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Abstract. Side channel leakage from smart cards has been of concern
since their inception and counter-measures are routinely employed. So a
number of standard and reasonable assumptions are made here regarding
an implementation of RSA in a cryptographic token which may be sub-
jected to non-invasive side-channel cryptanalysis. These include blinding
the re-usable secret key, input whitening, and using an exponentiation
algorithm whose operation sequence partially obscures the key.

The working hypothesis is that there is limited side channel leakage which
only distinguishes very imprecisely between squarings and multiplica-
tions. For this typical situation, a method is described for recovering the
private exponent, and, realistically, it does not require an excessive num-
ber of traces. It just requires the modulus to be public and the public
exponent not to be too large.

The attack is computationally feasible unless parameters are appropri-
ately adjusted. It reveals that longer keys are much more vulnerable than
shorter ones unless blinding is proportional to key length. A further key
conclusion is that designers must assume that the information theoretic
level of leakage from smart cards can be transformed into usable key
information by adversaries whatever counter-measures are put in place.
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1 Introduction

Side channel leakage of secret key information from cryptographic devices has
been known publicly for a number of years [1], and very widely since the work
of Kocher [6l7]. In the case of RSA, the main software counter-measures to this
have included message whitening, key blinding and more complex exponentiation
algorithms. These, therefore, form the main assumptions here.

In the past, there were no obvious ways of extracting weak leaked information
from this and using it to recover the secret key. Either the leaked information
had to distinguish clearly between squarings and multiplications for individual
uses of the key [3] or, with less precise leakage, the same key had to be re-used
many times in an unblinded state so that the leakage could be averaged to reduce
noise [6I2I13].
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However, from the information-theoretic standpoint, it is clear that there
can be enough data for the key to be recovered when blinding is used but side
channel leakage is imprecise. Here a means for obtaining the key is given for that
situation, developed from the case of perfect, but partial, side channel inform-
ation described by Fouque et al. [3]. One of the main contributions here is a
metric for evaluating choices and enabling the best to be investigated first.

The first objective is to determine the blinding factor for several dozen cases.
This is done by brute force: testing every possible value until one is found which
would provide a trace that matches the measured trace sufficiently well under
a suitable metric. The analysis is complicated by an unknown factor k£ equal to
the size of the public exponent E. That factor must also be determined from the
side channel leakage in the same way, and therefore affects the computational
feasibility of the method if E is large. However, there is no obvious way to avoid
the exhaustive search.

Once the blinding factors are determined for as many traces as are needed,
the second objective is to determine the unblinded private exponent. Its bits are
guessed from most to least significant by looking at both possible values and
selecting the one which matches the observed leakage better. Incorrect choices
are quickly noticed, and corrected by back-tracking and lookahead. This phase
of the attack is less computationally intensive than the first, but it requires
more traces when the leakage is weaker — a number inversely proportional to the
strength of leakage.

The adversary makes use of certain properties of the exponentiation algo-
rithm which lead to the leakage. The standard 4-ary sliding windows [4] consid-
ered here has a pattern of squarings and multiplications which contains inform-
ation about the bit pattern of the exponent. The method applies equally well to
any other algorithm with a variable pattern of operations where the variation is
derived from a local property of the secret key, such as bit values.

Finally, the complexity of the attack is considered. There is low space com-
plexity and the attack is highly, and easily, parallelisable to make full use of
computing resources. The total time complexity is of order which is the product
of the public key, the maximum blinding factor and a measure of the unreliabil-
ity of the side-channel leakage. Thus, it appears to be computationally feasible
to extract the key in many normal circumstances.

A significant conclusion is that, for a fixed amount of blinding, longer keys
are less secure because blinding factors are determined more accurately. This
means that blinding should be increased in proportion to key length in order to
thwart the attack.

