
FORMAL SPECIFICATION and

VERIFICATION of SOFTWARE

Colin D. Walter & Stephen E. Eldridge

Department of Computation

UMIST

PO Box 88

Man
hester M60 1QD, UK

www.
o.umist.a
.uk

1 Importan
e of Formal Spe
i�
ation

The normal task of a software
ompany is to
onstru
t programs and systems

from an informal natural language des
ription of what they should do, and to

maintain them. Bridging the gap between the natural language des
ription and

the programming language
ode are s
ripts written in more or less formal spe
-

i�
ation languages (see also arti
les "Problem Domain System Analysis" and

"Software Life Cy
les"). Here we
onsider those spe
i�
ation languages that

are formal. Their grammar, or syntax, and their meaning, or semanti
s, should

therefore be pre
ise and unambiguous.

S
ripts in su
h languages are not usually exe
utable, that is, they do not

say how to do anything. Their aim is to
apture exa
tly what the user wants

so that the software engineer builds the right produ
t, without relying entirely

on a vague requirements des
ription from the user. However, they
ontain little

or no information as to how the ne
essary
omputations might be done. This is

what the programmer adds to obtain the �nal
ode. There is always an initial

dialogue between the
ustomer and software engineer to determine what produ
t

is desired. Most of these dis
ussions involve making the needs more pre
ise.

Spending time on building the wrong produ
t
an be very
ostly espe
ially

if prototyping is not possible or the results
annot be seen until �nal assem-

bly. It is therefore very important,
ost-e�e
tive and time-saving to use formal

spe
i�
ation languages at this early stage to determine all but the most trivial

level of detail for what is required. In
reasingly, both
onsumer and supplier are

requiring formal spe
i�
ations as part of their
ontra
t in order to make possible

or defend against
laims for damage in litigation.

1.1 Levels of Formality

One signi�
ant problem with spe
i�
ations is that they appear unfriendly; it
an

be diÆ
ult to
onstru
t, read or understand them. This is normally over
ome by

2 Con
ise En
y
lopedia of Software Engineering

having a hierar
hy of levels of detail and formality, in whi
h the initial informal

des
ription is moulded into the �nal formal spe
i�
ation over several intermedi-

ate stages, and de
omposed into modules small enough to be fully
omprehended.

All those di�erent levels are kept together as do
umentation for the
ode, and

would be read in in
reasing order of formality and detail as introdu
tion to

aid
omprehension of the end produ
t. Thus, spe
i�
ations are developed like

software using normal engineering te
hniques su
h as stepwise re�nement and

top-down design. Indeed, both spe
i�
ation and software need to be produ
ed

simultaneously, the �rst do
umenting the se
ond, for the spe
i�
ation to be of

any pra
ti
al use in maintenan
e or veri�
ation.

1.2 Levels of Cost

Another apparent problem with writing a formal spe
i�
ation is the
ost. Al-

though spe
i�
ation languages are no more
ompli
ated than programming lan-

guages, unfamiliarity with their apparently more abstra
t notions makes soft-

ware engineers relu
tant to ta
kle spe
i�
ation, and so experts may need to be

used. Veri�
ation is more diÆ
ult, but that is a di�erent subje
t, requiring the

produ
tion of a formal spe
i�
ation �rst. There are many short
uts avoiding ex-

pense. In parti
ular, there is often no need to spe
ify everything fully: the lowest

level pro
edures might not require spe
i�
ations distin
t from their
ode, and

many variables may not be suÆ
iently important to require pre
ise de�nitions.

Indeed, spe
i�
ation of any part of a pie
e of software is perhaps only justi�ed

when the produ
t is going to be widely or frequently used, has safety-
riti
al

appli
ations, malfun
tion has severe �nan
ial impli
ations, or
ontinuous main-

tenan
e is expe
ted, i.e. wherever the need for
orre
t
ode justi�es the extra

ost.

