SOFTWARE-PRACTICE AND EXPERIENCE
Softw. Pract. Exper., 29(9), 793-813 (1999)

Efficient Automata Driven Pattern Matching for
Equational Programs

NADIA NEDJAH™, COLIN D. WALTER AND STEPHEN E. ELDRIDGE
Computation Department, UMIST, PO Box 88, Manchester M60 1QD, UK

(email: {nn, cdw, see} @sna.co.umist.ac.uk)

SUMMARY

We propose a practical technique to compile left-to-righ pattern-matching of prioritised overlapping
function definitions in equational languages to a matching aamaton from which efficient code can be
derived. First, a matching table is constructed using aompilation method similar to the technique that
YACC employs to generate parsing tables. The matching tablebtained allows for the pattern-matching
process to be performed without any backtracking. Thenthe known information about right sides of
the equations is inserted in the matching table in ordeto speed-up the pattern-matching process. Most
of the discussion assumes that the processed patteset & left-linear, the non-linear case being handled
by an additional pass following the matching stage. Copyrighfl 1999 John Wiley & Sons, Ltd.

KEY WORDS: compilation; equational programming; pattern-fmaty; rewriting; reduction strategy

1. INTRODUCTION

As research has proved so far, the pattern-matchirtigrée@f equational and functional
languages is very expressive, fully compensating foraitle df side effects in such languages.

The operational semantics behind the rewriting-basegranaming paradigm is now well-
known [1-3]. It consists of using a set of equations considerdefta®-right rewrite rules to
simplify a given term, called thaibject term. Starting from this term, the evaluation process
produces a sequence of expressions by repeatedly replatmgcies of left sides of rules with
their corresponding right sides until no further replacesare possible. An instance of a left
side in the subject expression is callagdex, and an expression with no redex is said to be in
normal form.

The pattern-matching process provides a rule whose itldt rmatches the expression
considered. As patterns can overlap, several rulebeanatched at the same time. In this
case, a meta-rule allowing for the selection of glsimatched rule is used. Examples of such
a meta-rule are the first matched rule (textual orded)the most specific matched rule [4].
The textual order meta-rule will be used here in the cdverlapping patterns. However,

' Correspondence to: N. Nedjah, Computation Department, UNASTBox 88, Manchester M60 1QD, UK.

" The author was initially sponsored by the British Council andAlgerian High Education Ministry, and is presently
sponsored by the Fundacdo de Amparo a Pesquisa no Estado do Ricede (FAPERJ). On leave of absence from
Institut d'Informatique, Université de Annaba, B.P. 12, Annaba 230@@rial

CCC 00380644/99/09079321$17.50 Received 1 September 1996
Copyrightd 1999 John Wiley & Sons, Ltd. Revised 23 December 1998
Accepted 17 February 1999

794 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

the method presented through this paper is easily adaptadytoneta-rule which can be
established at compile-time.

Usually, the pattern set is pre-processed producing amiedéate representation allowing
for the matching process to be performed efficienyfferent kinds of such representations
have been studied: conditional constructs, like thoseratedural languages, have been
exploited for this purpose. Examples include théhen-else construct [5] and thease-
expression [6,7]. Another kind of representation consists ofiaiching tree (also called the
index tree) [3,8]. Similarly, pattern-matching definitiohave been compiled into a finite
matching automaton in References [1,9,10,11,12].

Pattern-matching automata have been studied for overaaleleGraf [9], Maranget [13]
and Christian [14] describe matching automata for unambigpatterns based on left-to-
right traversal. Graf [9] adds instances of patternsguaiclosure operation, so symbol re-
examination could be avoided. Maranget [13] describes tegbniques to compile lazy
pattern-matching. The first technique generates a disistim matching automaton that is
equivalent to that obtained by Graf [9]. The secontrigcie, however, generates automata
with failures that allow non-deterministic pattern-matching (i.ethwéymbol re-examination).
These automata possess a static exception constricerthbles some code sharing. In
functional programming, Augustsson [6] and Wadler [7] desgritteern-matching techniques
that are also based on left-to-right traversal, Hotvaprioritised overlapping patterns. They
compile patterns intdACASE constructs using four compilation rules: thepty rule, the
constructor rule, the variable rule and themixture rule. Although the latter methods are
practical and economical in terms of space usage, thgyreaexamine symbols in the input
term. In the worst case, these methods can degenertiie naive method of checking the
input term against each pattern individually. In contr&tristian’s [14] and Graf's [9]
methods, together with Maranget’s [13] first techniqueyicisymbol re-examination at the
cost of increasing the space requirements, while Matange&] second technique guarantee
that the size the resulting automaton is linear insthe of the patterns. However, one has to
bear in mind that the functional approach followed bydi&a[7] and Maranget [13] combines
the operations of forcing weak normalisation of thetesub whose the head symbol
mismatches the symbol in the pattern and examiningdselting head symbol while in the
term rewriting approach followed by Christian [14] and f§&, symbols are examined
without forcing any evaluation.

The practical method we shall describe in this papsmgar to a method of automatic
generation of parsers [15,16], which has been used for yeang to compile imperative
languages. Backtracking in the pattern-matching processa@mume considerable time as
well as space. So, through the matching table generptimcess, we convert the original
pattern set to an equivalent closed pattern set whmldsthe need for backtracking. We use
a different approach from that described by Graf [9]ampgute the closure of pattern sets. In
contrast with his method, we also deal with prioritiseverlapping patterns. Furthermore,
Graf [9] does not show how to use the constructed nmegtcitomaton in the context of a
given rewriting strategy. After the method of generatine matching table is described, we
describe how to interpret such a matching table throungabatract rewriting machine. We
show that the rewriting machine is simple yet expvessind any rewriting strategy can be
used after minor changes to it. We illustrate this himec using the three most popular
strategies namely, leftmost-innermost [17,18], leftnmgiermost [12] and the adaptive
strategy [19] used in most lazy functional languages sudWlimnda [19], LML [20] and
Haskell [21]. The adaptive strategy implements the funaticapproach described in
Reference [7]. Our method, like most others, is m@stli to the subclass of left-linear
programs for which a variable can occur only oncéénléft side of an equation.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 795

Using the technique of partial evaluation [22], Strandhti@sforms the code generated
for equational programs so that the code obtained alowsome matching and rewriting
steps to be avoided. Similar work can be found in Redee[23-25]. Instead, we customise
the idea of partial evaluation so it can be used directlthe equational program itself, not on
the code generated for it. For the adaptive strategypitssible to avoid some matching and
rewriting steps if the equation’s right sides are andlyae compile-time. The rewriting
machine permits this analysis to be done easily, amgnerates a new equivalent set of
equations which is more efficient. Finally, an eviatraof an implementation of the proposed
ideas is provided.

2. NOTATION AND DEFINITIONS

Definition 2.1. An equational program can be defined as a 4-tuf® = [F, V, R, TOwhere
F={f, g, h, ...} is a set of function symbol¥,= {x, y, z, ...} is a set of variable symbols aRd
={m - T, T2 > Tz ...} IS @ set of rewrite rules called tkem rewriting system, where =

and t; are terms, called theattern andtemplate, respectively. T is thesubject term, which is
the expression to evaluate.

