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Motivation

• Faster Exponentiation 

• Better understanding of recoding choices

• More widely applicable methods
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• Pairings with small characteristic, e.g. 3

– The Frobenius AM means the usual weighting of 
squares & multiplies is inappropriate



History

• Division Chains / Double Base Repn – Arith 13 (1997)

– Resource constrained environments:

– Division chains save execution space (CDW)

– DBNS saves storage space (Dimitrov)

• Composite ECC operations dP+Q (Montgomery et al)

WISA 2010 Colin Walter (RHUL) 4/16

• Composite ECC operations dP+Q (Montgomery et al)

– Reduced field operation count from shared values

• Gebotys & Longa (PKC 2009)

– Fixed algorithm for using 2P+Q, 3P and 5P.



Standard Methods

For resource-constrained environment:

• Binary Square and Multiply

~3/2 log2n  ×ve operations for exponent n.

• Sliding Window
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~4/3 log2n  ×ve operations for 2-bit window, digits ±1.

• NAF (non-adjacent form)

Same as for 2-bit sliding window.

• Division chains (case of no negative digits)

~5/4 log2n with expensive pre-processing of exponent.

~7/5 log2n without effort



OP-Addition Chains

• Wider range of operations than just adding.

Set OP of binary operators (λ,µ), representing λP+µQ.

An OP OP OP OP -addition chain is a sequence of quadruples

(a , b , k , p )  where 
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(ai, bi, ki, pi)  where 

pi = (λλλλi,µµµµi) ∈∈∈∈ OP OP OP OP and ki = λλλλiai + µµµµibi

ai = ks , bi = kt for some s, t < i

(a0,b0,k0,p0) = (1,0,1,(1,0))

The standard addition chain has ai+bi = ki and starts (1,0,1)



Division Chains

• Location aware chains – two locations.

Restricted to previous value and initial (table) value: 

(ki–1, 1, ki, pi)  where 

pi = (λi,µi) ∈ OP and ki = λiki–1 + µi
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i i i OP i i i–1 i

These are generated in reverse order:

From k = kn, choose pi = (λi,µi) where ki ≡ µi mod λi and 

calculate ki–1 = (ki – µi) / λi .

• Hence the name “division” chain.

• If all λi = r are the same, this is the change a base 

algorithm and µi are the digits of k base r.



Change of Basis 

• The rule  ki–1 = (ki – µi)/λi produces 

k = (((µ1λ2 + µ2)λ3 +…+ µn –2)λn –1 + µn –1)λn + µn

• Rewrite this using bases ri and digits di :

k = (((dn –1rn –2 + dn –2)rn –3 +…+ d2)r1 + d1)r0 + d0
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k = (((dn –1rn –2 + dn –2)rn –3 +…+ d2)r1 + d1)r0 + d0

• This recoding gives a left-to-right algorithm with table 

values md and iterative step

m ← mri × mdi

• When possible choose di = 0 to save a multiplication.



Example 

23510 = (((((1)3 + 0)2 + 1)5 + 4)2 + 0)3 + 1

• Pair (3,1) (235 – 1)/3= 78

• Pair (2,0) (78 – 0)/2 = 39

• Pair (5,4) (39 – 4)/5 =   7
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• Pair (2,1) (7 – 1)/2 =   3

• Pair (3,0) (3 – 0)/3 =   1

• Pair (2,1) (1 – 1)/2 =   0

There are usually several alternatives at each point.

• Set of possible bases is usually B = {2,3} or B = {2,3,5}. 



Choosing the Chain

• Assign a cost cd,r to each operation m ← mr × md . 
– e.g. clock cycles if implementation is known,

– else native word operations,

– or ... field multns when in ECC, perhaps.

• Simplest cost is minmum length of addition chain for r, 

plus 1 if d ≠ 0 (i.e. the count of ×ve ops.)
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plus 1 if d ≠ 0 (i.e. the count of ×ve ops.)

• Each digit/base choice affects remaining digits; the effect 

on cost diminishes with distance from the choice.