2 Basi
 Terminology

Spe
i�
ation has a number of purposes. In de
reasing order of usage this in
ludes

onstru
tion, maintenan
e and veri�
ation. For ea
h of these, the level of spe
-

i�
ation needed to do
ument
ode is very similar. Initially one needs pre- and

post-
onditions written in predi
ate logi
. If we
all these P and Q respe
tively,

and
onstru
t
ode C to meet this spe
i�
ation, then we may write

fPg C fQg

where f g are the
omment bra
kets for the programming language. This means

that if the initial data satis�es P and C is exe
uted su

essfully, then the �nal

data satis�es Q. In this
ase we say C satis�es the given spe
i�
ation or that it

is partially
orre
t. There is no
laim that the
ode will terminate or will do

so without raising an ex
eption, but if it always does for initial data satisfying

the pre-
ondition, then it is said to be totally
orre
t.

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 3

At any point within some
ode we
an insert a predi
ate formula, usually

written within
omment bra
kets. Thus, the property P between se
tions of

ode C and D in

C fPg D

is
alled an assertion. It is something that is expe
ted to be true of the data

whenever
ontrol passes that point during exe
ution. Within
ertain restri
tions,

su
h as avoiding unbounded quanti�
ation, it might be possible during run-time

to evaluate P . This
an be espe
ially valuable when debugging be
ause it
an

give mu
h more information than strong typing, and
an enable errors to be

dis
overed mu
h
loser to their origin.

3 Programming Language Semanti
s

3.1 Assignment

Spe
i�
ations should enable us to write
orre
t
ode, but this is only possible if

we know what the various
onstru
ts in the programming language are supposed

to do � they need spe
ifying. Imperative programming is based on what the

assignment statement does, namely,

fQ(x=t)g x := t fQg (assignment)

(The notation of the pre-
ondition is explained in the next paragraph.) In terms

of manipulating numbers in a ma
hine, this
ode states that the value of the

expression t is to be assigned to the variable x. However, in terms of the prop-

erties of the data held in the ma
hine, its spe
i�
ation de
lares that in order to

obtain property Q for the data immediately after its exe
ution we need the data

to satisfy property Q(x=t) immediately before its exe
ution.

The pre
ise meaning of Q(x=t) in the above axiomati
 de�nition of assign-

ment is not important here. Roughly speaking, it is a slightly altered version of

the formula Q in whi
h every so-
alled \free" o

urren
e of x has been repla
ed

by t. An o

urren
e of x is bound if it is in a subformula of Q with the form

8xQ

1

or 9xQ

1

, where 8 and 9 are the usual quanti�ers \for all" and \there

exists". O

urren
es whi
h are not bound by a quanti�er are free. However, the

formation of Q(x=t) may also involve renaming some bound variables in order

to prevent
onfusion between o

urren
es of variables introdu
ed into Q by the

substitution and those already asso
iated to the quanti�ers appearing in Q.

The de�nition of assignment is an axiom s
heme in the proof system we would

use to verify any imperative
ode. From it we
an dedu
e the partial
orre
tness

of, for example,

fTrueg x := 2 fx = 2g:

This statement
laims that any input satisfying the empty
ondition True (i.e. no

restri
tion on the input) will, after exe
ution of x := 2, produ
e data satisfying

x = 2. This is
ertainly what we would expe
t the
ode to do. To prove it,

4 Con
ise En
y
lopedia of Software Engineering

the assignment rule is applied. The pre-
ondition whi
h yields the desired post-

ondition x = 2 is obtained by repla
ing free o

urren
es of x by 2. This gives

2 = 2, whi
h is equivalent to True. So the spe
i�ed
ode fTrueg x := 2 fx = 2g

is partially
orre
t. A proof of total
orre
tness is straightforward here be
ause

the expression 2 on the right side
an
ertainly be
omputed on any ma
hine

without run-time errors or non-termination, and assignment of the result to

memory should not
ause problems.