For convenience, in most of the paper, we will comdide patterns to be written from the
symbols inF O {®}, where » is a meta-symbol used whenever the symbol represeating
variable does not matter. For a pattern set 7, we denote by F, the subset of containing only
the function symbols in the patterns of . A termis either a variable, a constant symbol or has
the formf(cy, 62, ..., 6n) where each o; (1 <i < n) is itself a term anch is the arity of the
function symbof denoted by # The subject term is supposed to hgr@und term, i.e. a term
containing no variable occurrences. Terms are irggedrsyntactically as trees labelled with
symbols fromF [0 V. An ingtance of a termt can be obtained by replacing leaves labelled with
variable symbols by other terms. In practice, haveboth the subject term and templates are
turned into Directed Acyclic Graphs (DAGs) so that camnsubterms may be shared
(represented physically once). This allows for thelwation of such subterms to be
performed at most once during the whole rewriting process.

Definition 2.2. A position in a term is a path specification which identifiesoa@e in the graph
of that term, and therefore both the subterm rootatiatpoint and the symbol which labels
that node. A position is specified here using a list of positive integers. The empty list A
denotes the graph root, the positlbodenotes théth child of the root, and the positignk
denotes théth (k> 1) child from the position given by p. The symbol, respectively subterm,
rooted at positio in a termt is denoted by[p] , respectivelyt / p. A position in a term is
valid if, and only if, the term has a symbol at that position. So A is valid for any term, and a
positionp = g.k is valid if, and only if, the positioq is valid, the symbot at q is a function
symbol anck < #f.

For instance, in the tertn= f(g(a, h(a, a), b(a, X), c), t{A] denotes the single occurrence
of f, t[{2.2] denotes the variable symbglwhereag[2] denotes the symbblwhile t/2 indicates
the subternmb(a,x) and the positions 2.2.1 and 1.3 are not valid. In thewollp, we will
abbreviate terms by removing parentheses and comnhas. instance,t abbreviates to
fgahaabaac. This will be unambiguous, since the given function ari(iee. # = 3,#g = #h =
#b = 2,#a = #c = 0) will be kept unchanged throughout all examples. Iriqodat, the arities
#f = 3,#g = 2 and#a = 0 will be used in the running example.

Definition 2.3. A pattern set & is overlapping if there is a ground term that is an instance of at
least two distinct patterns in 7.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

796 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

For instance, the set & = {faww, foaw} is an overlapping pattern set because the faam
is an instance of both patterns, whereas the set n' = {faww, fcwow} is a non-overlapping
pattern set. A similar notion is that of pattern greterlapping:

Definition 2.4. A pattern set & is prefix-overlapping if there is a ground term with a non-
empty prefix that is an instance of prefixes of at least two distinct patterns in 7.

For instance, the set © = {fwaa, fowc} is a non-overlapping pattern set, but it is a prefix-
overlapping because the prefaa of the termfaaa is an instance of both prefix¢g@a and

foow.

When overlapping patterns are allowed in equational progiragm@ meta-rule is needed
to decide which rule should be matched when a conflicttdugverlapping patterns arises.
The meta-rule defines a priority relationship among lapping patterns. Thus, given a
pattern set w and a meta-rule, we can formalise the notion of pattern-matching as follows:

Definition 2.5. A termt matches a pattern w; U = if and only if t is an instance of & andt is not
an instance of any pattern m; Ll 7 such that the priority of z; is higher than that of =; .

Definition 2.6. A termt; is more general than a ternt, at a given common valid positignif
and only ift;[p] OV, to[p] O F and the prefixes af andt, ending immediately beforE are
the same.

Definition 2.7. The closed pattern set 77 corresponding to a given pattern set & is the set
obtained by applying to © the closure operation defined by Graf [9] as follows:

For anysO F O {w} , let =/ Sbe the set of elements of © starting with s but with the first
symbolsremoved. Define n,, and &, f O F by

T, = /o
= [u/f Do nlo ifn/f#D
' %) otherwise.

The closure operation is then defined recursively by:
yis ifz={ctorn=0
= |ss otherwise.

Heree is the empty string an@™ is a repetition of #symbolsw. The set 7; includes all the
patterns in 7 starting with f, but with f removed. In addition, whiléactorising a pattern set
according to a function symbbli.e. computing 7;), the operation above takes account of the
components starting with a variable symbol as wie#; symbolw is considered as possibly
representing a subterm whose root symbél i¥herefore, a new component is added to the
set tr. This component is obtained by replacindy a sequence abs whose length is f#
This sequence stands for the arguments of

The closure operation supplies the pattern set with swstences of the original patterns.
In effect, if one pattern is more general than amoéthesome positiop then the pattern with
o replaced byfw™ is added. For instance, the prefix-overlapping pattern set = = {fwaw,
Jowa, fogoogon} can be converted to an equivalent closed pattern set 7 using the closure
operation computed as follows:

7 fE = H{awaw, waa, wgwagwak

fof aw, am, gwagweat = fwP,

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 797

where

ol
I

aP_aDwED g%

a{w a} 0 o{a} U gf wapwa, wasy
= {aw, aa, wa, gowgow, gowal.
Then, the closed pattern set corresponding to = iS:
71 = {fwaa, foan, fogona, fogowgoo, fowal.

It is clear that the new pattern set accepts the same language as n does, since the added
patterns are all instances of the original ones. dbsure operation terminates and can be
computed incrementally (for full detailed description aminfal proofs see Reference [9]).

With closed pattern sets, if a pattern 7ty is more general than a pattern 7, at positionp, then
7o p] is checked first. This does not exclude a match for m; because the closed pattern set
does contain a pattern that is 7t; with 7ts[p] replaced by m2[p]w™2®. Under this assumption, an
important property of such closed pattern sets is they thake it possible to determine
whether a target term is a redex merely by scanniag tdérm from left-to-right without
backtracking over its symbols [9].

Symbol re-examination cannot be avoided in the cdiseon-closed prefix-overlapping
pattern sets whatever the order in which the patterns are provided. For instance, let = be the
prefix-overlapping set fwc, fogawa}. Using the textual order meta-rule, the first pattern
must be matched first, if possible. Then the tiogaaa cannot be identified as an instance of
the second pattern without backtracking to the first aecwe ofc when the last symbal is
encountered. However, the closute= {fcgawc, fcgawa, fcgowc, fcoc, fogana} allows
matching without backtracking. Then the term will matwh second pattern.

3. MATCHING TABLE GENERATION

In this section, we describe a different approach tapeae the closure of a pattern setia
direct compilation rather than via the sets m;, as in Reference [9] (see Definition 2.7). We
compile pattern sets into matching tables. In geneha, pattern-matching compilation
technique at the heart of this paper can be thought atalsle-driven method inspired by the
LALR method used in YACC [15,16] to generate parsers foldriguages. In that context,
the pattern set to be compiled is considered as thef sigiht sides of syntactic productions.
The left sides of these productions are non-termirgdsesenting théypes of the patterns,
and each variable symbol is a non-terminal forty§{®. Since we are dealing only with
untyped systems, there is only one non-terminal. Ak WACC [15,16] the compilation
process creates a finite automaton, for which we ohefgte the states and the state transition
function.

Definition 3.1. A matching item s a pattern which is split into a prefix and suffixibgerting
thematching dot (-) at some point.

