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ADJACENCY MATRICES∗

COLIN D. WALTER†

Abstract. For a graph Γ with vertex set V an algebra of adjacency matrices is defined and viewed
as an equivalence relation on V × V with certain nice properties. This can be used in algorithms to find
automorphisms of graphs and isomorphisms between graphs. It also provides intersection numbers
independent of the labelling on V which determine the similarity class of the adjacency algebra.

AMS(MOS) subject classification. 05C5O

Introduction. This article has two main objectives. The first is to associate as high a
dimensional algebra of n × n matrices as possible with the adjacency matrix of a labelled
graph Γ on n vertices. In this way a set of intersection numbers is obtained which is an
invariant for the isomorphism class of Γ. The other aim is to show that these intersection
numbers provide a finer decomposition into equivalence classes of graphs than do graph
spectra, even with the more general definition given here. It therefore seems likely that nice
classification theorems must exist using these numbers, giving more powerful results than
from spectra. Indeed the theory of distance transitive graphs illustrates this (see [1]).
However, such results are not given here. What is provided is the step from a given graph to a
coherent configuration as defined by D. G. Higman [4] and one can then apply his theory. He
gives some applications.

The associated algorithm which tests for isomorphism by computing these numbers
(implicitly) has order at worst n3 log n and can be applied recursively to the subgraphs
obtained by deleting vertices until isomorphism is established or confuted. The calculation is
then producing generalised intersection numbers corresponding successively to ordered pairs,
triples, quadruples, etc., of vertices. This points to the correct generalisation to yield
invariants which completely determine the isomorphism class of the graph.

Sections 1 to 3 are definitions and elementary properties. Section 4 starts with a couple of
well-known results which can be traced back to Frobenius [3]. From them is deduced that
intersection numbers are more discriminating than the spectrum. In § 5 these numbers are
shown to be equivalent to knowledge of the regular representation, for which a symmetric
definition and an easy method of computation are given. Lastly, in § 6, the names of the
labels, hitherto ignored, are traced to ensure that an isomorphism preserves not just the
equivalence classes of edges carrying the same label, but also the label itself.

The starting point of this paper was a talk by Charles R. Johnson on a joint work of his
with Morris Newman [5]. The author would especially like to thank T. J. Laffey for many
helpful conversations during its development.

The intersection numbers are obtained in the following way. Let A be an adjacency matrix
of a graph Γ. Any automorphism of Γ acts as a similarity transformation by a permutation
matrix on A. Thus such transformations act trivially on the algebra generated by all such A for
the given graph. A generic matrix of this algebra can be used to partition the vertex set V of Γ
into subsets V1, V2, ..., Vt, with the property that any automorphism of Γ restricted to Vi maps
onto Vi. The Vi are unions of orbits under the automorphism group.

This can be expressed abstractly using equivalence relations on V × V: giving a “colour”
to each edge and vertex. There is a smallest refinement of this colouring of V × V with a
property corresponding to closure under multiplication of matrices. This is called here the
completion of the colouring, but is just a coherent configuration in Higman’s terminology.

The formulae in terms of colours for the product of two matrices in this algebra define
the intersection numbers and determine the algebra up to similarity. Thus they are identical
for isomorphic graphs and can be used as a test for isomorphism The adjacency algebra
defined in this way is larger than the usual one, being generated by all possible adjacency
matrices instead of a single 0, 1-matrix. It is big enough to show how closely connected are
the ideas of similarity, co-spectrality, and intersection numbers.

Addendum. The author would like to note that associating a coherent configuration with
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a graph is the subject of [10]. This does not seem to be well known despite its reference in
[11]. The first few sections here describe the method.

1. Colourings.
DEFINITION 1.1. Let V be a finite set and c an equivalence relation on V × V with r

equivalence classes. Then c is called an r-colouring or colouring of V and the equivalence
classes are called the colours of c. The set of such classes will be denoted by c and the class
of (i, j) ∈  V × V by c(i, j). This should be distinguished from c((i, j)), also called the colour of
(i, j), which is always the image of c(i, j) under an injective map. Elements of V are identified
with the diagonal of V × V and called vertices, whilst off-diagonal elements are called edges.

For example, let Γ be a graph on V with edge set E. Then Γ yields a 3-colouring of V
whose colours are V, E, and (V × V)\(E ∪  V).

DEFINITION 1.2. For n =  V  and a commutative ring R containing the integers ¦, let
MV(R) be the set of n × n matrices with entries in R whose rows and columns are indexed by
V. Any injective map c → R with c(i, j) õ c((i, j)) defines a matrix A = (aij) ∈  MV(R)  by aij =
c((i, j)). Such a matrix is called an adjacency matrix of c. Conversely, given a matrix A = (aij)
∈  MV(R) there is a uniquely determined colouring for which A is an adjacency matrix, namely
that given by c(i, j) = c(k, l) ⇔ aij = akl for all  i, j, k, l ∈  V. The colouring so obtained is
denoted cA. If the set of distinct entries of A are algebraically independent over ¦ (as a
subring of R) then A is called a generic matrix of the colouring it defines. A set of generic
matrices (not necessarily for the same colouring) are called independent if the entries in each
matrix are distinct from the entries in every other matrix and the set of distinct entries from
all the matrices is algebraically independent over ¦.