3.2 Veri�
ation Conditions

The equivalen
e of 2 = 2 to True really just needed a proof of the impli
ation

True ! 2 = 2. In general, our spe
i�
ation provides a pre-
ondition P to the

ode, but partial veri�
ation, as above, generates a weakest pre-
ondition P

0

. In

e�e
t P

0

des
ribes the widest set of input for whi
h the
ode will produ
e output

with the desired properties. So we are left with a formula P ! P

0

whi
h needs

to be proved. Thus, the need to prove pure predi
ate formulae arises naturally

in program veri�
ation, and is the point where theorem provers are required.

3.3 Sequen
ing and Bran
hing

The other basi

omponents of programming languages are sequen
ing, bran
h-

ing and looping. Ea
h is
onstru
ted from smaller se
tions of
ode. If these

subse
tions are known to satisfy parti
ular spe
i�
ations, then a spe
i�
ation

for the whole
onstru
t
an be dedu
ed using an inferen
e rule. For example,

writing the list of hypotheses above a line, and the
onsequen
e below, we have

the sequen
ing rule

fPg C fQg; fQg D fRg

fPg C ; D fRg

(sequen
ing)

The two hypotheses above the line say we start with the assumptions (i) that if

omputation starts with data satisfying P and exe
utes C su

essfully then Q

will hold, and (ii) that if
omputation starts with data satisfying Q and exe
utes

D su

essfully then R will hold. Clearly, if we start with data satisfying P , and

then su

essively and su

essfully exe
ute �rst C, so that Q holds, and then D,

then the output data will satisfy R. This is what is
laimed by the
on
lusion

given below the line.

Bran
hing
an be de�ned axiomati
ally in a similar fashion:

fPg C fQg; fRg D fQg

f(P&B) or (R & not B)g if B then C else D fQg

(bran
hing)

In this
ase, the output from exe
uting C or D is assumed to be Q, given in-

put data with properties P and R respe
tively. The
on
lusion of the rule is

that (P&B) or (R & not B) is the pre-
ondition required for the
onditional

statement to give output satisfying Q. This formula involves the logi
al op-

erators &, or and not whi
h are identi
al to the Boolean operators found in

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 5

the programming language itself. The Boolean expression B is, of
ourse, a re-

spe
table formula of predi
ate
al
ulus. As observed in the assignment example

with True ! 2 = 2 the apparently
ompli
ated pre-
ondition
an often be

simpli�ed substantially.

3.4 Repetition

Repetition is the most interesting
onstru
t as far as veri�
ation is
on
erned.

Its axiomati
 spe
i�
ation is this:

fPg C fPg

fPg while B do C fP & not Bg

(looping)

It is really not at all obvious that this rule is the slightest bit helpful! Above

the line, the hypothesis about what C does seems to say very little: exe
ution

of C does not do anything to the property P of the data. Worse still, the loop

itself seems to do little more: the output data fails to satisfy B, but at least still

satis�es P , as it did before. The key to seeing the usefulness of the rule is that

not B provides information that allows P & not B to release the properties we

want. This is illustrated in the pro
edure Add below.

However, the major diÆ
ulty of this rule in veri�
ation is that knowledge

of the formula P & not B does not enable the formula P to be dedu
ed. The

problem is that the formula P & not B is not provided synta
ti
ally separated

onveniently into
omponents P and B, but as a semanti
ally equivalent formula.

Thus, (P

0

& not B) & not B is semanti
ally equivalent to P

0

& not B, but

synta
ti
ally we
ould extra
t either P

0

& not B or P

0

as the formula P . We

annot know what formula to pi
k for P without help from the programmer.

The formula P is
alled a loop invariant, and in it the programmer needs to

state the
umulative properties he intends the loop to have a
hieved at the end

of a typi
al iteration.

Further
onstru
ts
an be spe
i�ed in a similar manner to obtain the full

axiomati
 semanti
s of the language. Pro
edure and fun
tion
alls are
ompli-

ated by su
h things as various parameter passing me
hanisms, side e�e
ts, lazy

or eager evaluation, and order of evaluation of expressions and parameters. This

learly requires a deeper treatment than
an be given here. For this, the inter-

ested reader is referred to [2℄ or [3℄.