In general, for the pattemp the matching itena - f means that the symbols in the prefix
a have been matched and thosg ihave not been checked yet. Thus, the matching giem -
represents the initial state prior to matching the gpatf, whilst the matching itena:-
represents the final state after matching the whdtewax.

Definition 3.2. A set of matching items in which every item has shene prefix before the
matching dot is called matching set. Theinitial matching set contains all the matching items

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

798 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

‘i s.t. m 0w, whereas matching sets containing items of the form =;- arefinal matching sets.
Note that final matching sets can contain only oaéctring item.

A pattern set m is compiled into a deterministic finite matching automaton. The states of
this matching automaton are computed using the followimgsition operatio@. For each
symbols 0 F O {w} and matching selt, a new matching seé\l, s) is defined by

5(1,9) = {asf | e-sp O 1} O {as-fo™u | a-swp 01 and
for somef O F and termy/’, o-sfu’ 0 1}

Notice that the presence of the itemswu together with the itemss-fu’ in the same
matching set creates a non-deterministic situationafgpattern-matcher, sinae can be
substituted with a term havirigass head symbol. The itemsfw™u are added to remove such
non-determinism and avoid backtracking. For instance, let & = {fowwa, fcoc}, and letM be
the matching set obtained after accepting the rootayhdo M = {f-wwa, f-coc} O {f-cwa}.
The itemf-cwa is added because a target term with the pfefoould match the patteywwa
too if the last argument dfwerea rather tharc. So supplying the instangava would allow
the pattern-matcher to decide deterministically whiptiom to take. Without this new item,
the pattern-matcher would need to backtrack to theafiggiment of if the option offered by
fowa were taken, and a symbolencountered as the last argument of the target term.
Notice that the transition operation thus describedemphts exactly the main step in the
closure operation due to Graf [9], but replaces his ramudgscription with a straightforward
iterative construction. Therefore, the union of tlmalf pattern sets resulting from the
automaton construction procedure coincides with the @osithe initial pattern set.

Each matching set is associated with a state in thiehing automaton, namely that
accepting the common prefix (before the matching dothéngiven pattern set. The initial
state and final states correspond to the initial nmagctset and final matching sets,
respectively. The edges of the finite automaton anetsad according to the current input
symbol, namelys causes the transition frorh to J(I, s). The matching automaton
corresponding to n = {fwaw, fowa, fogowgow} is given in Figure 1. Transitions
corresponding to failure are omitted.

The finite matching automaton corresponding to a givetepaset is represented using a
matching table. Matching tables are simple, compacteapdkessive. Also, they allow a direct
access to a given matching state (see Section 5).t¢himg table is amN x (L + 1) matrix of
transitions, wheré\ is the number of non-final states in the automatonir{libe example of
Figure 1) and. is the number of function symbolsky. The extra column dfl entries is used
for variable occurrences in the patterns, all of Whiwe denoted bw. The distinction
betweenw and the other symbols permits a concise represemtattithe matching table. This
enables the use of matching tables for equational pregnatim an infinite alphabet.

For a matching stateand a symbo$ [0 F, O {w} , let (I, s) =J. Then the matching
table entryMT]I, g is

accept-symbol; if Jis not a final state arsl] F,.

accept-termy if Jis not a final state argl= w.
reduce if Jis a final state andis the matched rule (see the next section).
fail Otherwise, i.eJ is empty.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 799

foaon
So fowa
fogoogon

f

A 4

f-oan
foma
fognogon

S1

fo-ao
fo-oa
fo-gnogon
fo-aa
fo-gnwa

fogroogoo
fogrona

)
fogo-ogoo
fogn-wa

)
fogoo-gon
fognw-a
2

Figure 1. Pattern-matching automaton for n = {fwaw, fowa, fogwwgonw}

Here the subscripl indicates the next state to enteiccept-symbol and accept-term mean
that the current input symbol (respectively the curmeptit term) is matched, and the state
o(l,) is entered. Reduce means that the rule numberthas been matched and should be
applied, whereafail means matching has failed at the given syrabol

The rules given are used straightforwardly. In all casesy-transition is chosen only
when the matching table entry for the specific curigmtit symbol idail. So ifs[F; is the
current input symbol andthe current state, then actibtIl, f] is performed if it is not &ail,
and otherwiseMT[l, w] is performed. Setting an entry t@duce requires solving an
additional problem if the matched pattern has been addedebgonstruction process. For
original patterns the rule number to use is uniquely definéthwever, two or more original
patterns could match any added patterns. The selectasis by applying the rule priorities
provided to associate a unique rule with each added pattern.

For instance, for the pattern set {1: fowaw, 2: fowa, 3: fogowgow} of Figure 1, the
added patterngoaa and fogwwa would be associated respectively with the rule numbers 1
and 2 if the textual order rule were used.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

800 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

Table I. Matching table for = = {fwaw, fowa, fogowgwn}

f a g 10

0 accept-symbol; fail fail fail

1 fail " " accept-termy
2 accept-symbol; accept-symbols accept-termy
3 reduce; fail reduce;

4 reduce, " fail

5 fail " accept-termg
6 " " accept-termy
7 reduce, accept-symbolg fail

8 fail fail accept-termyg
9 " " reduce;

Ambiguity arises for patterns introduced that belong te tiverlap of any original
patterns. For example, let w3 be the pattern added because pattern m; iS more general than
pattern 7, at a given positio. Recall that 3 is obtained from m; by replacing the subterm
m[p] = @ by a term of which the subterm m,[p] is an instance. Thus, mt3 is an instance of ;.
Normally, 7tz will fail to overlap with 7z, and so the rule for m; will also be associated with 7.
However, if m; and m, overlap, w3 may also be an instance of m,. Therefore, the template
associated with either mt; or m; could be selected to rewrite the subexpression beirigated.
The use of the given meta-rule allows for the selaatiosuch a template. This is performed at
compile-time by associating the prescribed rule number among those corresponding to w; and
T2, to the added pattern 7.

The matching table corresponding to the pattern set © of Figure 1 is shown in Table 1. It
corresponds to the finite automaton of that figure. danvenience, the states/matching sets
have been numbered as before. Notice that rows repiresdinal states do not exist in the
matching table. The decision to reduce the target expnesgsing the matched rewriting rule
is anticipated in the state leading to the correspondiagstate. This allows for the reduction
of the matching table by rows, where the number of final states is also the number of
patterns in the closure of the original pattern set.

4. REWRITING MACHINE APPLICATION

In this section, we show how the matching table tanted so far can be used in rewriting.
This detail was not covered by Graf [9] for his asstad finite automaton. We illustrate the
rewriting process using the three most popular reductiatesfies, namely leftmostinnermost,
which is used for strict functional languages such as HQIRE and ML [18] leftmost-
outermost [12], and thadaptive strategy which is used in most lazy functional languagek s
as LML [20], Haskell [21] and Miranda [19]. The last stggtés sometimes called ‘top-to-
bottom left-to-right lazy strategy’ [4], and is defindteathe next example.