LEMMA 1.3. Let c, d be colourings of V. Then c = d if, and only if, c((i, j)) = c((k, l)) ⇔
d((i, j)) = d((k, l)) for all i, j, k, l ∈  V.

Example 1.4. The colourings with adjacency matrices

A  = 
















132

213

321

    and    AT  =  
















123

312

231

are equal.
DEFINITION 1.5. (i) There is a partial ordering ≤ of colourings given by

c ≤ d if, and only if, c(i, j) ⊇  d(i, j) for all (i, j) ∈  V × V.

(ii) The sum or join c + d is defined by

(c + d)(i, j) = c(i, j) ∩ d(i, j)

and the meet c ∧  d is defined so that (c ∧  d)(i, j) is the smallest union of colours of c
containing (i, j) which is also a union of colours of d.

(iii) The rank of a colouring c is the number  c  of equivalence classes of c. Clearly 1 ≤
 c  ≤ n2 for n =  V .

LEMMA 1.6. (i) The colourings of V form a lattice under ≤ with meet and join as above.
(ii) c + d is the least upper bound for c and d. In particular, c ≤ c + d and d ≤ c + d.  Also

c + d is the colouring defined by the sum of independent generic matrices for c and d.
Moreover, c + d = c if d ≤ c.

(iii) c ∧  d is the greatest lower bound for c and d. In particular, c ∧  d ≤ c and c ∧  d ≤ d
with c ∧  d = c if c ≤ d.

(iv) The map c õ  c  is order preserving, i. e. c < d implies  c  <  d . Also c ∧  d  ≤
 c  ≤  c+d  ≤ c d .

DEFINITION 1.7. (i) There is a unique minimal colouring c0 corresponding to the zero
matrix. This is a 1-colouring with c0( i,j) = V × V.

(ii) There is a unique maximal colouring cV which is defined by cV(i, j) = {( i, j)}.  It has
 V 2 colours.
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(iii) The identity colouring cI is that which corresponds to the identity matrix. It is a 2-
colouring with cI(i,i) = V ⊆  V × V and cI(i,j) = V × V \ V for i ≠ j.

DEFINITION 1.8. The transpose colouring cT is defined by cT(i, j) = c(j, i)T where ST = {( i,
j)  (j, i) ∈  S}  for any subset S of V × V. A colouring c is called symmetric if c = cT and totally
symmetric if c(i, j)T = c(i, j) for all i, j ∈  V. Because (j, i) ∈  c(i, j)T, c is totally symmetric
precisely when c(i, j) = c(j, i) for all i, j ∈  V.

Remark 1.9. Suppose A is a generic matrix for c. Then AT is a generic matrix for cT.

Example 1.4 illustrates a symmetric colouring which does not arise from a symmetric
matrix. The totally symmetric colourings are characterised by having symmetric adjacency
matrices, whilst the symmetric colourings are characterised by having their set of adjacency
matrices closed under the transpose mapping.

The product cd of two colourings is defined as that obtained from the product of
independent generic matrices for c and d. Hence we have the following definition.

DEFINITION 1.10. The product cd of two colourings c, d of V is defined by its injective
image

cd((i, j)) = {c(i, t) × d(t, j) t ∈  V}

or, equivalently,

cd((i, j)) = {( c((i, t)), d((t, j)) ) t ∈  V}

where the elements are counted with appropriate multiplicity. All such sets from here on will
be assumed to have multiplicities attached to their elements, i. e. they are multisets or bags.

In computations as in Example 1.4 the values c((i, j)) are usually integers. Then the
product class cd(i, j) consists of those directed edges (i, j) yielding the same  V -tuple of
pairs (c(i, t), d(t, j)) sorted into order. Thus, if c, d are the colourings in Example 1.4, then
cd(2,3) is the set of edges giving the triple (13, 21, 32). If generic matrices are used, one has
x3y2+x1y3+x2y1 representing this class. Ordering the terms lexicographically and recording
only subscripts yields the previous triple.

THEOREM  1.11. (i) The sum and product operations satisfy the usual associative and
distributive axioms of rings. Addition is commutative but multiplication is not commutative if
 V > 1.

(ii)  ccI ≥ c and cI c ≥ c.
(iii) ce ≤ df if c ≤ d and e ≤ f for colourings c, d, e, f.
(iv) c + d ≤ cd if c ≥ cI and d ≥ cI.
Proof (i) Generic matrices which determine colourings satisfy the named axioms of ring

theory. Hence the colourings themselves satisfy these axioms. For  V  > 1 let c be the
colouring with generic matrix A = (aij) such that a1j = x and aij = y for i ≠ 1. Easily ccT ≠ cTc
since the former is a 4-colouring and the latter the l-colouring.

(ii) (k, l) ∈  ccI (i, j) implies

{ c(k, t) × cI(t, l) t ∈  V }  =  { c(i, t) × cI(t, j) t ∈  V }

Equating terms which contain the diagonal V = cI(t, t) gives c(k, l) = c(i, j) and hence (k, l) ∈
c(i, j). Thus ccI(i, j) ⊆  c(i, j) and ccI ≥ c. By symmetry cI c ≥ c.