4 Programming Example

4.1 Informal Des
ription & Code

Let us look at an example in Pas
al, starting with a brief semi-formal des
ription

of the notation and an idea of the spe
i�
ation. This forms the bridge between the

formal spe
i�
ation, whi
h is presented by annotating the
ode, and an informal

requirements des
ription. It should explain both the
ode and its spe
i�
ation.

6 Con
ise En
y
lopedia of Software Engineering

The main data stru
ture of the program segment given below is Register =

Array[Index℄ of Bit. It is used to hold the bits of numbers written in binary no-

tation. So the bit element A[i℄ of the array A : Register is the
oeÆ
ient of 2

i

in

the number held in A. Hen
e the value of the number in A is

P

MaxIndex

i=0

A[i℄�2

i

,

whi
h will also be written as A.

Part way through the hand
al
ulation of the sum of two numbers, the sum of

the numbers represented by the �rst few digits has been found. The pro
edure

Add here mimi
s this, and so it is useful to de�ne A

I

to be the value of the

number in the �rst I+1 bits, those with indi
es from 0 up to I . So we take A

I

=

P

I

i=0

A[i℄�2

i

. The number represented by taking no bits at all is 0, and so we

have A

�1

= 0. In this notation the value of A is A

MaxIndex

sin
e the array has a

maximum index value ofMaxIndex. The largest Register value possible is given

by an array in whi
h every bit is 1. If we
all this MaxReg, then MaxReg[i℄ = 1

for ea
h i : Index. It represents the number MaxReg = 2

MaxIndex+1

� 1.

The pro
edure below is to output an over
ow
ondition when the sum of the

inputs is greater than MaxReg and otherwise output the sum In1+In2 of the

inputs. The addition is done bit-wise as in a simple hardware adder or as in a

hand
al
ulation, with the same de�nition of
arries. (Here the latter analogy is

slightly more appropriate as the bit values are expressed in terms of mathemat-

i
al fun
tions rather than logi
 gates.)

Const MaxIndex = 31 ;

Type Index = 0..MaxIndex ;

IndexPlus1 = 0..MaxIndex+1 ;

Bit = 0..1 ;

Register = Array[Index℄ of Bit ;

Pro
edure Add(In1,In2 : Register ;

Var SumOut : Register; Var Overflow : Bit) ;

{ Write only: SumOut, Overflow }

{ Pre-Add: True }

{ Post-Add: (In1+In2 � MaxReg $ Overflow = 0

$ SumOut = In1+In2 }

Var I : IndexPlus1 ;

Carry : Bit ;

Begin { Add }

I := 0 ;

Carry := 0 ;

While I <= MaxIndex do

Begin

SumOut[I℄ := (Carry + In1[I℄ + In2[I℄) mod 2 ;

Carry := (Carry + In1[I℄ + In2[I℄) div 2 ;

I := Su

(I)

{ (In1

I�1

+ In2

I�1

= SumOut

I�1

+ Carry*2

I

) &

(0 � I � MaxIndex+1) }

End ;

Overflow := Carry

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 7

End ; { Add }

4.2 The Spe
i�
ation

As in this example,
ode should
ontain in-line the formal spe
i�
ation. This

in
ludes, �rst of all, against ea
h type de
laration, data invariants whi
h are

properties expe
ted to hold for all variables of that type. There are no restri
tions

for the types used here, but examples of this are given below where we des
ribe

some spe
i�
ation languages. Next, pre- and post-
onditions for the pro
edure

need to be given in the pro
edure heading. These are of the kind des
ribed at

the beginning of this arti
le, and refer to the fun
tional properties of the body

of the pro
edure.