Consider the prioritised equational program, which hagolleaving set of rewrite rules
with the subject termh=f(c, f(a, a, a), a):

f(X! a, y) - y (rl)
f(X! y! a) - a (rZ)
c - ¢ (ry

Closure would add the pattef(x, a, @) which overlaps both left sides. Then assuming a
textual order meta-rulef(x, a, a) would be associated withy. The leftmost-outermost

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 801

strategy would redudeusingr,, anda would be the normal form obtained whilst the leftmost-
innermost (orapplicative) strategy would result in an infinite computation, sincevould
cause the repeated reductioncof Arguably, the reduction sequence that best captures the
semantics [19] of the prioritised system above is dews. Contracted redexes are
underlined:

f(c, f(a, a, a), a) 2 f(c,a, a) T a

This strategy, which we will call thadaptive strategy, selects the leftmost-outermost redex
after reducing the arguments needed to normal form. i$h#itduring pattern-matching the
root symbol of a subterm fails to match a functiomisgl f in the pattern, then the subterm is
evaluated before re-attempting the match. If the syotbol of the normal form of the
subterm is different frorfy the matching of that pattern fails and the next paitened.

In some cases, the adaptive strategy terminates \wbhdaftmost-outermost strategy does
not. For instance, consider the rewriting systé(r, @, y) - a, g(x,y) - a, ¢ - c}. The
evaluation of the terrf(c, g(a, a),) using the leftmost-outermost strategy fails to ternainat
since it would try to rewrite the subtermthat represents the outermost-leftmost redex.
However, the adaptive strategy would try to match theepabf the first rule by rewriting the
second argument éfto a. It does this, and hence succeeds in rewritfogg(a, a), c) to a.
The adaptive strategy requires equational programs to follewonstructor discipline [26].
This can be formalised as follows:

Definition 4.1. A function symbol is aonstructor for the pattern set if it does not appear at
the root of any pattern in

Definition 4.2. Let R be a term rewriting system, and suppose every symbdiqros a
pattern ofR, other than the first, is a constructor symbol far slet of patterns & ThenR
is called aconstructor system.

For instance, consider the term rewriting syst&ntiiat follows. The initial symbolf g
andh are not constructors, whereas the symbasdb are. Therefore,H) is a constructor
system.

1. f(x,a,y) = a 4. g(x, a) =X
2. f(x,y, @) = a 5. h(b(x,a),a) = a
3. f(x, b(s, y), b(t, 2) = h(b(y, @), 9(x, @) 6. h(x, a) = 9(a x)

The constructor discipline entails almost no loss aiegality, since the majority of
equational programs observes this discipline [12] and therityeof those that do not, can be
syntactically transformed so as to follow it [26,27].or Rhe remainder of this paper, we
assume, in common with most researchers in the #natthe term rewriting system is a
constructor system.

The pattern-matching process is incorporated into a simpstract rewriting machine
represented by the 5-tugkM = [, P, MT, R, TJ which will be used to rewrite the terfmto
its normal form. | is the current matching state which corresponds towaimdex in the
matching tableMT. R represents the root position of the subtermTiurrently being
matched.P is the current position the matching process has rdachbe subterm[R].

Now, let, P, MT, R, TObe the current state &M. Then its next state is determined
according to the reduction strategy usadil[I, T[R.P]] and MT[l, w]. Possible state
transition rules for the abstract machine using tfietest-innermost and leftmost-outermost
strategies are described in Figures 2 and 3 respectivélg. trainsition rule of Figure 2 uses
the adaptive strategy. In each of these three figiachingAction represents the matching

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

802 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

action to be performed. This is eithdf[l, T[R.P]] or fail, depending on whether or not the
symbolT[R.P] is a function symbol that actually appears in a pattern.

a, P, MT, R, T0 -
CaseMatchingAction of
accept-symbal If U ={i | 1<i <#T[R.P], 4sNormal(Pi) } # & then
For i J U do Normalise(T/R.Pi)
elseld, Next(P), MT, R, tJ

reduce: [0, A, MT, A, ApplyRule (T, R)J
fail: CaseMT|[l, w] of
accept-term 0J, NextArg(P), MT, R, T(J
reduce [0, A, MT, A, ApplyRule (T, R)J
fail: If Next(R) Definedthen [0, A, MT, Next(R), TO
elseMarkAsNormal(T);
End
End

Where MatchingAction = If T[R.P]0 F, then MT[l, T[R.P]] elsefail

Figure 2. Sate transition rule for innermost-leftmost strategy

All of these strategies require each subterri td be marked initially as not normal (i.e.
not known to be in normal form). The normal formaogiven ternT is obtained by applying
the appropriate state transition rule repeatedly untitdlo¢ of T is marked as normal. Such

an iteration sequence will be callddrmalise(T). It starts in the initial statéd, A, MT, A, T
with all the nodes in the graph ®imarked as not normal.

a, P, MT, R, TJ —
CaseMatchingAction of
accept-symbal [J, Next(P), MT, R, T(J

reduce [0, A, MT , A, ApplyRule(T, R)G
fail: CaseMT|[l, w] of
accept-term 0J, NextArg(P), MT, R, T(J
reduce [0, A, MT, A, ApplyRule(T, R)J
fail: If Next(R) Definedthen [0, A, MT, Next(R), TO
elseMarkAsNormal (T);
End
End

Where MatchingAction = If T[R.P] L F, then MT[l, T[R.P]] elsefalil

Figure 3. Sate transition rule for |eftmost-outermost strategy

The functionNext(P) returns the position of the symbol after that at s in the term
T wheread\extArg(P) returns the position of the next argument (i.e. the sisting in that

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 803

graph). HeréNextArg will travel back up towards the root dfto find the lowest ancestor of
P which has a branch to the right®f

For instance, leT = fagaahaa. Then applying the functionSlext to positions A, 2, 2.1
and 2.2 returns the positions 1, 2.1, 2.2 and 3, respectikelyboth of positions 2 and 2.2,
functionNextArg returns position 3. The functid¥ext is undefined for the position of the last
symbol in the term, whilsNextArg is undefined for all positions between the root and the
right-most leaf of the parse treef Regarding the example terfirabove,Next is undefined
for position 3.2 whileNextArg is undefined for positions 3.2 and 3. WhBlextArg is used in
the transition rules, it is always defined, but wiNext(R) becomes undefined the machine
halts.

In the transition rule for the adaptive strategy, waeule is appliedR remains the root of
the subterm in which the next redex is searched foer@as for the other two strategies, the
new rootR becomes A. Apply-rule(T, R) instantiates the template of the matched rule
replaces the variable nodes by their actual graph-vaares,finally, rewrites the subterm
T/ Rusing the newly constructed template instance. GiyawsaionP, the Boolean function
IsNormal checks whether the graph rooted at posiftbis known to be in normal form,
whereas the functioklarkAsNormal (T) marks the root of the terihwhen this term is known
to be in normal form. Eventually, the machine halts at (0, A, MT, L, T), whereT is marked as
normal and. is the position of the last symbol in the tefm

The machine state transition rules of Figures 2 and 8sae@ in the obvious way. For the
adaptive strategy, whenever a function synfidabels the current matching positiBrand the
entry MT][I, f] is fail, two alternatives are possible according to whetheretlg another
function symbolg for which MT[I, g] is notfail. When such a symbol exists, the subterm
rooted at positiof® is normalised then, the transition rule tried again (in the hope ¢haight
be matched). Otherwise, the ent#y [I, w] is tried.