The organisation of the paper is as follows. The main assumptions, the leak-
age model, pre-requisite notation and background algorithms are covered in sec-
tions to Phase 1 of the attack, during which the blinding factors are
recovered, is treated in Phase 2 of the attack, namely the recovery of the
secret key, is described in §7] The computational cost is reviewed in and
wide-ranging conclusions are drawn in §9]
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2 Notation

The n-bit RSA modulus N and public exponent E are assumed to be known by
the attacker. His aim is to recover the private key D which is re-used a number
of times but only in the blinded form D; = D+r;¢(N) where r; < R is a small
random number (typically up to 32 bits) and ¢(NV) is unknown.

The modulus is a product of two primes N = P which must be of similar
magnitude. For convenience, we assume P and ) have the same number of bits.
Then, without loss of generality, P < Q < 2P so that 2/N < P+Q < 3./N/2
and ¢(N) = N—(P+Q)+1 is bounded by

N —-3\/N/241<¢(N)< N —-2VN +1 (1)

This interval has length less than é N, so that more than half of the most
significant bits of ¢(IN) are known by the attacker from those of N.
The exponents D and E are related by

DxE = 1+k¢(N) (2)

for some k. Without loss of generality, let D be the smallest non-negative solution
to this congruence, so that D < ¢(N) and k < E. When key D is re-used many
times, blinding factors are normally added to produce the randomly different
exponents which are actually used for decryption or signing [6]:

D; = D+r;¢(N) (3)
where r; is a random number, usually of 16 to 32 bits. Thus,

1+ (ki E)p(N)
D; = o (4)

Let R be an upper bound on such r;. Then the coefficient k+r; E of ¢(N) is,
in effect, a random number in the range 1 to RE. (So it is irrelevant whether &
and D were chosen minimally in equation ) In equation the adversary is
initially only interested in the most significant half of the bits. He ignores the 1
and approximates ¢(NN)/E by computing N/E. By the earlier remarks this gives
him at least the top n/2 bits of ¢(N)/E. So,

D; ~ (k+r;E)N/E (5)

The attacker now has to generate each of the RE possible values of the random
coefficient of N/E in order to obtain a set containing an approximation to the
value of D; used in the exponentiation which he has observed.

3 The Exponentiation

For convenience we assume that the exponentiation algorithm is 4-ary sliding
windows using the re-coding in Fig. [1| [4/5]. This uses a window of 1 bit width
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Input: Binary D = (bn—1...b2bibo)2
Output: Recoding D = (dym—1...d2d1do)
i« 0 ;
m«— 0 ;
While i < n do
If b; = 0 then
Begin
dm — 0 ;
i «— i+l
m < m+l ;
End
else
Begin
dm < 2bjp1 + 1
i «— i+2
m <« m+l ;
End

Fig. 1. Quaternary Sliding Windows Recoding.

when there is a digit zero in the recoded exponent, and otherwise a window
of 2 bits width, for which the digit is 1 or 3. Although this does not provide
the same protection against side channel cryptanalysis as the square-and-always
multiply algorithm, it is more time efficient even than the usual square-and-
multiply algorithm and also creates some difficulty for an attacker who may
have to distinguish whether the multiplications pertain to digit 1 or digit 3.

This algorithm, or its fixed-width equivalent, is typical of a smart card be-
cause of its speed and low storage overhead: only the first and third powers of
the input message need storing for the exponentiation. Both algorithms generate
a pattern of squarings and multiplications which is related to occurrences of the
zero digit. This is the property that can be exploited here by an attacker.

4 The Leakage Model

With expected counter-measures in place it is unrealistic to assume that every
long integer multiplicative operation in an RSA exponentiation can be identi-
fied and distinguished as a squaring or not. However, some imperfect deductions
may be possible from a side channel trace, particularly in contactless cards where
severe resource limitations and an explicit aerial limit the scope and effective-
ness of any counter-measures. The following two leakage scenarios are likely in
practice. Others are certainly possible.