(iii) ( k, l) ∈  df(i, j) implies{ d(k, t) × f(t, l) t ∈  V } = { d(i, t) × f(t, j) t ∈  V } and hence
{ c(k, t) × e(t, l) t ∈  V } = { c(i, t) × e(t, j) t ∈  V}. Therefore (k, l) ∈  ce(i, j). Thus df(i, j) ⊆
ce(i, j) and ce ≤ df, as required.

(iv) From (ii) and (iii) c ≤ ccI ≤ cd and d ≤ cI d ≤ cd, giving c + d ≤ cd.
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LEMMA 1.12. (i) cTT = c;
(ii)  (cd)T = dTcT and (c+d)T = cT + dT;
(iii) ccT and c + cT are symmetric ;
(iv) c ≤ d implies cT ≤ dT and vice versa ;
(v)  c =  cT .
PROPOSITION 1.13. Let cr be the product of c with itself r times for r ∈  ¦, r > 0, and set c0

= cI. Take n =  V  > 1.
(i) If c ≥ cI, then there is a positive integer m < n2 such that cm = cm+r for all r ≥ 0.
(ii) For each colouring c there are positive integers m, p bounded by functions of n such

that cr = cp+r for all r ≥ m.
Proof. (i) By Theorem 1.11(ii) and (iii), cr ≤ crcI ≤ cr+1 for all r ≥ 0. If cI = c0 < c1 < ...< cr

then 2 =  c0  <  c1  < ...<  cr  by Lemma 1.6(iv) and so cr  ≥ r+1. Now  cr  ≤ n2 yields r
< n2. Hence there is a maximal value r = m with this property, i.e. cm = cm+1 which gives cm =
cm+r for all r ≥ 0.

(ii) This is automatic from the finitude of the number of colourings for fixed n.
DEFINITION 1.14. In Proposition 1.13 the minimal m satisfying (i) is called the order of c,

and the minimal value of p satisfying (ii) is called the period of c.

The completion of c is  c− = (c + cT + cI )
n2

 for n =  V , and c is called complete if c =  c−.

Remarks 1.15. Note that c + cT + cI  ≥ cI . Thus, by Proposition 1.13, its period is 1 and  c−

= (c + cT + cI)
m where m is the order of c + cT + cI. In computations  c− is obtained by

successively squaring c + cT + cI. The rth squaring gives (c + cT + cI )
2r

 and so  c− results after
at most log2(n

2−1) steps. The computation terminates when squaring returns the same
colouring.

 c− is the maximal colouring obtainable from c using cI and the operations so far defined
because of the next theorem.

THEOREM  1.16. (i)  c−2 =  c−;  c−+ c− =  c−; and  c−T =  c−,

(ii) If c1 ≤  c−,  c2 ≤  c− then c1c2 ≤  c−, c1 + c2 ≤  c− and c1
T ≤  c−,

(iii) If c ≤ d then  c− ≤ d ,

(iv)  c= =  c−,

(v)  c−cI =  c− = cI c− and  c−≥ cI

(vi) c is complete if, and only if, c ≥ cI, c
T = c and c2 = c.

THEOREM  1.17. Suppose c is the totally symmetric 2- or 3-colouring of a regular graph

with adjacency matrix A and ci is the colouring associated with Ai. Then, for n =  V ,  c− = c0

+ cl + ... + cn−1.

Proof. By Theorem 1.16, ci ≤  c− and therefore cp ≤  c− where cp = c0+ c1 + ...+ cn−l. Now c
has generic matrix xI + yJ + zA with JA = AJ = dJ for some d ∈  ¦ and J2 = nJ. So any
polynomial in I, J, A is a linear combination of A0, A1, ..., An−1 and J by the Cayley-Hamilton

theorem. Since  c− = (c + cI)
i for i large enough,  c− has an adjacency matrix of this form and  c−

≤ cp, giving c− = cp.
Remark 1.18. Complete colourings are the same as coherent configurations in the sense

of D. G. Higman [4]. The intersection numbers he has are just the multiplicities of the various
terms in each entry of a product of two independent generic matrices. Thus completion
provides a natural and easy way of associating a coherent configuration with any graph. The
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completion  c− is the minimal coherent configuration which is a refinement of c. If  c− is totally
symmetric then it is an association scheme in the sense of Bose and Shimamoto [2]. If c is

obtained from a strongly regular graph, then  c− = c (see J. J. Seidel [8]).

2. Automorphisms.
DEFINITION 2.1. Let SV denote the group of permutations of V. SV acts naturally on V × V

by σ( i, j) = (σi, σj). Thus σT is well-defined for subsets T of V × V and σ ∈  SV. In particular,
a colouring c with classes c1, c2, ..., cr yields a colouring σc with classes σc1, σc2, ..., σcr

where σcκ = {(σi, σj)   (i, j) ∈  cκ }.  The (strict) automorphism group Aut*c of a colouring c
is the subgroup of SV consisting of permutations which leave the colours fixed, i.e.,

σ ∈  Aut* c ⇔ σci = ci   for each colour ci of c.

