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Motivation

Faster Exponentiation

Better understanding of recoding choices

More widely applicable methods

Pairings with small characteristic, e.g. 3

— The Frobenius AM means the usual weighting of
squares & multiplies is inappropriate
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History

 Division Chains / Double Base Rep" — Arith 13 (1997)

— Resource constrained environments:
— Division chains save execution space (CDW)
— DBNS saves storage space (Dimitrov)

« Composite ECC operations dP+Q (Montgomery et al)
— Reduced field operation count from shared values

« Gebotys & Longa (PKC 2009)
— Fixed algorithm for using 2P+Q, 3P and 5P.
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Standard Methods

For resource-constrained environment:

« Binary Square and Multiply

~3/2 log,n xVe operations for exponent n.
 Sliding Window

~4/3 log,n xVe operations for 2-bit window, digits +1.

 NAF (non-adjacent form)
Same as for 2-bit sliding window.

« Division chains (case of no negative digits)
~5/4 log,n with expensive pre-processing of exponent.
~7/5 log,n without effort
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oP-Addition Chains

« Wider range of operations than just adding.
Set oeof binary operators (A,u), representing AP+uQ.

An oP-addition chain is a sequence of quadruples
(a; b;, k;, p) where
pi = (Asu)) € 0P and k; = Aa; + u;b;
a=k,,b;=k, forsomes,t<i
(@9, b9, k95P0) = (1,0,1,(1,0))

The standard addition chain has a+b, = k; and starts (1,0,1)
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Division Chains

* Location aware chains — two locations.
Restricted to previous value and initial (table) value:
(K;

I_

pi= (A1) € OP and K; = LKy + 1,

) /

. 1, k, p) where

These are generated in reverse order:

From k = k,, choose p,; = (A,l;) where k;=u; mod A; and
calculate k_; = (k;— ) / A;.

* Hence the name “division” chain.

 If all ;= rare the same, this is the change a base
algorithm and p; are the digits of k base r.
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Change of Basis

The rule k_, = (k;—u)/A; produces
K= (((u17\'2 + M2)7¥3 t...+ Uy —2)7\'n -+ My —1)7“n + Hpy

Rewrite this using bases r; and digits d. :
K=(((dy 172+ Oy o)l 3 +...+ Qo)ly + Oy)lo + Oy

This recoding gives a left-to-right algorithm with table
values m, and iterative step

m « m'ix my

When possible choose d; = 0 to save a multiplication.
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« Pair
« Pair (2,1) 1-1/2 =0

There are usually several alternatives at each point.

« Set of possible bases is usually 8 = {2,3} or 8 = {2,3,5}.
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Choosing the Chain

* Assign a cost ¢, to each operation m«— m"x m, .
— e.g. clock cycles if implementation is known,
— else native word operations,
— or ... field mult"¢ when in ECC, perhaps.

« Simplest cost is min™m |ength of addition chain for r,
plus 1 if d# O (i.e. the count of xV® ops.)

« Each digit/base choice affects remaining digits; the effect
on cost diminishes with distance from the choice.

 Build search tree of next A digits, say, and find cost,
including average cost c for remainder of k: for each digit,

C4 —Clogr
 Pick first digit of cheapest choice, and repeat for rest of k.
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Digit Choice (1)
 Let n,=Icm {re 8} for = set of possible bases.

 If k= k"'mod n then k, k' generate the same costs
for each of next A base/digit choices.

« So next digit is determined by k mod n,* & cost function ¢

 |deally maximize A. In practice consider k mod =«
for one of the largest practical factors n of © .

— If r =2, say, is particularly cheap, preferentially increase the
power of 2 in T so choice of &t reflects greater likelinood of 2.
« For each set of A choices (r,,d,),...,(h,d,) and p = ryf...5_,
(...((k—nry)/d; —r,)/d, ...—r,)/d, mod 7/p
still contains some info" which should be included in cost.
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Digit Choice (2)

* For cheapest (ry,d,),...,(,d,) for kmod T,
choose (ry,d;) as the next digit/base pair for k.
This gives a recoding table mod .

« The recoding is a Markov process. The states are residues
mod 1. So asymptotic cost per key bit can be calculated.
(Monte Carlo simulation.)

 During recoding, the residues k; mod & are not distributed
uniformly for random keys k. So costs for digit choices
may have been slightly inaccurate.

— Make local changes to the table, calculate new cost per bit,
and update table if new average cost is cheaper.
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Implementation

« The table generally has good structure and can be easily
translated into a simple set of rules, e.g.

if k=0mod2thenr=2,d=0
elseif k=0mod5thenr=5,d=0
else ...

* There may be a few deeply nested, rarely occurring rules
which can be safely deleted without much effect.

« The result is a space and time efficient recoding scheme,
tailored to any required constrained environment.

 Including a base 3 or 5, say, as well as 2
makes it faster than binary algorithms
If the recoding process is cheap enough.
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Example 1
Digits ® = {0,£1,£3,...,215}, bases 8 = {2,3}, 0P = BxD, m = 2632

If K =0 mod 9 and k # 0 mod 4 then
re—3,d« 0

else if K = 0 mod 2 then
re2,d«0

elseif k =0 mod 3 and 18 < (k mod 64) < 46

and ((k mod 64) — 32) # 0 mod 3 then

r<—3,d« 0

elser« 2,d « ((k+16) mod 32) — 16

« This is faster than the “record” algorithm in PKC 2009
(using Jacobi Quartic coordinates) but rather space hungry.

« About 1200 field multiplications for 160-bit key (~7.5 per bit).
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Example 2
Digits ® = {0,+£1,£3,£5,+7}, bases 8 = {2,3}, 0P = BxD, T = 2832

If K=0mod 9 and k # 0 mod 4
and (16 < (k mod 256) < 240) then
r<3,d«0
else if k = 0 mod 2 then
r<2,d«0
else if k =0 mod 3 and 8 < (k mod 32) < 24
and ((k mod 32) — 16) # 0 mod 3 then
r<—3,d«0
elser « 2,d « ((k+8) mod 16) — 8

* The pre-computed table has effectively just 4 elements.

* This is only V2% slower than Example 1

« 2% faster than @ = {2}; easily enough to cover the recoding.
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Results & Conclusions

A technique for generating fast algorithms for scalar
multiplication in a wide variety of environments.

« Uses a multibase representation and can make
use of efficient composite elliptic curve operations.

« Faster than binary-based methods,
but small recoding overhead.

« Can benefit from cheap Frobenius operation.
« Takes advantage of the available space resources.

 Unbeatable?
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