Also in the heading there should be information about any use made of vari-

ables global to the pro
edure. Lists of those variables whose values are a

essed

or updated must be provided. This enables one to dedu
e the following. If P is

a property whi
h holds before a
all to the pro
edure and P
ontains no free

o

urren
es of any global variables whi
h are updated, then P will still hold after

exe
ution of the
all. In other words, property P will hold after the pro
edure
all

if it held beforehand and none of its free variables has had its value
hanged. The

onsequen
e of in
luding these lists is that pre- and post-
onditions for pro
e-

dures
an be made simpler be
ause they do not need to in
lude su
h properties.

Indeed, the post-
ondition need only des
ribe what
hanges have been made to

variables whi
h are updated, that is, those in the write lists.

With the detail in the heading �xed, the programmer
an
omplete the
ode.

This
onstru
tion demands that he or she de
ides how the addition is to be done,

and, in parti
ular, what needs to have been a
hieved at the end of ea
h iteration

of the loop. This is inserted in the
ode as an assertion, whi
h, in this spe
i�

instan
e is
alled a loop invariant and is the property named P whi
h we use

when applying the looping inferen
e rule above to verify the
ode. It
ontains

algorithmi
 information whi
h a program veri�er
annot be expe
ted to dedu
e.

In the pro
edure Add, there is one loop invariant, namely,

(In1

I�1

+ In2

I�1

= SumOut

I�1

+ Carry � 2

I

) & (0 � I �MaxIndex+1)

The loop inferen
e rule states that at the end of the loop this property holds

together with not B where B is the Boolean
ondition in the loop. Sin
e not B

is I > MaxIndex and the loop invariant gives I � MaxIndex+1, it is easy to

dedu
e I =MaxIndex+1. Substituting this value into the loop invariant yields

In1

MaxIndex

+ In2

MaxIndex

= SumOut

MaxIndex

+Carry � 2

MaxIndex+1

at the

end of the loop, that is,

In1 + In2 = SumOut+ Carry � 2

MaxIndex+1

This illustrates how the rule for loops really does produ
e something useful.

It is the pre- and post-
onditions and loop invariants whi
h are essential to

enable automati
 program veri�
ation, for human understanding of the
ode, and

8 Con
ise En
y
lopedia of Software Engineering

for maintenan
e purposes. However, the informal spe
i�
ation was also useful,

making it easier to understand the formal one whi
h do
uments the
ode, and

being fairly important to the understanding of the
ode.

4.3 Partial Veri�
ation

A program veri�
ation tool starts with the post-
ondition, applies the inferen
e

rules and axioms as above whi
h de�ne program
onstru
ts, and makes use of

loop invariants to dedu
e the weakest pre-
ondition, say Q, whi
h the initial

data has to satisfy. This may not mat
h the pre-
ondition P supplied in the

spe
i�
ation. Clearly, to
omplete the proof we need P ! Q to hold initially.

This is
alled a veri�
ation
ondition, and is a pure predi
ate
al
ulus formula.

We had the example 2 = 2 ! True above. Veri�
ation
onditions arise in

parti
ular at points where assertions have to be supplied. Consider loops as an

example. To prove the loop against its spe
i�
ation, the veri�er must �rst prove

the hypothesis in the looping rule and then apply that rule to
on
lude the loop

is
orre
t. In proving this hypothesis, the supplied loop invariant P is used as

the post-
ondition on the loop body, and the veri�er dedu
es the weakest pre-

ondition Q. This may not
oin
ide with the pre-
ondition, also P , required by

the inferen
e rule for loops. In su
h a
ase, P ! Q would need to be proved in

order to show that input satisfying P will indeed satisfy the pre-
ondition Q.

4.4 Termination

Total veri�
ation of the example above requires a proof that everything termi-

nates properly. Assuming that the range of implemented integers in
ludes the

values of MaxIndex+1 and 3, it is fairly straightforward to
he
k that every-

thing respe
ts the type restri
tions, in
luding all intermediate
al
ulations. So

the only possible sour
e of improper termination would be if the while loop were

in�nite. Normally, to prove termination of loops we need to exhibit a fun
tion of

the data with
ertain properties in respe
t of its values at the end of ea
h itera-

tion. The fun
tion needs to rea
h an a

eptable value in a �nite number of steps.