• Build search tree of next λ digits, say, and find cost, 

including average cost c for remainder of k:  for each digit,

cd,r – c log r 

• Pick first digit of cheapest choice, and repeat for rest of k.



Digit Choice (1) 

• Let  πB = lcm {r ∈ B}  for B = set of possible bases. 

• If k ≡ k' mod πB
λ then k, k' generate the same costs

for each of next λ base/digit choices. 

• So next digit is determined by k mod πB
λ & cost function c

λ π
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• Ideally maximize λ. In practice consider k mod π
for one of the largest practical factors π of πB

λ. 

– If r = 2, say, is particularly cheap, preferentially increase the 

power of 2 in π so choice of π reflects greater likelihood of 2.

• For each set of λ choices (r1,d1),...,(rλ,dλ) and ρ = r1r2...rλ ,

(...((k – r1)/d1 – r2)/d2 ...– rλ)/dλ mod π/ρ

still contains some infon which should be included in cost.



Digit Choice (2)

• For cheapest (r1,d1),...,(rλ,dλ) for k mod π, 

choose (r1,d1) as the next digit/base pair for k.  

This gives a recoding table mod π.

• The recoding is a Markov process. The states are residues 

mod π. So asymptotic cost per key bit can be calculated. 
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(Monte Carlo simulation.)

• During recoding, the residues ki mod π are not distributed 

uniformly for random keys k.  So costs for digit choices 

may have been slightly inaccurate.  

– Make local changes to the table, calculate new cost per bit, 

and update table if new average cost is cheaper. 



Implementation

• The table generally has good structure and can be easily 

translated into a simple set of rules, e.g.

if k ≡ 0 mod 2 then r = 2, d = 0

else if k ≡ 0 mod 5 then r = 5, d = 0

else ...

• There may be a few deeply nested, rarely occurring rules 
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• There may be a few deeply nested, rarely occurring rules 

which can be safely deleted without much effect.  

• The result is a space and time efficient recoding scheme, 

tailored to any required constrained environment.

• Including a base 3 or 5, say, as well as 2 

makes it faster than binary algorithms 

if the recoding process is cheap enough.



Example 1

Digits D = {0,±1,±3,...,±15}, bases B = {2,3}, OP = B×D, π = 2632 

If k = 0 mod 9 and k ≠ 0 mod 4 then

r ← 3, d ← 0

else if k = 0 mod 2 then

r ← 2, d ← 0
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else if k = 0 mod 3 and 18 < (k mod 64) < 46

and ((k mod 64) – 32) ≠ 0 mod 3 then

r ← 3, d ← 0

else r ← 2, d ← ((k+16) mod 32) – 16

• This is faster than the “record” algorithm in PKC 2009 

(using Jacobi Quartic coordinates) but rather space hungry.

• About 1200 field multiplications for 160-bit key (~7.5 per bit).



Example 2

Digits D = {0,±1,±3,±5,±7}, bases B = {2,3}, OP = B×D, π = 2832 

If k = 0 mod 9 and k ≠ 0 mod 4
and (16 < (k mod 256) < 240) then

r ← 3, d ← 0
else if k = 0 mod 2 then

r ← 2, d ← 0
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r ← 2, d ← 0
else if k = 0 mod 3 and 8 < (k mod 32) < 24

and ((k mod 32) – 16) ≠ 0 mod 3 then
r ← 3, d ← 0

else r ← 2, d ← ((k+8) mod 16) – 8

• The pre-computed table has effectively just 4 elements.

• This is only ½% slower than Example 1 

• 2% faster than B = {2}; easily enough to cover the recoding. 



Results & Conclusions

• A technique for generating fast algorithms for scalar 

multiplication in a wide variety of environments.

• Uses a multibase representation and can make 

use of efficient composite elliptic curve operations.
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• Faster than binary-based methods, 

but small recoding overhead.

• Can benefit from cheap Frobenius operation.

• Takes advantage of the available space resources.

• Unbeatable?