First, because the conditional subtraction in a Montgomery modular multi-
plication ([8], see Fig. consumes a number of extra clock cycles, there is a
possibility that it may be observed in a side channel trace via the longer time
for the operation. The slightly different frequencies of the subtraction for squares
and multiplies mean that each occurrence or absence of the subtraction makes
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a square or multiplication marginally more likely [I3]. As previous attacks have
been unable to use this information in the presence of exponent blinding and
message whitening, implementors may not perceive the leakage as a threat when
such counter-measures are in place. One can therefore expect many of them to
prefer more widely applicable code which includes the conditional subtraction,
despite the existence of straightforward and efficient alternatives [12].

Secondly, the data loading cycles for multiplications and squarings are differ-
ent and therefore vulnerable. For example, the Hamming weight of the words of
the arguments may leak when they pass along the internal bus [7]. A squaring
is almost certain where the Hamming weights are equal, and a multiplication
must be the case if they are different. However, this information is usually well
submerged in noise, and in a well designed implementation it should only yield
a minimal bias towards a squaring or a multiplication.

The above are very much more realistic leakage models than that of [3] where
it was assumed that each multiplicative operation was known to be a squaring
or a multiplication. In practice, only weak probabilistic information is known.

In order to obtain specific measures of implementation strength, the at-
tack here is modelled on the level of data leakage from observing every condi-
tional subtraction in Montgomery modular multiplication. However, the attack
is generic, and applies to both of the above scenarios as well as many others.

Input: A and B such that 0 < A, B < N < r" and N prime to 7.
Output: C = ABr™" mod N
C «— 0 ;
For i «+ 0 to n-1 do
Begin
qi — -(cotabo)ng ! mod r ;
C «— (C+a;B+q;N) div r ;
End ;
{ Assertion: Cr" = AxB mod N and ABr~" < C < N+ABr™ "}
If C > N then C « C-N ;

Fig. 2. Montgomery’s Modular Multiplication Algorithm (MMM).

5 Selecting the Leakiest Traces

The word-based algorithm for Montgomery multiplication (MMM) is given in
Fig. 2] where the digits a;, b; etc. are for the base r representation of the long
integers A, B etc. From the assertion after the loop it is easy to establish the
frequency of the conditional subtraction under the reasonable assumption of
the output residues being uniformly distributed modulo N. The probability is
proportional to the fraction of the interval which is greater than N, namely
ABr~"N~!. For a typical multiplication with independent arguments, this can
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be summed with respect to A and B over the interval [0, N) to obtain the average
probability of

1
M = ZNrin (6)

Similarly, setting A = B and summing gives the probability of the subtraction
for a squaring, namely

1
Py~ gNr_" (7)

The difference between pj; and pg shows that the occurrences of a condi-
tional subtraction indicate a squaring is slightly more likely to be the case than a
multiplication. The difference, however, is small. Early attacks on Montgomery’s
algorithm relied on being able to perform hundreds or thousands of exponenti-
ations with the same key in order to observe enough subtractions to conclude
with high probability whether the operation was a squaring or a multiplication.

The formulae @ and also indicate that decreasing N or increasing the
number of iterations n will reduce the occurrences of the conditional subtraction
and so make the algorithm more secure.

However, the multiplications in individual exponentiations are not as random
as used for the formula @ For 4-ary sliding windows, one of the two pre-
computed powers of the input message is used as one of the arguments, the
other being a random output from an earlier Montgomery multiplication. So
only one argument is uniformly distributed in a given exponentiation. Let A
be the fixed input to such a multiplication. Then, summing ABr~"N~! with
respect to B yields the true probability of a subtraction, viz.

1
pa = 5147"_" (8)

Thus, when the pre-computed powers of the input are small (resp. large) there
will be very few (resp. many) conditional subtractions resulting from multipli-
cations. This increases the probability of distinguishing between squarings and
multiplications. Overall, this will be noticed by an adversary because the total
number of conditional subtractions will be less (resp. greater) than the average
for such exponentiations. This provides the opportunity for the adversary to
select the leakiest traces with very little computational effort.