Of less interest here is the group Aut c = {σ ∈  SV σc = c}  which may include automorphisms
which permute the colours nontrivially. For a matrix A = (aij) with associated colouring c, σA
= (σaij) is associated with σc and so has entries σaij = aσ−1i,σ−1j. Then, obviously, Aut* c = {σ
∈  SV σA = A}  whilst Aut c consists of those σ for which σA is also an adjacency matrix of c.

LEMMA 2.2. (i) σc+σd = σ(c+d); (σc)(σd) = σ(cd) ; σ(cT) = (σc)T for σ ∈  SV ;
(ii) Aut* ( c + d) = Aut* c ∩ Aut* d ;
(iii) Aut* ( cd) = Aut* c ∩ Aut* d if c ≥ cI and d ≥ cI ;
(iv) Aut* (cT)=Aut* c;
(v) c ≤ d implies Aut* c ⊇  Aut* d.
Proof. (i), (iv) and (v) are clear.
(ii) If A, B are independent generic matrices for c, d then

σ ∈  Aut* (c+ d)  ⇔ σ(A+ B) = A + B ⇔ (σA = A and σB = B) ⇔ σ ∈  Aut* c ∩ Aut* d.

(iii) Here σ ∈  Aut* c ∩ Aut* d implies σ(AB) = (σA)(σB) = AB and so σ ∈  Aut* cd.
Thus, Aut* c ∩ Aut* d ⊆  Aut* cd without restriction. Assuming (v) and using (ii) with
Theorem 1.11(iv) gives Aut* c ∩ Aut* d = Aut* (c + d) ⊇  Aut* cd and so equality must hold.

THEOREM  2.3. Aut* c = Aut* (c + cT + cI ) = Aut* c.

3. Complete colourings.
LEMMA 3.1. Suppose c is complete.
(i) c(i, j) ≠ c( k, l) if δij  ≠ δkl ( Kronecker delta ).
(ii) If c(i, j) = c(k, l) then there is a permutation σ ∈  SV with c(i, t) = c(k, σt) and c(t, j) =

c(σt, l) for all t ∈  V.
(iii) If c(i, j) = c(k, l) then c(i, i) = c(k, k) and c(j, j) = c(l, l).
Proof. (i) is immediate from c ≥ cI. Using the definition of product and c2 = c gives {c(i, t)

× c(t, j) t ∈  V}  = c2((i, j)) =  c2((k, l)) = {c(k, t) × c(t, l) t ∈  V}.  Any bijection between these
two bags which preserves colours determines a suitable σ ∈  SV in (ii). In particular,
restricting σ  to diagonal classes yields (iii).

THEOREM  3.2 [3, §2.10]. If V = V1 ∪•  V2 ∪•  ... ∪•  Vt is the partition of V induced by the
diagonal classes of a complete colouring c then each block Vi × Vj  is a union of colours of c.

COROLLARY 3.3. With the hypotheses and notation of Theorem 3.2, the permutation σ ∈
SV in Lemma 3.1(ii) satisfies σVi = Vi for each i.

COROLLARY 3.4. Suppose V1 and V2 are diagonal classes (possibly equal) for a complete
colouring c. Then { c( i, t)  t ∈  V2}  and { c( t, j)  t ∈  V1}  are independent of i ∈  V1 and j ∈  V2

respectively. The multiplicities of a colour ck in i × V2 and V1 × j are related by

 ck  ∩ ( i × V2) V1  =  ck  ∩ (V1 × j) V2 .
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If ck ⊆  V1 × V2 then  V1  and  V2  divide  ck .
Proof. For i, i’ ∈  V1, c(i, i) = c(i’, i’). So, by Lemma 3.1, there is a σ ∈  SV with c(i, t) = c(

i’, σt) for all t ∈  V. By Corollary 3.3, σ restricts to σ2 : V2 → V2. Hence {c(i, t)  t ∈  V2} is
independent of i ∈  V1. Independence for the second set follows similarly or by applying the
transpose. This immediately gives the equation relating multiplicities, both sides having
cardinality  ck  ∩ V1 × V2 . The last part is now clear.

THEOREM 3.5. The restriction ci of a complete colouring c to Vi × Vi for a diagonal class
Vi of c is a complete colouring with one diagonal class.

Proof. Clearly ci ≥ cI and ci = ci
T because these properties hold for c. Suppose ci(j, k) =

ci(r, s). Then c(j, k) = c(r, s) and by Corollary 3.3 the permutation σ ∈  SV defined in Lemma
3.1 restricts to a map σi : Vi → Vi such that c(j, t) = c(r, σit) and c(t, k) = c(σit, s) for t ∈  Vi.
So ci

2((j, k)) = {c(j, t) × c(t, k) t∈  Vi} = { c(r, t) × c(t, s) t ∈  Vi} = ci
2((r, s)). This means ci

2 ≤
ci and hence ci = ci

2. Thus ci is complete.
Remark 3.6 [3, §8]. In the same way a complete colouring restricts to a complete

colouring on any union of its diagonal classes.
DEFINITION 3.7. The number of colours on the diagonal of a colouring c ≥ cI is denoted

ðcð. A complete colouring is called regular if ðcð = 1 (“homogeneous” in the terminology of
Higman).

Remark 3.8. ðcð2 ≤  c  for complete colourings.