For instance, consider a rewriting system for whiweh matching table is that of Table I.
Suppose rule 1 ixay — a and the subject term & = fcfcaac. Using the transition rule of
Figure 2 first causes the normalisation of argunfiesd of the root symbof, since the entry
MT[O, f] is accept-symbol; and not all of the arguments of the fifsh T are in normal form.
The subternicaa readily matches the pattern of rule 1 soeduces tdcac. Then state 1 is
entered. Once the prefiga is accepted, andP become 3 and 3, respectively. Subsequently,
with ¢ at T[3], MT[3, w] indicates that the pattern of rule 1 is matchedl seduces t@. The
same outcome arises from the use of the transitienaluFigure 3. There the prefig is
accepted and state 2 entered; then the subiteams skipped becauddT[2, f] is fail and so
MT[2, w] is performed. Thus state 4 is entered, and so matdhinthe root fails.
Subsequently, the strategy fails to find a redex at paski but succeeds in identifying the
redexfcaa at position 2. This readily matches the pattern of tulend is rewritten ta, soT
reduces tofcac. Once again, the strategy succeeds in matching thermpaif rule 1 at
position A so that T reduces taa. A similar result obtains from using the transition rafe
Figure 4. This accepts the preficy enters state 2 witR = 2; sinceMT[2, f] is fail andT[P] is
not in normal form, the normalisation of subtefitaa takes place so thdt reduces tdcac;
the match of the symbol at position 2 is re-attemptieel;symbolT[2] = a is accepted and
state 3 entered; with the normal foomat position 3MT[3, w] indicates that the pattern of
rule 1 is matched. The adaptive strategy then appliesuleatand sd reduces ta.

When a pattern is matched the pattern-matching procasdsnto provide the actual
substitutions forwsin that pattern. This is to enable template insdéioth so that redexes can
be reduced. Graf's technique [9] does not mention suchad. d8ince variable occurrences
in patterns are known, their positions can be pre-cordpand stored at compile-time. Once a
rule has been matched and the value of a variabledede the subterm corresponding to the

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

804 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

position of that variable can be retrieved from thigét expression. This is then provided to
the template instantiating process which uses it t@cepbccurrences of the variable.

a, P, MT, R, TJ —
CaseMatchingAction of

accept-symbal [J, Next(P), MT, R, TL;

reduce: [0, A, MT, R, ApplyRule(T, R)(J

falil: If TIR.P]1 F, and C¥UIF (MTI, f]#fail) and —IsNormal (P) then
Normalise(T/R.P)

else CaseMT[l, w] of

accept-term 0J, NextArg(P), MT, R, T(J

reduce [0, A, MT, R, ApplyRule(T, R)(J
fail: If Next(R) Definedthen [, A, MT, Next(R), TO
elseMarkAsNormal(T);
End

End
Where MatchingAction = If T[R.P]L F, then MT[l, T[R.P]] elsefalil

Figure 4. Machine state transition rule for the adaptive strategy

However, as backtracking has been eliminated, theafastnamically collecting pointers
to variable instances during pattern-matching may bapsgre Letl, P,MT, R, TObe the
current state oRM. 1t is clear that when the matching action to perfasrMT[l, w] (i.e.
either accept-term or reduce), the subternT / R.P is the actual value of the variabigP] if
matching of patterm succeeds. This collects substitutions for the matph&ern, not for the
original pattern in the rule which is to be applied. r Fstance, consider the pattern set of
Figure 1 and letaaa be the subject term. Becausaa would match the non-original pattern
fwaa, only one variable substitution would be available wheiching concludes. However,
faaa has to be rewritten using rule 1 whose patfexnw requires two substitutions, not one.
In this case, the missing substitution is always tistancea at position 3 in the matched
pattern.

To be able to collect the missing substitutions whameriginal patterns are matched, we
need to consider some cases for which the matchim@nact perform isMT][I, f] for f O F,.
When the matching action to performNBITI, f], a substitution needs to be collected only if
MT[I, w] is distinct fromfail. Then in the example above, two additional variableaimses
would be collected when the second and last synsbinl$aaa are accepted in states 2 and 3,
respectively. This is because the actions to be peefd areMT[2, a] = accept-symbol; and
MT[3, a] = reduce; with MT[2, w] = accept-term, andMT[3, w] = reduce,, respectively, but
not fail. No substitution would be collected when the synibislaccepted in state 0, because
MT[O, w] = fail. The substitution for the second occurrenca &f collected becaudeaa is
an instance of the pattefivwa (rule 2) too. Then the required substitutions would be
available if rule 2 were to be applied (in case rule 2nigiser priority than rule 1).

In some cases, even if the target term can matghard original pattern, there may be
more variable substitutions than are required. Foamegt, when the non-original pattern
fogowwa in Figure 1 is matched, four variable instances would dileated, namely those

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 805

rooted at positions 1, 2, 2.1 and 2.2 in the target terme ttorrespond to the occurrences of
@ and one to the occurrence®f No substitutions are collected for the occurrencesantl
ain states 0 and 4, respectively, becau3¢0, »] andMT[4, w] arefail. Sincefwgwwa is
associated with rule 2 whose patterfigsa, only the variable instances rooted at positions 1
and 2 would be used, and the rest ignored.

5. ANALYSIS OF RIGHT-HAND SIDES

Exploiting the idea of partial evaluation in the complatof equational programs, we can
feed the templates into a partial evaluator for furgireicessing. The result may enable the
skipping of some matching steps every time a rewriteisyterformed. In the best case, the
construction of some terms will be avoided. In thest®n, we describe how to take
advantage of known information in the templates by algreevaluating them at compile-time.

In general, partial evaluation consists of transfogmin given progranProg (perhaps
using some partial input) into another progrBrog’ which produces the same result. The
main transformations [22] are known eanstant folding, function specialisation and call
unfolding. Constant folding simplifies expressions by replacing kneulexpressions by their
values, while function specialisation specialises famctiefinitions to take advantage of some
information concerning some of its arguments. Finatl unfolding unfolds function calls to
expose it to some improvements due to a particular gaitmtext.

Partial evaluation for equational programming was finstoduced by Strandh [3] and
continued by Durand [23,24], Sherman [25] and Miniussi [28] mdrst of these works, the
equational program is compiled into intermediate code, tigmgy the information known
about the equations’ right sides, this code is specialisecheans of the transformations
above. The specialised code avoids the constructimormg nodes and the checking of a
known part of the templates. However, rather than agmgptjpe transformations to the code
generated for the equational program, we instead apply ititetead directly to the rewrite
rules of the program.

The right-hand side analysis at compile-time exploksfiist two transformations, namely
constant folding and function specialisation, (i) to transform the templates themselves so the
construction of some terms will be avoided at run-tianeg (ii) to specialise the pattern--
matcher so that it avoids checking the known part oftéheplate. The analysis consists of
matching and rewriting the templates as far as theyvall using the matching automaton.
This process halts when the template considered idefmted enough to continue matching
or rewriting. Then the current matching sttand positionQ are returned with the current
template. This new template decorated Withand Q is used to replace the appropriate
rewrite rule right side in the original equation systek.and Q are used to specialise the
pattern-matcher so that when the rule is applied atima-pattern-matching will commence
in stateK at positionQ.