Similarly, in the Hamming weight leakage scenario, instead of an enhanced
or reduced frequency of conditional subtractions from large or small values of A,
the adversary homes in on the argument pairs A, B which are the highest Ham-
ming distance apart. They have the highest probability of being multiplications.
This occurs most frequently when the re-used, pre-computed multiplier A has
the highest number of extreme Hamming weights. So, by screening for extreme
Hamming weights, traces which leak significantly more information than average
can be identified easily by the adversary.

In both leakage models, the attacker can therefore begin by selecting side
channel traces which yield the greatest amount of information, and these can
be chosen without excessive computational effort for the initial phase of data
capture, signal processing and selection.
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6 The Attack: Phase 1

In the leakage scenarios of §4] the attacker is expected to obtain little or no
useful information about a multiplicative operation in many cases, and only a
very weak probability in favour of a squaring rather than a multiplication (or
vice versa) in other cases. However, as described in he begins his attack by
collecting as many traces as possible and selecting those for which the leakage
promises to be greatest. Phase one of his attack then progresses as follows.

Suppose he has selected a promising trace corresponding to the use of the
blinded exponent D;. He first determines the top half of the digits of ¢(N)/FE as
in §2[ and then guesses the values of k£ and r;. Equation gives him a possible
approximation D;’ for D;. He then compares the side channel leakage expected
from D’ with that obtained from D; and discards the guessed pair (k,r;) if the
match is poor. Repeating this for all pairs leaves him with a set S; of the most
likely blinding values for D;. This process is repeated with more traces — enough
for him to complete the second phase successfully.

The decision about whether guesses are good enough is based on a metric
w(tr(D;), ops(D;’,m)). The first parameter tr(D;) is the processed side chan-
nel leakage from use of the unknown blinded key D;. Specifically, it is a list
of probabilities pr(op) that the operations op of the exponentiation using D;
were squares rather than multiplications. Thus tr(D;) = [pr(ops), pr(ops—1), .-,
pr(ops), pr(op2), pr(op1)] where s = len(tr(D;)) is the total number of opera-
tions in the exponentiation with key D;. In the second parameter, D;’ is the bit
sequence for the guessed value of D;, and ops(D;’, m) is the sequence of multi-
plicative operations carried out in an exponentiation with key | D;’/2™|. So the
m least significant bits of D;’ are irrelevant, and need not have been guessed yet.
This parameter will be a list containing, say, ‘0’ to denote a squaring, and ‘1’ a
multiplication. In this phase we will set m = n/2+ log, R.

If the side channel leakage tr = tr(D;) for D; indicates with probability tr;
that the jth operation was a squaring and the jth operation in ops(D;’,m) is
also a squaring then trj—% is added to the metric. However, if a multiplication
occurs as the jth element in ops(D,’, m), then %ftrj is added. So 0 is added if
the leakage provides no information since then tr; = %7 but there is a positive
contribution to the sum when the operation in ¢r(D;) is more likely to be the
same as that in ops(D;’,m), and there is a negative contribution when the two
operations are more likely to be different. Thus, the sum for calculating the
metric is

plirops(Dm) =S ()P )

_ 2
1<j<nops(|D’/2™])

when ops(D’,m); € {0,1} as suggested above, and nops(D") is the number of
operations in exponentiating to the power D”. Here the lists tr and ops(D’, m)
are in temporal execution order assuming an exponentiation algorithm which
processes bits from most to least significant. This correctly aligns corresponding
elements of the lists when the lowest bits of D’ are ignored.
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If the guess (k,r;) is correct, the value D;" provides the same pattern of
squarings and multiplications as D; over the first (approximately) half of the op-
erations of the exponentiation. So, unless the noise is overwhelming, this should
maximise the value for the sum when restricted to those operations. Therefore
larger values for p imply a better match between the guessed value D;’ and
the targetted exponent D;, whereas smaller and negative values indicate a poor
match. Because of the unknown difference between N and ¢(N), the n/2+ logy, R
least significant bits of D;’ are unreliable even when (k, ;) is guessed correctly.
By taking m = n/2+ log, R the operations corresponding to them are ignored.