4. Adjacency algebras and determinants. If we regard a matrix in MV(R) as a map V ×
V → R in the obvious way, then the adjacency matrices of a colouring c are the maps φ : V ×
V → R for which every φ−1(r), r∈  R, is either the empty set or a colour of c. The adjacency
matrices for all colourings d ≤ c are the maps φ : V × V → R which are constant on each
colour of c, that is, φ−1(r) is a union of colours of c for all r ∈  R. Such matrices form a free R-
module Mc = Mc(R) of rank  c . Certainly I ∈  Mc if, and only if, c ≥ cI. Indeed, c ≤ d if, and
only if, Mc ⊆  Md. The most important observation is that Mc is a ring if c is complete. When R
is a field and c is complete Mc is therefore an algebra. Mc is the adjacency ring (or algebra)
over R of the colouring c.

THEOREM  4.1 (see e.g. Higman [4]). For a subfield K of the complex numbers C and a
complete colouring c the adjacency algebra Mc(K) is semi-simple.

For the rest of this section take R = C. Since the only division ring over C is C itself,

Wedderburn’s theorem says that for the decomposition 1 = ∑ =
m
i i1ε  of 1 into minimal central

orthogonal idempotents and Mi = Mcεi there is a decomposition Mc = i
m
i M1=⊕  of Mc into a

direct sum of full matrix algebras Mi over C. If Mi consists of ei × ei matrices, then the
minimal irreducible left (or right) Mi-modules have dimension ei and character ζ i, say. The

vector space CV on which Mc acts decomposes as CV = i
m
i ε1=⊕ CV where εi C

V is a direct sum

of, say, zi copies of the irreducible Mi-module with character ζ i. If C
V has character ζ  then ζ =

i
m
i iz ζ∑ =1  and equating degrees gives n =  V  = ∑ =

m
i ii ez1  and  c  = ∑ =

m
i ie1

2 . Clearly zi

≥ 1 for each i since the representation of Mc in MV(C) is faithful.
By the Noether-Skolem theorem there is an invertible matrix U ∈  MV(C) such that for all

A ∈  Mc,

U−1AU = diag(D1(A), ..., Di(A), ..., Di(A), ..., Dm(A))
                       ↑__multiplicity zi__↑

is a block diagonal matrix with Di(A) affording ζ i(A).
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For generic A, det Di(A) is irreducible as follows. Since Di(A) = (drs) is generic for Mi

every entry is distinct and independent of the others. Let det Di(A) = fg be a nontrivial
factorisation and x = d11. Without loss of generality degx f = 1 and degx g = 0. Choose entry y
with degy g = 1 and degy f = 0. As fg contains a term which is a multiple of xy we may assume
y = d22 by row and column interchanges. Take d12 = d21 = 1, drs = O otherwise for r ≠ s, and
drr = 1 for r > 2. Then det Di(A) specialises to xy −1 which fails to factorise in the required
way. So det Di(A) is irreducible.

Thus, if A is generic then ∏ =
m
i 1 det Di(A)

zi is the factorization of det A into its

irreducible factors. Hence det A determines the ei and zi (≥ 1) uniquely. They in turn
determine Mc ⊆  MV(C) up to similarity.

Conversely, to obtain a determinant for a given similarity class, pick a matrix
representation containing a generic matrix whose distinct entries are linearly independent and
which generates the algebra.

THEOREM  4.2. For a complete colouring c, Mc(C) is determined up to similarity by the
determinant of a generic matrix, and conversely.

Warning 4.3. R. Mathon [6] has some regular graphs on 25 vertices which yield complete
3-colourings that are not isomorphic but have similar adjacency algebras over C. These also
appear in [10] and seem to have been computed independently by several people.

Consider next maps A: c → C : ci õ ai from the colours ci ( 1 ≤ i ≤ r) of c into C. Let Cc

denote the set of such maps. If for each (i, j) ∈  V × V we are given k such that c(i, j) = ck then
the structure of A as an adjacency matrix is given by aij = ak and we obtain a map det c : Cc

→ C : A õ det (aij). Clearly, from Theorem 4.2:
COROLLARY 4.4. For a complete colouring c, det c determines the adjacency algebra

Mc(C) up to similarity, and conversely.
The maps in Cc form an algebra (the regular representation) isomorphic to Mc(C) under

the operations induced by the map A = (aij) õ Ac where Ac : c(i, j) õ aij.
THEOREM  4.5. Suppose the partition of c into diagonal and off-diagonal colours is given

for a complete colouring c. Then Mc(C) is determined up to similarity by multiplication in Cc

defined on its natural basis.
Proof. By Corollary 4.4 it suffices to reconstruct det c. Multiplication can be described

giving the intersection numbers nijk such that AcBc = Fc ∈  Cc satisfies fj = ∑ ki kiijk ban, . If ci

= Vi  is a diagonal colour then a colour cj belongs to the block Vi × Vi if, and only if, nijj  = njji

= 1. So  ci  = ∑ ’
,kj jikn  can be found where the sum is restricted to j with cj ⊆  Vi × Vi. Let

Ac ∈  Cc and compute (Ai)c for i ∈  ¥. Then each trace Tr (Ai) can be calculated using Tr A =

ii i ac∑ ’  where the sum is over diagonal classes. Newton’s formulae then yield det A and we

obtain det c.
This theorem is implicit in Higman [4, §5]. There is a partial converse to the above which

is given in [9].
Remark 4.6. Det c provides the spectrum of a graph, and, by virtue of the proof of 4.5, it

follows that the intersection numbers determine equivalence classes of graphs which are at
least as fine as those given by the spectrum.