With real number
omputing, this fun
tion might be an estimate of error, whi
h

we must show tends to zero so that it is eventually small enough. In dis
rete

omputing, as here, the fun
tion is often a monotoni
ally de
reasing natural

number valued fun
tion. Thus, in the example, the fun
tion MaxIndex+1�I

de
reases stri
tly on ea
h iteration, is initially positive, and is always at least

0 (by the type
onstraints, whi
h ought to have been
he
ked). As the number

of values that the fun
tion
an have is at most one more than its initial value,

there are at most that number of iterations of the loop: a �nite number. So the

ode terminates properly.

Further detail about spe
i�
ation of languages and programs and their veri-

�
ation is to be found in referen
es [1℄, [2℄, [3℄ and [6℄.

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 9

5 Spe
i�
ation Languages

There is mu
h more to veri�
ation than the total
orre
tness
onsidered so far.

Two spe
i�
ation languages, Z and VDM, provide notation whi
h makes easy a

systemati
 treatment of further aspe
ts.

Spe
i�
ations of operations in VDM, and in the similar spe
i�
ation method

Z, make use of a state whi
h, in terms of Pas
al, may be thought of as the set of

values of the global variables whi
h our operations or pro
edures may use. This

is often expressed by saying that VDM and Z aremodel-oriented approa
hes,

meaning that their spe
i�
ations de�ne operations by their e�e
t on external

variables from a state. This requires

1. de�nition of the set of states

2. de�nition of the initial state(s)

3. spe
i�
ation of implementable operations whose external variables

are parts of the state.

We shall give an example, whi
h will also serve to show what kind of notation

is used. It
on
erns the storage manager of an operating system. The manager

must asso
iate ea
h available blo
k of storage with its user.

5.1 Example in VDM: The Spe
i�
ation

Let B be the set of storage blo
ks and U be the set of users. The asso
iation of

blo
ks with users is spe
i�ed by a partial fun
tion from B to U . The fun
tion is

partial be
ause some blo
ks may not be used. It helps to keep expli
it tra
k of

the unused, or free, blo
ks. Hen
e we are led to
onsider a state whose external

variables are the partial fun
tion dir : B ! U and the set free � B.

First, we shall show how to make use of this state using the notation of VDM.

The types of the variables in the state are written

dir : map B to U and

free : set of B:

The free blo
ks are pre
isely those whi
h are not in the domain of de�nition of

dir. Hen
e we have the data invariant:

free = B � dom(dir):

We
ould de�ne a re
ord, or
omposite, type to store this information if we liked.

The VDM notation for su
h a type is

SM :: dir : map B to U

free : set of B

or

10 Con
ise En
y
lopedia of Software Engineering

SM 4
ompose SM of

dir : map B to U

free : set of B

end

where ea
h value, sm : SM , must satisfy the data invariant

inv�SM(sm) 4 free(sm) = B � dom(dir(sm)):

(The symbol 4 is shorthand for \is de�ned by".) The initial state, with no

blo
ks allo
ated, has dir = ; (the empty map) and free = B.

Consider the operation, REQUEST , whi
h �nds an unused blo
k b for a user

u (and updates dir and free appropriately). We spe
ify it by using a heading,

rather like a fun
tion head in Pas
al, whi
h shows the names and types of the

inputs and outputs. We then list the external variables from the state whi
h the

operation uses. These are marked rd if they are read only or wr if they may also

be written to or
hanged. Finally we write a pre-
ondition whi
h must be satis�ed

by the inputs and state values before the operation is done and a post-
ondition

whi
h must be satis�ed by the outputs and state variables after the operation is

done. The post-
ondition is likely to have to refer to the values of the inputs and

values of state variable before the operation is done. To distinguish values of state

variables before and after the operation we de
orate the previous values with a

hook. This de
oration is only ne
essary in post-
onditions sin
e pre-
onditions

an only refer to initial state values. The spe
i�
ation of REQUEST may be

written in this style as follows.