The metric could be improved by taking account of the dependence between
consecutive operations: for example, the probable occurrence of a multiplication
implies that the next operation is more likely to be a squaring. Schindler [9JTTII0]
treats this in detail and provides theory about the best choice of metric.

6.1 Phase 1 Simulation

In our simulation, values were chosen which correspond to a leaky implemen-
tation of MMM where every conditional subtraction is observed and N = r".
Conditional subtractions were generated randomly with frequencies in accor-
dance with the model described in 5| There was no selection of “better” traces
on the grounds of fewer or more subtractions than normal. Since conditional
subtractions occur with slightly greater frequency for squarings than for multi-
plications, the metric was (arbitrarily) incremented by pj—% = 0.1 for every
conditional subtraction in the trace when there was a squaring in the guessed
value and therefore incremented by £—p; = —0.1 (i.e. decremented) for every
conditional subtraction that coincided with a multiplication.

log, RE | 8 12 16 32 48

n=2384| 79x107% 8.0x107® 82x107% 5.0x107% 3.6x1073
512 | 2.7x107%  2.4x107% 3.4x10™% 2.0x107% 1.0x1073
768 | 5.3x107*  3.2x107* 1.0x107% 1.4x107* 1.2x107%
1024 | 2.0x107°% 1.9x107°% 8.7x107% 1.7x107° 8.0x107°
1536 |< 2.5x1077 < 2.5x1077 < 2.5x107"

Table 1. Proportion of Guesses returning a Higher Value of ;1 than the Correct
One.

With only this weak knowledge to distinguish between squarings and multi-
plications, the “best” guess is rarely the correct one. The correct values are
ranked among the best, but do not usually come top. Therefore, to assess the
feasibility of the attack, it is necessary to know the size of the set S of best
guesses which is big enough to include the correct guess. This depends on the
strength of the leakage. With the parameters just described, the results in Table
were obtained. It gives a good indication of how well the matching process
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works and shows the minimum proportion of all guesses which must be consid-
ered if the correct one is not to be excluded. For example, with a modulus of
n = 1024 bits, and RE = 232, the leakage of interest is from the top 512 or
so bits. Then the metric p places the correct values (k,r;) above all but about
REx1.7x107% ~ 216 incorrect values, on average.

In information theoretic terms, the metric has extracted about 16 bits from
the side channel, i.e. about 1 bit in every 512/16 = 32. This is the case for all
the entries in the table: they all correspond to about 1 bit per 32 in the top half
of the key, i.e. n/64 bits in total. An improved metric is possible (e.g. taking into
account multiplications having to be next to squarings) and this would enable
more information bits to be obtained. However, for 2048-bit keys (not tabulated),
this means about 32 bits’ worth of information is recovered, so that k& and r;
should be determined almost uniquely when RE < 232, This is indeed what was
found in the simulation. Clearly, longer keys are more vulnerable:

— For a given size of blinding and public exponent, the longer the key, the more
likely (k,r;) is to be guessed correctly and uniquely.

The figures in the table show little effect from increasing RE. k and r; blind
information equivalent to about log, RE bits’ worth of operations. However,
longer blinding factors also seem to constrain the pattern of the blinded key
more tightly. With these conflicting forces, the average success of the method is
little changed: the number of bits leaked depends almost entirely on the length n
of the key. Consequently, for a given key length, the same proportion of choices
(k,r;) are removed irrespective of the value of RE. Of course, the number of
accepted pairs must still increase directly in proportion to RE. Thus,

— Typical leakage from 2048-bit or longer keys will usually reveal (k,r;) cor-
rectly with current standards for key blinding and a small public exponent;

and

— In these cases, an exhaustive search is computationally feasible to find the
correct blinding factors (k,r;).