5. The regular representation of the adjacency algebra. The adjacency ring Mc =
Mc(R) of a complete colouring c is the set of maps V × V → R which are constant on colours
of c with suitable multiplication. This gives the standard representation of Mc as a ring of
matrices operating on RV. The regular representation is given by considering Mc as the set Rc

of maps from the set of colours of c to R. It is obtained as a ring of matrices as follows.
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DEFINITION 5.1. For a colouring c and AV = (aij) ∈  MV(R) the standard (i.e. adjacency
matrix) representation of A ∈  Mc, define the matrix Ac = (alm) with entries indexed by colours
l, m of c by

alm =  l −1/2  m −1/2 ∑ ∈ ∩∩Vtji ijamjtlit,, ),(),( .

These matrices Ac acting on Rc give the regular representation of Mc.
Remark 5.2. Higman [4] makes a slightly different definition for complete colourings,

namely
a’lm = ∑ ∈ ∩Vi ijalit ),(

where (t, j) ∈  m. This is independent of the choice of t, j ∈  V by virtue of Lemma 3.1(ii).
Summing over all such (t, j) to incorporate this symmetry yields a’lm =

∑ ∈
− ∩∩Vjit ijamjtlitm ,,
1 ),(),( . Thus

alm =  l −1/2 m 1/2 a’lm .

In other words, rows and columns have been multiplied by certain factors.
PROPOSITION 5.3. Let cR be the colouring defined on a set of  c  vertices by the regular

representation of a colouring c ≥ cI. Then cR is symmetric (respectively, totally symmetric) if,
and only if, c is. Also, cR ≥ cI.

Proof. First observe that if l ∈  c and d is the diagonal colour in the same row as l then adl

=  d −1/2 l −1/2 ∑∑ ∈∈ ljij ijdiii a),(:),(: = uaij for any (i, j) ∈  l and some constant u ≠ 0

dependent only on l. Hence the map (aij) õ (alm) is one-one. It now suffices to notice from
the formula that (aij)

T õ (alm)T.
Finally, all contains a nonzero multiple of aii if i, t ∈  V are chosen with (t, i) ∈  l, but for

no i can aii appear in alm if l ≠ m. So cR ≥ cI.
Examples 5.4. The following are generic adjacency matrices paired with their regular

matrix images:



























accbdd

cacdbd

ccaddb

bddacc

dbdcac

ddbcca

   and    





















++
++

cadbcd

dbcadc

cdab

dcba

22

22

22

22

 ;



















efgg

fegg

ddab

ddba

    and    



























+

+

badd

gef

gfe

fegg

dab

dba

22000

2000

2000

00022

0002

0002

 .

LEMMA 5.5. If c is complete, the map (aij) õ (alm) from the standard to the regular
representation is an R-module ring monomorphism.

Proof. The property for addition is clear. Suppose (aij) and (a’ij) are two adjacency
matrices with images (alm) and (a’lm). Using the formula in Remark 5.2, (blm) = (alm)(a’lm) has
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blm = ∑ ∈ cn nmnl aa ’,  =

∑ ∑ ∑∈ ∈ ∈
−−−− ∩∩cn Vi Vk jkij amktnmalitnl }’),(}{),({ 2/12/12/12/1

where (t, j) ∈  n.  Summing over all (t, j) ∈  n and all n ∈  c yields

blm =  ∑ ∑∈ ∈
−− ∩∩Vtki Vj jkij aamktlitml ,,

2/12/1 ’),(),(

which is the lm-entry of the image of (aij)(a’ij). As in Proposition 5.3, the map is one-one.
THEOREM  5.6. Let V1, V2, ..., Vt be the diagonal colours of a complete colouring c.

Suppose ni  is the number of colours in Vi × V, so that |c| = ∑ =
t
i in1 . Then the matrices giving

the regular representation of Mc(C) are block diagonal with blocks of size ni × ni for 1 ≤ i ≤ t.
Proof. Suppose l, m ∈  c with l ⊆  Vi  × V. If m ⊆  Vi × V then alm = 0 because |(t, i) ∩ l| = 0

whenever (t, j) ∈  m. The closure under the transpose map described in Proposition 5.3
ensures that aml = 0 also. This establishes the block diagonal nature of the matrices, each
block being indexed by the ni colours in Vi  × V for its rows and columns.

Any map f: V → W of finite sets can be used to obtain a colouring on fV from a colouring
on V. In terms of graphs the map f replaces each set f−1(w) of vertices in V by a single vertex
w ∈  fV. In practice, f can be viewed as an equivalence relation on V which identifies various
vertices.

DEFINITION 5.7. (i) For subsets S, T of V we define c(S, T) = {c(s, t) s ∈  S, t ∈  T},
counting each c(s, t) with the appropriate multiplicity.

(ii) If f: V → W is a map of finite sets and c a colouring on V then fc is the colouring on fV
defined by fc((i, j)) = c(f −1i, f −1j).