REQUEST (u : U) b : B

ext wr dir : map B to U

ext wr free : set of B

pre free 6= ;

* *

post b 2 free ^ free = free �fbg

*

^ dir = dir y fb 7! ug

In this spe
i�
ation we impli
itly assume that dir and free satisfy the data-

invariant: free = B � dom(dir). y is the override operator whi
h here gives

pre
eden
e to the new asso
iation of b with u rather than any previous asso
i-

ation given by dir. In this
ase we
ould equally well have used [but it would

then not have been so
lear that our new value for dir is still well-de�ned.

5.2 Example in VDM: Proof Obligations

Su
h a spe
i�
ation immediately gives rise to a proof obligation. We must prove

that the operation is implementable. This does not usually mean writing a

omputer program whi
h satis�es the spe
i�
ation but one should show that,

given a state and input satisfying the pre-
ondition, there is a state and output

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 11

satisfying the post-
ondition. In parti
ular one must show that the resulting state

does not
ontain variables whi
h fail to satisfy the appropriate data invariants.

In our example this entails showing that free = B � dom(dir) still holds after

the operation REQUEST is performed.

We usually start with an impli
it spe
i�
ation whi
h is very abstra
t and

does not say how to implement the operation, merely what it should do. This

has great advantages. Su
h a spe
i�
ation is likely to be more
on
ise than an ex-

pli
it de�nition whi
h
ontains implementation detail. It also is more adaptable,

leaving us free to
hange the a
tual types and algorithms used in an implemen-

tation without having to rewrite our spe
i�
ation from s
rat
h. Nevertheless we

shall have to make our spe
i�
ation more
on
rete in order to make sure that an

implementation really does satisfy the spe
i�
ation. This pro
ess, whi
h usually

pro
eeds in several steps, is
alled data-rei�
ation. In our example we would

probably not be able to use sets to implement free or fun
tions in order to im-

plement dir but might have to use some sort of list and list of pairs respe
tively.

We �rst de�ne a new type for storing information about the storage manager

and then rewrite the spe
i�
ations of our operations, REQUEST et
., to suit

this new type. In order to show that this rei�
ation step has worked properly

we must dis
harge several more proof obligations.

First we must show that our new type
ontains at least one representative

for ea
h member of our previous storage manager type SM . If we
an show this

than our new type is
alled an adequate representation of SM .

Then we must prove various properties of our new operations. First they must

be shown to be implementable. Then we must show that our new operations
or-

respond to the old ones. A proof of su
h a property is
alled an implementation

modelling proof.

Without going into detail about what an implementation modelling proof

entails, we should note that it is
onsiderably harder if the original type
ontains

two di�erent elements whi
h are not distinguishable by any �nite sequen
e of its

operations. This undesirable property is
alled implementation bias. In our

example SM is unbiased but our new type is likely to be biased sin
e there are

several lists with the same elements as any given set free with more than one

element, and we do not wish to distinguish between them. The absen
e of bias

in SM allows us to de�ne the
orresponden
e between the new type and SM by

means of a fun
tion from the new type to SM . This fun
tion is
alled a retrieve

fun
tion. The presen
e of a retrieve fun
tion makes implementation modelling

proofs simpler and also gives us a simple
riterion for adequa
y, namely that the

retrieve fun
tion should map the new type onto SM .

5.3 The Same Example in Z: The Spe
i�
ation

The spe
i�
ation language Z is a variant of VDM notation. It uses a generalisa-

tion of set
omprehension notation, fx 2 T jP (x)g,
alled the s
hema. A s
hema

S has form S 4 [de
larationsjpredi
ate℄ and is usually written verti
ally.

12 Con
ise En
y
lopedia of Software Engineering

S

de
larations

predi
ate

Su
h a s
hema may be used to de�ne a
omposite type by putting the �elds

of the type in the de
laration part and the data-invariant in the predi
ate part.