Incidentally, a powerful counter-measure in the case of Montgomery con-
ditional subtractions is just to halve the modulus. This halves the number of
conditional subtractions, and so halves the number of bits which are leaked.

6.2 Combining Traces to Determine k in Phase 1

The leakage from ¢ traces can be processed for an outlay of ¢ times the effort for
one. If these traces are independent, ¢ times as much bit information is extracted.
Thus, a very small number of traces should result in k& being determined with
some confidence, since the same k is used in all cases. In fact, the correct value
of k should have been guessed for all or almost all traces, and, if there is any
bias, the correct value for k£ should be one of the most popular among the best
guesses for an individual trace.
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Guesses at k are ranked as follows. For each sufficiently good guess k+r; F,
the value of k = (k+r;E) mod E is extracted and the associated value of the
metric p is added to the weighting of k. The higher the total weight for a guess
at k, the more likely that value is to be correct. The possible values of k are then
considered in descending order of weight in Phase 2, the heaviest first.

Our simulation did not investigate how much this ranking reduces the search
space in Phase 2 as a function of ¢; from the information theoretic point of view,
it seems possible that k is almost completely determined by only a very small
number of traces. This is an important detail that still needs to be researched
as it affects the effectiveness of the blinding.

7 The Attack: Phase 2

Let S; be the set of plausible guesses at (k,r;) for the ith trace, and suppose S;
is partitioned into subsets S;; which share the same k. Armed with these sets,
the adversary progresses to phase 2, which is the recovery of the remaining, least
significant bits of ¢(N). He repeats this phase for each k separately, choosing the
most likely & first. ¢(IN) is constructed bit by bit from the most significant end.
The first half of ¢(N) was obtained already from the public N and equation .

Let ¢(N); = (dn—1¢n—2...0;)2 be the part of ¢(N) already determined, so
¢j—1 is the next bit to be guessed. Let @; = (¢j_1¢;j—2...¢j_w )2 be a guess at the
next w bits of ¢(IV). For each possible value of word @;, the right side of equation
is evaluated with ¢(N);_,, in place of ¢(NN). This yields an approximation
Dy, j—w to D; in which only the most significant n—j+w bits are of interest.
The same metric as in Phase 1 is used again to measure how well this matches
the leakage from D;, namely u(tr(D;),ops(Dy, j—w,j—w+logy R)). (As before,
at the point before division by E, we ignore the lowest log, RE bits containing
a contribution from ¢;_,, because they are too contaminated by the carries up
from less significant bits of ¢(IN).) For the given k, the sum

Mw(kjhj’ ¢j> = Z Z M(tT(Di)a OpS(Dri)j,w, j_w+ 10g2 R)) (10)
i r;€Sik
over all guesses is used to assess the worth of the choice for @;. The leading bit
of @; from the maximum p,, (k, j, ®;) is selected as the value for ¢;_;.

Correct bit choices amplify any peak (i.e. maximum) values of the metric
1y, Whilst incorrect choices decrease it. Moreover, previous mistakes reduce any
peaks. When that happens, it is necessary to backtrack and select the most
promising previous value. The difference between the two cases is determined
using a threshold value for the metric which is obtained by experience. When
it becomes too low for every value of @;, it is necessary to backtrack and select
the most promising previously untried value. The least significant bits of &; are
partly masked by carries up, and contribute less to the peak values than the
more significant bits. So only the top one or two bits of the best ®; are chosen
each time. In this way the bits ¢; are chosen from most to least significant. Once
most bits have been guessed, the final log, E bits are fully determined by the
division being exact in equation .
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w| 1 2 3 4 6 8

t= 25(0.613 0.767 0.833 0.868 0.914 0.930
t= 50|0.642 0.819 0.896 0.939 0.973 0.989
t =100 |0.673 0.846 0.922 0.954 0.981 0.994
t =2501{0.706 0.863 0.930 0.971 0.991 0.995

Table 2. Probability of predicting the correct bit of ¢(IV) from ¢ correct guesses
r; with w lookahead bits when n = 1024 and log, RE = 16.