(iii) In case f is written as an equivalence relation ~ on V (mapping V to V
~
) we write c~ for

the colouring fc on V
~
.

LEMMA 5.8. If A = (aij) is a generic matrix for the colouring c on V and ~ is an

equivalence relation on V then  c~  has adjacency matrix A
~
 with entries

 ca~uv   =  ∑ ∑∈ ∈
−−

ui vj ijavu 2/12/1    for u, v ∈   V
~
.

Note, however, that A
~
 need not be generic for c~.

Proof. Put auv = ∑ ∑∈ ∈ui vj ija  for u, v ∈  V
~
. Then (auv) is an adjacency matrix for c~. For

any linear function f = ∑ ∈ Vji ijij a, λ of the aij ’s let || f || = ∑ ∈ Vji ij, λ . Then ||auv|| = |u||v| and

||  a~uv|| = |u|1/2 |v|1/2.  Hence  auv = axy if, and only if,  a~uv =  a~xy. So ( a~uv)  is also an adjacency
matrix.

THEOREM  5.9. Define an equivalence relation ~ on V by  i ~ j if, and only if, c(1, i) = c(1,

j) where c is a complete colouring. Let A õ  A
~
 be the map Mc(R) → Mc~(R) given in Lemma

5.8. Then  A
~
 is the first block of Ac in the regular representation when the indices are paired

c(1, i) with i~.

Proof. Let (aij) be an adjacency matrix for c, ( a~i~j~) the image under ~ and (alm) the first
block of the regular matrix.

Write i~ instead of c(1, i) to index the regular matrix block. So

ai~j~ =  c(1, j) 1/2 c(1, i) −1/2Σ i∈ i~,j∈ j~aij
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=  j~ −1 c(1, j) 1/2 c(1, i) −1/2Σ i∈ i~,j∈ j~aij  =  a~i~j~

since  V1 i~  =  c(1, i)  where V1 is the first diagonal colour.
Remarks 5.10. Naturally, Theorem 5.9 is the fastest way to obtain the regular

representation. Moreover, this representation is independent of the vertex numbering. By the
definitions, it is entirely determined by the intersection numbers, and conversely.

6. Isomorphisms.
DEFINITION 6.1. Let c and d be colourings on V and W respectively. An isomorphism from

c to d is a bijection f : V → W such that fc = d in the notation of Definition 5.7. If, in addition,
φ : c → d is a bijection between the colours of c and d then f is cal1ed a φ-isomorphism if f
induces φ on the colours. In particular, if V = W and c = d then an isomorphism is an
automorphism and vice-versa; and when φ is the identity, then a φ-isomorphism is just a strict
automorphism. In general, f will map the diagonal colours of c onto the diagonal colours of d
and applying the transpose to colours commutes with the map f induces on colours. We will
require φ  to have these properties.

If c and d arise from two graphs then φ is usually the map which matches properties of
one graph with those of the other. Then the existence of a φ-isomorphism from c to d is
equivalent to the graphs being isomorphic. By viewing f : V → W as a re-naming of
subscripts, we have (cf. Lemma 2.2(i)) the next lemma.

LEMMA 6.2. Let f : V → W be injective and c, d colourings on V. Then
(i) a generic matrix for c is generic for fc ;
(ii) f(cd) =f(c)f(d) ; f(c+d) =f(c)+ f(d) ; f(cT) = (fc)T ;

(iii) f ( c−) =  f−c− ;
DEFINITION 6.3. Let c, d be symmetric colourings ≥ cI. Suppose φ : c → d is a bijection of

colours which restricts to a bijection between the diagonal colours and which commutes with
the transpose map. There is an induced R-module isomorphism Φ : Rc → Rd of regular
representations. If Φ commutes with multiplication, then it extends to a map Φ2 : Rc2

 → Rd2
 :

AB → Φ(A)Φ(B) for A, B ∈  Rc. This yields a bijection φ 2 : c2 → d2. Equivalently, if for all i,
j∈  V there are r, s ∈  W with {φc(i, t) × φc(t, j)   t ∈  V} = { d(r, t) × d(t, s)  t ∈  W}  then φ has
a natural refinement to a bijection φ 2 : c2 → d2, namely φ 2c2(i, j) = d2(r, s).  Note, however,
that φ 2 can be found from the multiplications Rc × Rc → Rc2

 and Rd × Rd → Rd2
 without

referring back to the standard representation. In the same way, it may be possible to define

φ  r : c r  → d r for all r > 0. Then iteratively one obtains a bijection  φ− : c− →  d− inducing Φ− :

Rc− → Rd−. If this is an R-ring isomorphism, i.e. preserves multiplication, or equivalently, φ−2 =

φ−, then we say φ− is complete.
There is an obvious correspondence between adjacency matrices A = (aij ) ∈  Mc(R) and B

= (brs) ∈  Md(R) when there is a bijection φ : c → d namely that with aij = brs whenever φc(i, j)
= d(r, s). Again, let Φ: Mc(R) → Md(R) denote the map. We say c and d are cospectral (under
φ ) if, and only if, det A = det ΦA for all A ∈  Mc( R ), (i.e. if, and only if, det c = det d0Φ) and
φ gives a bijection between diagonal colours.

