vertices via the diagamdours serves to restrict the
possible permutations if the graphs are isomorphic and sthielzhniques (see [7]) enable a
tree of completions to be used to yield isomorphisms.

To construct the completions for two graphs and the mapeleet their colours, represent
the graphs by adjacency matrices with integer entrigisate equal for edges if and only if
they have identical labels in the graphs. These entda be chosen in the range hidor n
= VL. If this can be done in @}) time then the 2 logn squarings lead to an B¥(log n)
time bound on completion, assuming that integers irrahge 1 ..n° can be accessed and
compared in unit time. First of all, observe that ebebble sort will sort the elements of
each row into order in @f) time, providing a permutation to reorder the elementthes
appear in the row, and information about repeated elemBmssame applies to columns.

Each of then® elements of the square is given by a formal dot produet miw with a
column. The information about how to sort both row andimol must be combined to sort
the n-tuple in linear time. For each distinct value in thevnee have a series of adjacent
spaces in the final sorteaituple into which terms containing that value will be pthce
Assign a pointer for each such value, setting it tofitlsé such place which is empty. Now
use the column order to take each term in turn, placiagcibrding to the corresponding row
pointer, and incrementing that pointer. This sortgtheple in Of) time.

The other part of the squaring procedure involves renumbentrggs to obtain new
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numbers which are equal if and only if the correspondintedortuples are equal. This is
done by renumbering using the first term, then taking the membering with the second
term, and so on. Thus, alltuples must be sorted first, requiringr€)(space to be available.
Eachn-tuple is represented by a vector ofiitegers in the range 1n It suffices to show
how to incorporate the first element of each intoriteer numbering in @€) time to achieve
the Of®) time requirement for squaring.

Generally, a unigue numbering is obtainablenfoordered pairs of integers in the range 1
.. kin O(max k, m)) time. We apply this to pairs given by the current matrisnbering with
the next element in each vector. The numbering is aetiby setting list head pointers to
zero and scanning each pair to set up linked lists connegéimg with the same initial
element; then each list is scanned to form sublistsleti according to the second element;
finally the lists are scanned again, assigning a new nuafileach sublist: G¢m) time.

The above process must be carried out simultaneoudbptbngraphs to ensure common
renumberings. If at any point a discrepancy arisé#fering multiplicities between the two
adjacency matrices then the graphs cannot be isomorphic and indeed, eventoatly are
no numbers in common in the completions. If the detyns do agree then the graphs are
similar if not actually isomorphic.
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