7.1 Phase 2 Simulation

For the simulation it was assumed that the correct (k,r;) had been chosen for
each i, i.e. that £ had been deduced correctly and for the ith trace only the
correct 7; had been selected. So |S;x| = 1 and [Si| = 0 if ¥* # k. From the
conclusions about Phase 1, this should usually be the case for long keys.

As long as there is a reasonable probability of detecting the correct bit each
time, all of ¢(IV) can be determined. Typical probabilities can be seen in Table
2l There seems little to be gained from having more than 100 traces; more
is achieved by having more lookahead bits. In fact, the probability of picking
the wrong bit seems to fall exponentially as the number w of lookahead bits
increasesﬂ From Table |3} w > 8 allows a significant proportion of keys to be
recovered if the k and the randoms r; have been guessed correctly. The figures are
for an implementation of the algorithm without backtracking. When incorrect
bits are predicted, the process does not recover and random bits are generated
thereafter. With most bits being correct, backtracking is a cheaper alternative to
solve this than increasing the number of lookahead bits. Assuming that Table
probabilities are constant over the length of the key and are independent of the
key length, it is possible to compute the probability of successfully recovering
the key: approximately p™/? where p is the table entry and n the key length.

Table [3] gives these probabilities as obtained from a simulation with 100
traces and w = 8. This corresponds to p = 0.9973. With 10 lookahead digits
the simulation shows there is a 60% chance of recovering 2048-bit keys, and this
corresponds to p = 0.999512. Lastly, with 50 traces but w varying dynamically
between 8 and 16 as necessary, 2048-bit keys were recovered in 11% of cases.
Since the values of k and r; from Phase 1 will be mostly correct for 2048-bit
keys with log, RE < 32,

! The maximum values of p.,(k, j,$;) were computed where &; ranged over i) values
with ¢; = 0 and ii) values with ¢; = 1. The difference between these was a good
indicator of the reliability of the choice of ¢;. Increasing w just for the cases for
which this difference was smallest led to a remarkable improvement in accuracy.
Moreover, decreasing w for other cases led to a considerable computational saving.
Many 2048-bit keys were recovered successfully using just 50 traces and varying w
between 8 and 16.
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— It is computationally feasible to recover a substantial number of 2048-bit keys
using 50 traces, current standards for random blinding, typical small public
exponents, and expected levels of weak side channel leakage.

n| 512 768 1024 1536 2048
prob | 0.50 0.40 029 0.13 0.04

Table 3. Probability of success in determining ¢(N) from ¢ = 100, correct r;s
and key length n with w = 8 lookahead bits, no back-tracking and log, RE = 16.

7.2 The Case of some Incorrect Phase 1 Deductions

Now consider the case where not all pairs (k,r;) are correct. If (k,r;) is incorrect
then the above process applied only to this pair (i.e. t = 1 and |S;;| = 1) would
result in choosing the lower bits of ¢(IV) to satisfy (4) with the incorrect values
(k,r;) and the correct D;. This makes the lower bits incorrect by a multiplication
factor of (K'+r.E)/(k+r;E) where (K, r}) is the correct pair. Moreover, for these
bit choices the metric retains the peak values associated with a correct choice.
So, without the context of other traces, the error will remain undetected and
the pair (k,r;) cannot be removed from consideration.

Thus, if the above process is performed with a set of pairs (k,r;), some of
which are correct and others incorrect, then the incorrect values predict random
bits, while the correct ones predict the correct bits. This averages to a weaker
prediction of the correct bits. However, the incorrect choices become more ap-
parent as more correct bits are appended to ¢(INV). Eventually this is noticed
and those choices can be dropped to speed up the process. It is easy to choose
threshold values for the metric — several standard deviations below the average,
say — to guide this decision.