Thus our storage manager type SM
an be de�ned by:

S

dir : B ! U

free : IP(B)

free = B n dom(dir)

The notation used by Z is often more like standard mathemati
al notation

than is the notation of VDM. For example the type of dir is written B ! U

(sometimes with a line through the arrow to stress that we are using partial

fun
tions) instead of map B to U , and the power set of B (i.e. the set of its

subsets) is written IP(B) instead of set of B.

S
hemas are more versatile than the example above suggests; they may be

used not only for de�ning
omposite types but also for spe
ifying operations.

The following de
oration
onventions are used:

De
oration with ! denotes an input to an operation.

De
oration with ? denotes an output from an operation.

De
oration with

0

denotes a state after variable.

For example, if s is the value before an operation then s

0

is the value afterwards.

Both s and s

0

must be de
lared in a s
hema de�ning an operation involving s

be
ause the predi
ate part of the s
hema must show how s is
hanged by the

operation (even if there is no
hange and s = s

0

).

The s
hema spe
ifying our operation REQUEST is:

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 13

REQUEST

dir; dir

0

: B ! U

free; free

0

: IP(B)

b! : B

u? : U

free = B � dom(dir) ^

free

0

= B � dom(dir

0

) ^

free 6= ; ^

b! 2 free ^

free

0

= free� fb!g ^

dir

0

= dir � fb!! u?g

Note that the override operator is now written �. The predi
ate part of this

s
hema
ould be simpli�ed. For example it follows from b! 2 free that free 6= ;.

There is a ri
h s
hema
al
ulus for
ombining s
hemas and making spe
i�
a-

tions look a

eptably
on
ise. For example, a s
hema may have other s
hemas in

its de
laration part. The
onvention is that if S has s
hema T in its de
laration

part then we may expand S by merging the de
larations of T with those expli
-

itly present in S and anding the predi
ate part of T with the expli
it predi
ate

part of S.

Hen
e the following de�nitions:

SM

0

dir

0

: B ! U

free

0

: IP(B)

free

0

= B � dom(dir

0

)

and

�SM

SM

SM

0

i.e.

14 Con
ise En
y
lopedia of Software Engineering

�SM

dir; dir

0

: B ! U

free; free

0

: IP(B)

free = B � dom(dir) ^

free

0

= B � dom(dir

0

)

permit the following, more
on
ise, spe
i�
ation of REQUEST :

REQUEST

�SM

b! : B

u? : U

free 6= ; ^

b! 2 free ^

free

0

= free� fb!g ^

dir

0

= dir � fb!! u?g

Readers interested in pursuing the spe
i�
ation languages VDM and Z fur-

ther will �nd very readable a

ounts in referen
es [4℄, [5℄ and [7℄.

Referen
es

1. E.W. Dijkstra, C.S. S
holten, Predi
ate Cal
ulus and Program Semanti
s, Springer-

Verlag, 1990.

2. R. Dowsing, V. Rayward-Smith, C.D. Walter, A First Course in Formal Logi

and its Appli
ations in Computer S
ien
e, Bla
kwell S
ienti�
, 1986, ISBN 0-632-

01308-7.

3. D. Gries, The S
ien
e of Programming, Springer-Verlag, 1981, ISBN 0-387-90641-

X.

4. D. C. In
e, An Introdu
tion to Dis
rete Mathemati
s and Formal System Spe
i�-

ation, Oxford University Press, 1988, ISBN 0-19-859664-2.

5. C.B. Jones, Systemati
 Software Development using VDM, (2nd Edition) Pren-

ti
e/Hall International, 1990, ISBN 0-13-880733-7.

6. A. Kaldewaij, Programming, Prenti
e/Hall International, 1990, ISBN 0-13-204108-

1.

7. M. Spivey, The Z Notation { A Referen
e Manual, Prenti
e Hall, 1989.