For instance, consider the templdteayagxa of rule 3 in the systemE] of Section 4.
While trying to match the whole template to the pattef rule 5, the subtermgxa is
encountered. The adaptive rewrite strategy requiresothis rewritten if possible. When it is
analysed, rule 4 can be applied, andysa is rewritten tox. The strategy now requires the
resulting termhbyax to be rewritten, if possible. However, pattern-maigthalts at the last
symbol because it is not known whether the valuwewifl matcha as in the pattern of rule 5,
or not. Sohbya:x is returned as the new template. The analysis re@sytie first four
symbols (they match those of the pattern of rule BYl so pattern-matching can safely

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

806 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

commence at the fifth symbol at run-time. Now, tle¢ subject term béabaabaa. In the
original equation systentj, the evaluation would proceed by

fabagbaa [hbaagaa ¥ hbaaa ﬂ a

where redexes are underlined. However, when the teanplatile 3 is replaced bya-x to
give a rule 3 the evaluation would proceed by

fabaabaa Eﬁ’ hbaa-a E-E a

thereby skipping one rewriting step and some pattern-matchi

5.1. Template pattern-matching

Pattern-matching of templates or their subterms difiensn that earlier on because we
may now have variable symbols in the subject teFunctions are treated in the same way as
before. However, when a variable is encountered aitipo P, there are three possible
courses of action. First, suppose that there is anty-transition from the current matching
state in the matching automaton. (So every pattetineircurrent matching set has a variable
symbol atP, and the matching table contaife@l under each function symbol.) Then, the
variable in the pattern can be instantiated to thetim@ value of the variable in the subject
term. So pattern-matching will succeed at run-time, aralysis can continue as determined
by the matching table entry. Secondly, suppose evangition from the current matching
state is eithefail or is identical to the entry under in the matching table. Again at run-time,
the non-fail action will be performed anyway (whether via a functior @ symbol entry).
Thus, matching will again succeedRtand so the analysis may proceed as before. Finally,
and otherwise, for some function symibdahere is a rfon-fail) f-transition from the current
matching state that is different from thetransition. In this case, the analysis must hadt a
return P paired with the current state because at run-time,eimplate variable may either
matchf or default tow, so that the next state is not determined.

The order of analysing the right sides depends upon theecludi reduction strategy.
Clearly, after applying a given rule the whole templateone of its subterms, or even a
superterm of the template, may be the next candidatevaiting. The analysisust use this
strategy to determine the next term to consider. éfbex, a good choice of the reduction
strategy will enable more to be gained from templatewdedge, more compile-time
evaluation to be done, and hence lead to more effipdrams. In particular, this is the
case for the adaptive strategy of Section 4. Wherevterm is rewritten, a further attempt
can be made to rewrite the result: a template is aifay next candidate term to be rewritten,
and the right side analysis can therefore consideaat this term.

So, we will present the analysis process using that imdagitategy on the example above,
and assume a constructor discipline as before. In detteranalysis proceeds by inspecting
in pre-order the nodes of the template graph starting fi®moot, i.e. taking the symbols in
left-to-right order. The presence of variable symbnlgdhe subject term means that the
analysis transition rule (see Figure 5) is a versiothaf of Figure 3 which is modified in the
way described above. A further modification is neagssacause the run-time subject term is
not known, and the strategy applies differently to sutgewhich the template may represent.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 807

0, P, MT, R, 0 -
CaseMatchingAction of
accept-symbgl [J, Next(P), MT, R, 1[J
accept-term If OfLIF, (MTJI, f] = fail) then [J, NextArg(P), MT, R, t[J
elseMarkAsHeadNormal(z);
reduce: If t[R.P]LJ F, or OfLIF, (MTIl, f] = fail or reduce) then
[0, A, MT, R, ApplyRule(t, R)C
else MarkAsHeadNormal(t);
falil: If OFUF, (MTI[I, f] # fail) and t[R.P]J F, and -IsHeadNormal (P) then
HeadNormalise(t/R.P)
else CaseMT[l, w] of
accept-term 0J, NextArg(P), MT, R, t[}
reduce [0, A, MT, R, ApplyRule(t, R)
fail: MarkAsHeadNormal(t);
End
End
Where MatchingAction = If t[R.P] [J F, then MT]I, t[R.P]] elsefall

Figure 5. Machine state transition rule for template analysis

In general, there are three possible outcomes at gaithrn-matching stepfailure,
halting andsuccess. The process halts when run-time knowledge of the val@evariable is
required, or when the run-time context of the templateequired before the strategy can
determine the next candidate term for rewriting. Suctaeds to a rewrite and the strategy
seeks the next redex, bearing in mind that the new #tenphay not be the whole of the
subject term being evaluated. If analysis of the whelaplate producefailure, then no
rewrite of the current term is possible, and anotbdex is sought, as in the case of success.
For the strategy here, once the current templatevdsoke returns fail, the process does not
try to analyse the subterms. This is because tiknown whether the whole template, one
of its subterms or another subterm of the subject,tenay become the next candidate to
rewrite. Thus, until some variables are instantiated,template obtained by the analysis is
root-redex free, and is therefore said to bleesd normal form [3,7].

5.2. Transition rules for template analysis

The analysis transition rule for the adaptive strategyven in Figure 5. The head normal
form of a template is obtained by repeating that transition rule, starfiogn the initial state
(0, A, MT, A, 7) until it markst as head normal. Initially, all the nodes in the graph,
except those labelled with constructors, are markesbtakaad normal (i.e. not known to be
in head normal form). Subterms with a constructot eve already in head normal form, and
so are marked as such. As befdviatchingAction is eitherMT][l, 7f[R.P]] or fail, depending
on whether[R.P] is a symbol that appears in the patterns or not. chdhatz[R.P] may be
the symbokw. Therefore, we must folloWIT[l, w], only if there exists no function symbbl
of F, such thaMT[l, f] # fail.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

808 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

Table Il. Decorated matching table for the equatiar{Ee

f g h a b 10
0 accept-symbol; accept-symbol, accept-symbols fail fail fail
1 fail fail fail " " accept-termy
2 " " " " " accept-terms
3 accept-symbol; accept-termg
4 accept-symbol,o accept-symbolg accept-termy
5 reduce; o Ao fail fail
6 reduceev[gbvgm " "
7 fail " accept-term
8 " " accept-termy
9 reduce, o Ao " fail
10 " " " reducel,@),\g " reducel,@),\g
11 " " " accept-symbol 14 " accept-termy
12 " " " fail " accept-termys
13 " " " reduceev[gbvgm " fail
14 " " " reduces o n " "
15 " " " reduce,p nn accept-symbol,g accept-termyg
16 " " " fail fail accept-termy;
17 " " " " " reduce‘g’,zm,z]

Eventually, after repeatedly applying the transition @ufe 5, the machine halts in
I, P, MT, R, z0with £ marked as head normal. Then the symf#®l or the context of is not
defined enough to progress in the matching.ofin both cases, the decoration returned is
merely the value of the padil, POat this final stage. The repetition of the transitiole of
Figure 5 until it halts is calleHleadNormalise(z), and it may need to call itself recursively for
subterms. The Boolean functioaHeadNormal(P) checks whether the subterm rooted at
positionP is known to be in head normal form, whereas the fandtlarkAsHeadNormal(z)
marks the root of the templatevhen this template is known to be in head normal form

Overall, analysis of all right sides of the equatiostesmn E) yields a revised template list
(a, a, hbwaw, o, a, gaw), in which the third has changed, and a corresponding flist o
decorations[@, AL [0, AL 14, Z) [0, AC 0, AL B, 2). The new matching table is given in
Table Il, complete with decorations. Four of the dations are®, A[] which indicate that
no progress at all was made in matching the templates.