THEOREM  6.4. Suppose f : V → W is a φ-isomorphism of the colourings c, d. Then there

is a natural way of refining φ to a complete bijection φ− : c− →  d− independently of f so that f is

a φ−-isomorphism from  c− to d−.

Proof. c− and d− are isomorphic under f by 6.2(iii). Since f(AB) =f(A)f(B) for all A, B ∈
Mc(R), φ 2 : c2 → d2 may be defined by φ 2c2(i, j) = d2(fi, fj) ≡ {d(fi, t) × d(t, fj) t ∈  W}  =



28 COLIN D. WALTER

{ φc(i, t) × φc(t, j) t ∈  V}.  So φ−  is obtained by iteration, and it is complete.
THEOREM 6.5. Suppose φ is a bijection between the colours of c and d, and φ can be

refined to a complete bijection  φ− : c− →  d− of colours. Then Mc(C) and Md (C) are similar, and

c and d are cospectral (under φ). If V1, ..., Vr are the diagonal colours of  c− and φVi = Vi for
all i then there is a unitary matrix U, necessarily block diagonal under the partition given by

the Vi’s, such that UΦA = AU for all adjacency matrices A of c−. Here A and ΦA have
identical characteristic polynomials. There is also a block diagonal matrix U« with rational
entries such that U«ΦA = AU« for all such matrices A. Moreover, U and U« may be chosen to
have row and column sums equal to 1.

Proof. The regular representations are identical except for the indexing by  c− or  d−. Now
apply Theorems 4.2 and 4.5.

There is a unitary matrix U ∈  Mv(C) independent of the choice of A such that ΦA =
U−1AU. Decomposing into blocks under the diagonal colours gives ∑ Φt tjit AU = ∑ t tjitUA .

If A is a generic matrix whose elements are independent of those in U, then equating terms
from the block Aij yields UiiΦAij = AijUjj and Uit = 0 for t ≠ i. Hence U is block diagonal with
unitary diagonal blocks.

The matrix U« is obtained by observing that without loss of generality U has algebraic
number entries and then summing UΦA = AU over all conjugates. A = J = ΦA gives the row
and column sum property.

ALGORITHM 6.6. The graph isomorphism problem is that of finding a permutation matrix
U such that UΦA = AU for corresponding adjacency matrices A, ΦA of two graphs. This has
been translated into finding a permutation f: V → W of the vertex sets which is a φ-
isomorphism of the appropriate colourings c, d. By Theorem 6.4 there must be a complete

bijection φ− : c− →  d−. A basic check for isomorphism therefore involves iteratively forming

c2i
, d2i

 and φ2i
 to obtain φ− : c− →  d−. This establishes that the regular representations are the

same so that the standard representations by adjacency algebras are similar and the graphs co-
spectral. The partitioning of the vertices via the diagonal colours serves to restrict the
possible permutations if the graphs are isomorphic and standard techniques (see [7]) enable a
tree of completions to be used to yield isomorphisms.

To construct the completions for two graphs and the map between their colours, represent
the graphs by adjacency matrices with integer entries that are equal for edges if and only if
they have identical labels in the graphs. These entries can be chosen in the range 1 to n2 for n
=  V . If this can be done in O(n3) time then the 2 log2 n squarings lead to an O(n3 log n)
time bound on completion, assuming that integers in the range 1 .. n2 can be accessed and
compared in unit time. First of all, observe that even bubble sort will sort the elements of
each row into order in O(n3) time, providing a permutation to reorder the elements as they
appear in the row, and information about repeated elements. The same applies to columns.

Each of the n2 elements of the square is given by a formal dot product of a row with a
column. The information about how to sort both row and column must be combined to sort
the n-tuple in linear time. For each distinct value in the row we have a series of adjacent
spaces in the final sorted n-tuple into which terms containing that value will be placed.
Assign a pointer for each such value, setting it to the first such place which is empty. Now
use the column order to take each term in turn, placing it according to the corresponding row
pointer, and incrementing that pointer. This sorts the n-tuple in O(n) time.

The other part of the squaring procedure involves renumbering entries to obtain new
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numbers which are equal if and only if the corresponding sorted n-tuples are equal. This is
done by renumbering using the first term, then taking the new numbering with the second
term, and so on. Thus, all n-tuples must be sorted first, requiring O(n3) space to be available.
Each n-tuple is represented by a vector of 2n integers in the range 1 .. n2. It suffices to show
how to incorporate the first element of each into the new numbering in O(n2) time to achieve
the O(n3) time requirement for squaring.

Generally, a unique numbering is obtainable for m ordered pairs of integers in the range 1
.. k in O(max (k, m)) time. We apply this to pairs given by the current matrix numbering with
the next element in each vector. The numbering is achieved by setting k list head pointers to
zero and scanning each pair to set up linked lists connecting pairs with the same initial
element; then each list is scanned to form sublists divided according to the second element;
finally the lists are scanned again, assigning a new number of each sublist: O(k+m) time.

The above process must be carried out simultaneously on both graphs to ensure common
renumberings. If at any point a discrepancy arises − differing multiplicities between the two
adjacency matrices − then the graphs cannot be isomorphic and indeed, eventually there are
no numbers in common in the completions. If the completions do agree then the graphs are
similar if not actually isomorphic.
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