So the Phase 2 process is applied to all the outputs of Phase 1 for a given
k, i.e. every (k,r;) € Sir for every trace, and the sum of all the metric values
is used to choose the lower bits of ¢(IN). Clearly, however, the limiting factor
in this phase is the ratio of correct to incorrect predictions (k,r;). If this is too
small it will not be possible to identify correct bits through peaks in the value
of the metric. Table [I| shows that key length is a very strong contributor to this:
longer keys improve the ratio, making recovery of ¢(N) much easier.

7.3 Comparison with Fouque

In this algorithm the bits of ¢(N) are determined in the reverse order from that
used by Fouque et al. [3]. This has several advantages. It makes the transition
between the known upper half of ¢(N) and unknown lower half seamless, it
allows the metric easily to include the value of all previous decisions, and it
allows the division by E to be done straightforwardly. The problems of carry
influence in the multiplications of equation is similar for both directions.
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8 Complexity

The first phase has time complexity O(REtlog(RE)) where t is the number of
traces needed to complete the second phase, and depends on the level of leakage.
This complexity results from an exhaustive search over all possible (k,r;). It
was remarked that there was an information leakage which is proportional to
the length of the traces. Therefore, recovering the log,(RE) bits of each (k,r;)
only requires processing a part of the traces with length O(log(RE)), not the
whole length. Space is not an issue in this phase as only one pair (k,r;) need be
considered at any one time. The pairs are treated independently and so the work
can be completely parallelised. For standard choices of E = 21641, R = 232 and
a similar level of leakage to the example, this is clearly computationally feasible.
In the second phase the worst situation is that all RE guesses are considered
for every trace at each bit selection, making a total time complexity O(REnt),
which is at worst similar to the first phase. However, if only R'E’ guesses survive
then the complexity is reduced to O(R'E’nt). This assumes that metrics do not
have to be recomputed over the whole length of the trace every time another
bit is guessed; instead the incremental effect of the new bit is used to update
the preceding value. This approach requires O(R't) space as different values of
k are processed sequentially. The second phase requires strong leakage or a high
ratio of correct pairs (k,r;) to have a chance of working. Therefore practical
limitations on the number of traces that can be obtained guarantees that space
will not be the overriding problem. Furthermore, the work can be parallelised
without difficulty at least as far as distributing the effort for each k to different
processors. This would reduce the time complexity by a factor of O(E).

9 Conclusion

The scope of the attack of Fouque et al. [3] has been extended to include imprecise
leakage by introducing a practical metric which prioritises the selection of guesses
at the random blinding factors and bits of ¢(NN) for an RSA modulus N. Both
attacks target the typical set-up for RSA decryption/signing in a smartcard with
standard counter-measures which include exponent blinding.

It was found that very weak, imprecise leaked data could be successfully ma-
nipulated to reduce the ambiguity in the blinding factors by a factor essentially
proportional to the length of the keys, so that the blinding factors are fully de-
termined when the key is long enough. For typical choices of public exponent
and blinding parameters, and a leakage rate equivalent to only 1 bit per 32 bits
of key per trace, the blinding factors can be recovered correctly for keys above
about 2048 bits in length.

Reconstruction of the unknown lower bits of ¢(N) requires most of the blind-
ing factors to be recovered correctly and sufficiently many traces to be available.
With a leakage rate of 1 bit per r key bits, 1.5r traces suffice to recover ¢(N)
and hence factor N without any need for an expensive search. In a simulation,
a sizeable proportion of 2048-bit keys were successfully recovered using leakage
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from only 50 traces (r=32). Thus the attack is certainly computationally feasible
with only weak, imprecise leakage.

So longer keys were found to be more vulnerable. The best counter-measure
is to ensure that blinding increases with key length at least until it becomes
computationally infeasible to test every blinding value individually. The attack
illustrates that the information theoretic level of leakage can be into converted
successfully into the secret key even in the presence of a typical collection of
standard counter-measures.
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