The analysis of the templatéwagwa of rule 3 is described in Table IIl. This is done
using the transition rule of Figure 5 and the original hiatctable which is the same as the
undecorated version of Table Il in this instance.

5.3. New machine state transition rule

Using the decorated matching table, together with thetamplate set, it is now possible
to skip all theknown nodes in a template and avoid all those reductions #vat heen done at
compile-time while analysing the templates. Wheneveuler is used to rewrite a subterm
the new template is used and the corresponding decofkti@ifrom MT is used to set the
current matching state and matching position. Figure 6 tdethie transition rule for the
machine augmented with these decorations.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 809

Table Ill. Analysis of the templatéwagma

Current Staté Current PositiorP Current term Matching Action
0 A hbwagma accept-symbol;
3 1 h-bwagwa accept-symbol;
7 1.1 hb-wagwa accept-termy;
11 1.2 hbaw-agwa accept-symbol 14
14 2 hbwa-gowa fail — HeadNormalise(gwa)
0 A -gma accept-symbol,
2 1 g-wa accept-terms
5 2 gow-a reduce,
0 A ® fail — HeadNormalise(w)
14 2 hbowa-w fail — MarkAsHeadNormal (hbwaw)
14 2 hbwa-w return14,2ZJandhbowa-w

a, P, MT, R, TJ —
CaseMatchingAction of
accept-symbal [J, Next(P), MT, R, T
reducex oo K, Q, MT, R,ApplyRule(T, R)T
fail : If TIR.PIL F, and C¥UF, (MTI[l, f]£fail) and —IsNormal (P) then
Normalise(T/R.P)
else CaseMT[l, w] of
accept-termm 0J, NextArg(P), MT, R, T(J
reducex o K, Q, MT, R,ApplyRule(T, R)G
fail: If Next(R) Definedthen [0, A, MT, Next(R), TO
elseMarkAsNormal (T);
End
End
Where MatchingAction = If T[R.P] F, then MT[l, T[R.P]] elsefail

Figure 6. New machine state transition rule

6. EVALUATION

An experimental implementation of the term rewritingamine described in Sections 4 and 5
was built to evaluate the automaton-driven pattern-reatethich takes advantage of known
right side information. The number of matching actiand rewrites, as well as the evaluation
times, has been recorded to show the effect on thkiaion process. Two differetby
equational program#rogl andProg2, have been written to illustrate the effect of diffdre
degrees of overlap between the templates and the patiéaslso report the evaluation time
for some common problems which were also used as lmamks to evaluate HIPER [14].

In both program#$rogl andProg2, the function arities are as in the equation system (
ProgramProgl (with the equation set below) gains little advantagenftbe right-hand side
analysis. It results in few decorations differentrirthe default decoration. The decoration
list is (0, AQ) 5, 2) A3, 4] [7, 2 15, 3] [0, AQ [0, AL [0, AD and the templates remain
unchanged (they are already in head normal form):

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

810 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

1. f(x, ay) =C 5. g(xy) =f(x, b(x, y), h(y, x))
2. f(x,y, @) = h(a, X) 6. h(b(x, @), ¢) =b(a, X)
3. f(x, b(s,y), b(t, 2)) = h(b(y, a), 2) 7. h(b(x,a),y)=c
4. g(x, c) =f(b(a, X), X, b(a, X)) 8. h(x, a) = b(a, X)
Table IV. Number of rewrites, accept-symbols and aet=pt-operations
Rewrites Accept-symbol operations Accept-term operations
Without With Without With Without With
decorations decorations decorations decorations decorations decorations
Progl 60 60 137 67 153 85
Prog2 42 18 132 24 166 36

However, for prograniProg2 (with the equation set below), more decorations aferdiit
from the default decoration. The list i9 (AL 15, 3 5, 2) [0, A0 A5, 3] [0, A0 OO, 3]
(6, 2), and some templates are rewritten. Therefreg2 should gain more from the
analysis:

1.f(x, a,y) =c 5. g%, y) =f (x, b(x, y), 9(y, ©))
2.1(x, y, a) = h(a, a) 6. h(b(x, a), c) = g(a, ¢)
3.1(x, b(s, y), b(t, 2) = h(b(y, a), 2) 7. h(b(x, @),y) =f (c, g(x, a), y)
4.9(x, c) =f (b(a, x), a b(a, x)) 8. h(x, a) =g(a X)
After the analysis of right side rewrites and matchas rewrite rules foProg2 become:
1. fxay = 5. gxy =fxbxy-c
2. fxya = fabaa-c 6. hbxac = -c
3. fxbsybtz = hfybyac-z 7. hbxay = fcfxbxacy
4'. gxc = 8. hxa =gax

The rule number is replaced withr’ if the template was rewritten in the analysis and the
matching dot indicates the position where matching cdalysbegin when the template
instance is matched at run-time.

The numbers of rewrites provided in Table IV clearlgwithat the use of the decorating
information did indeed improve the evaluation time, arelghin depends upon how much of
the templates are successfully pattern-matched. Margiaveur rewriting machine there was
virtually no run-time overhead caused by using the decosati

The terms evaluated are rather large (130 symboRrtml and 513 folProg2), and used
a combination of the rewrite rules provided. It idittie interest to provide them here. Table
IV provides the numbers of rewrites, accept-symbol axe@-term operations performed for
Progl andProg2 when the result of the analysis was considered/nedlecte

The evaluation times obtained for both programs inghe® cases are given in Table V,
along with the evaluation times under the OBJ3 system [Z8F timings were taken on a 50
MHz microSPARC |. Notice that under OBJ3, the sandayjtive) strategy has been used to
obtain those figures, and the numbers of rewrites paddrwas identical to those obtained
when the decorations were not considered. Of colreeDBJ3 times include type-checking,
etc., which is not the case for our implementatiow so are greater. These timings clearly
show that for some equational programs, partial evaluai#m provide significant run-time
efficiency gains.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 811

Table V. Evaluation times

Evaluation time (sec.) ~ OBJ3

Without With time
decorations decorations (sec.)
Progl 0.481 0.421 0.562
Prog2 0.337 0.149 0.399

Table VI. Evaluation times for miscellaneous benctk®a

Evaluation time (sec.) HIPER

Without With time

decorations decorations (sec.)
Kbl 0.088 0.079 0.067
Comm 0.130 0.079 0.10
Ring 2.139 2.060 2.83
Groupl 2.487 1.880 2.00

Table VI shows the performance of our machine togethidr that of HIPER [14] on
some common problems. These problems were first ugdthtbistian [14] to evaluate his
system HIPER which usdtatterms to perform pattern-matching. The€bl is the ordinary
three-axiom group completion problem. T@Gemm is the commutator theorem for groups.
TheRing problem is to show that ¥ = x in a ring, then the ring is commutative. Finally, the
Groupl problem derives a complete set of reductions for Highsngingle-law axiomatization
of groups using division. Times under HIPER are for Sun Hilewtimes for our
implementation are for MicroSPARC I.

7. CONCLUSION

In the first part of this paper, we described a practiegthod allowing for the compilation of
a set of patterns to an equivalent deterministic autmmathich does not need any
backtracking to pattern-match terms. In contrast Withmethod described by Graf [9], our
method presented a simple iterative algorithm for clgsamed can handle prioritised
overlapping patterns. Patterns are compiled into magdiibles which are simple, compact
and expressive. Where necessary, the textual ordermietwas used to resolve conflict due
to overlapping patterns. However, we explained how dahgrometa-rule could easily be
implemented.

Unlike Graf [9], we explain how the pattern-matching moet is used in the context of a
reduction strategy. In fact, we showed that with miobanges to the abstract machine
transition rule, any strategy can be accommodated. oWilined the three most popular
rewriting strategies, namely the leftmost-innermaise, leftmost-outermost and the adaptive
strategy, the last of which respects the semanticpriofitised equation systems. We
described the compile-time analysis of rule right-haddssthat could speed-up the evaluation
process, although the advantage gained is heavily dependentheahoice of evaluation
strategy. An important consequence of this compile-&inadysis is, that the redex graph may
not need to be checked completely each time a pattdofin@peration is attempted.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

812 N. NEDJAH, C. D. WALTER AND S. E. ELDRIDGE

Moreover, we explained how the construction of sommmgecould be avoided using new
templates generated by the analysis procedure.

Finally, in Section 6, results from an implementati@ve been given. These results show
a substantial improvement in some evaluation timegHerversion that includes right-hand
side analysis relative to that which does not.

REFERENCES
1. C. M. Hoffman and M. J. O’'Donnell, ‘Pattern-matdiim trees’,J. ACM, 68-95 (January 1982).
2. C. M. Hoffman and M. J. O’Donnell, ‘Programming iequations’ ACM TOPLAS, pp. 83-112

(January 1982).

3. R. I. Strandh, ‘Compiling equational programs intoicefht code’, PhD Thesis, The Johns
Hopkins University, 1988.

4. J. R. Kennaway, ‘The specificity rule for lazy pattematching in ambiguous term rewriting
systems’,Proc. European Symposium on Programming; LNCS 432, Springer-Verlag, 1990, pp.
256-270.

5. Ph. Schnobelen, ‘Refined compilation of pattern-matghior functional programming’Proc.
Algebraic and Logic Programming; LNCS 343 Springer-Verlag, 1988, pp. 233-243.

6. L. Augustsson, ‘Compiling pattern-matching®roc. Functional Programming Languages on
Computer Architecture; LNCS 201, Springer-Verlag, 1985, pp. 368-381.

7. P. Wadler, ‘Efficient compilation of pattern-matchingn S. L. Peyton Jones (ed.)fhe
Implementation of Functional Programming Languages, Prentice Hall, 1987.

8. A. J. Field, L. S. Hunt and R. L. While, ‘Best-fit fpern-matching for functional languages’,
Technical Report, Department of Computing, Imperial éga] 1988.

9. A. Graf, ‘Left-to-right pattern-matching’Proc. Rewriting Techniques and Applications; LNCS
488 Springer-Verlag, 1991, pp. 323-334.

10. C. M. Hoffman, M. J. O’Donnell and R. I. Strandimplementation of an interpreter for abstract
equations’ Software — Practice and Experience, 15(12), pp. 1185-1204 (1985).

11. G. Huet and J. J. Levy, ‘Computations in orthogonahteewriting systems’, in J. L. Lassez and
G. Plotkin (eds.)Computational logic: Essaysin honour of Alan Robinson, 1992, pp. 415-443.

12. M. J. O’Donnell, Equational Logic as a Programming Language, Foundations of Computing
Series, The MIT Press, 1985.

13. L. Maranget, ‘Two techniques for compiling lazy pattenatching’, Research Report 2385,
Institut National de Recherche en Informatique et Auatiique INRIA, France, 1994.

14. J. Christian, ‘Flatterms, discrimination nets aadtfterm rewriting’ J. Automatic Reasoning, 10,
pp. 95-113, 1993.

15. A. V. Aho, R. Sethi and J. D. Ulman@ompilers: Principles, Techniques and Tools, Addison-
Wesley, 1986.

16. S. C. Johnson, ‘Yacc Yet another compiler compil€®mputing Science Technical Report 32,
AT&T Laboratories, Murray Hill, NJ, 1975.

17.R. M. Burstall, D. B. MacQueen and D. T. SannellaOPE: an experimental applicative
language’ Proc. 1st ACM LISP Conference, 1980, pp. 218-225.

18. R. Harper, R. Milner and M. Tofte, ‘The definitiod standard ML’, Technical Report ECS-
LFCS-88-62, Laboratory for Foundations of Computer Sciddoiersity of Edinburgh, 1988.

19.D. A. Turner, ‘Miranda: a non-strict functional langea with polymorphic types’,Proc.
Functional Programming and Computer Architecture; LNCS 201, Springer-Verlag, 1985, pp. 1-
16.

20.L. Augustsson, ‘A compiler for Lazy ML’,Proc. Conference on LISP and Functional
Programming, 1984, pp. 218-225.

21. P. Hudak and P. Wadler, ‘Report on the functional magning language Haskell’, Technical
Report YALEU/DCS/RR656, Department of Computer Sciencée Yaiversity, 1988.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

22

23.

24,

25.

26.

27.

28.

29.

EFFICIENT AUTOMATA-DRIVEN PATTERN-MATCHING 813

. N. Jones, ‘Automatic program specialization’, in JorBgr (ed.),Partial Evaluation and Mixed
Computations, Elsevier, 1988, pp. 225-282.

I. Durand, D. J. Sherman and R. |. Strandh, ‘Fir@rgpartial evaluation of intermediate code
from equational programsBigre J., 74, (1991).

I. Durand, D. J. Sherman and R. I. Strandh, ‘Optitiesaof equational programs using partial
evaluation’,Proc. ACM/IFIP Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, ACM Sgplan, 26, pp. 72-81 (1991).

D. J. Sherman, ‘Run-time and compile-time improvenemquational programs’, PhD thesis, The
University of Chicago, lllinois, June 1994.

S. Thatte, ‘On the correspondence between two clagGagduction systems’]nformation
Processing Letters, 20, pp. 83-85 (1985).

B. Salinier, ‘Simulation de systémes de réécrituréedmes par des systémes constructeurs’, PhD
thesis, Université Bordeaux |, 1995.

A. Miniussi and D. J. Sherman, ‘Squeezing intermedinstruction in equational programs’,
Proc. Partial Evaluation International Seminar; LNCS 111Q Springer-Verlag, 1996, pp. 284-
302.

J. A. Goguen and T. Winkler, ‘Introducing OBJ3’, Teichah Report SRI-CSL-88-9, Computer
Science Laboratory, SRI International, August 1988.

Copyright[d 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(9), 793-813 (1999)

