FORMAL SPECIFICATION and
VERIFICATION of SOFTWARE

Colin D. Walter & Stephen E. Eldridge

Department of Computation
UMIST
PO Box 88
Manchester M60 1QD, UK

WWW.co.umist.ac.uk

1 Importance of Formal Specification

The normal task of a software company is to construct programs and systems
from an informal natural language description of what they should do, and to
maintain them. Bridging the gap between the natural language description and
the programming language code are scripts written in more or less formal spec-
ification languages (see also articles ”Problem Domain System Analysis” and
”Software Life Cycles”). Here we consider those specification languages that
are formal. Their grammar, or syntax, and their meaning, or semantics, should
therefore be precise and unambiguous.

Scripts in such languages are not usually executable, that is, they do not
say how to do anything. Their aim is to capture exactly what the user wants
so that the software engineer builds the right product, without relying entirely
on a vague requirements description from the user. However, they contain little
or no information as to how the necessary computations might be done. This is
what the programmer adds to obtain the final code. There is always an initial
dialogue between the customer and software engineer to determine what product
is desired. Most of these discussions involve making the needs more precise.

Spending time on building the wrong product can be very costly especially
if prototyping is not possible or the results cannot be seen until final assem-
bly. It is therefore very important, cost-effective and time-saving to use formal
specification languages at this early stage to determine all but the most trivial
level of detail for what is required. Increasingly, both consumer and supplier are
requiring formal specifications as part of their contract in order to make possible
or defend against claims for damage in litigation.

1.1 Levels of Formality

One significant problem with specifications is that they appear unfriendly; it can
be difficult to construct, read or understand them. This is normally overcome by



2 Concise Encyclopedia of Software Engineering

having a hierarchy of levels of detail and formality, in which the initial informal
description is moulded into the final formal specification over several intermedi-
ate stages, and decomposed into modules small enough to be fully comprehended.
All those different levels are kept together as documentation for the code, and
would be read in increasing order of formality and detail as introduction to
aid comprehension of the end product. Thus, specifications are developed like
software using normal engineering techniques such as stepwise refinement and
top-down design. Indeed, both specification and software need to be produced
simultaneously, the first documenting the second, for the specification to be of
any practical use in maintenance or verification.

1.2 Levels of Cost

Another apparent problem with writing a formal specification is the cost. Al-
though specification languages are no more complicated than programming lan-
guages, unfamiliarity with their apparently more abstract notions makes soft-
ware engineers reluctant to tackle specification, and so experts may need to be
used. Verification is more difficult, but that is a different subject, requiring the
production of a formal specification first. There are many shortcuts avoiding ex-
pense. In particular, there is often no need to specify everything fully: the lowest
level procedures might not require specifications distinct from their code, and
many variables may not be sufficiently important to require precise definitions.
Indeed, specification of any part of a piece of software is perhaps only justified
when the product is going to be widely or frequently used, has safety-critical
applications, malfunction has severe financial implications, or continuous main-
tenance is expected, i.e. wherever the need for correct code justifies the extra
cost.

2 Basic Terminology

Specification has a number of purposes. In decreasing order of usage this includes
construction, maintenance and verification. For each of these, the level of spec-
ification needed to document code is very similar. Initially one needs pre- and
post- conditions written in predicate logic. If we call these P and @) respectively,
and construct code C' to meet this specification, then we may write

{P}Ci{e}

where { } are the comment brackets for the programming language. This means
that if the initial data satisfies P and C' is executed successfully, then the final
data satisfies ). In this case we say C satisfies the given specification or that it
is partially correct. There is no claim that the code will terminate or will do
so without raising an exception, but if it always does for initial data satisfying
the pre-condition, then it is said to be totally correct.



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 3

At any point within some code we can insert a predicate formula, usually
written within comment brackets. Thus, the property P between sections of
code C and D in

C {P} D

is called an assertion. It is something that is expected to be true of the data
whenever control passes that point during execution. Within certain restrictions,
such as avoiding unbounded quantification, it might be possible during run-time
to evaluate P. This can be especially valuable when debugging because it can
give much more information than strong typing, and can enable errors to be
discovered much closer to their origin.

3 Programming Language Semantics

3.1 Assignment

Specifications should enable us to write correct code, but this is only possible if
we know what the various constructs in the programming language are supposed
to do — they need specifying. Imperative programming is based on what the
assignment statement does, namely,

{Qz/t)} z:=t {Q} (assignment)

(The notation of the pre-condition is explained in the next paragraph.) In terms
of manipulating numbers in a machine, this code states that the value of the
expression t is to be assigned to the variable z. However, in terms of the prop-
erties of the data held in the machine, its specification declares that in order to
obtain property () for the data immediately after its execution we need the data
to satisfy property Q(z/t) immediately before its execution.

The precise meaning of Q(z/t) in the above axiomatic definition of assign-
ment is not important here. Roughly speaking, it is a slightly altered version of
the formula @ in which every so-called “free” occurrence of x has been replaced
by t. An occurrence of x is bound if it is in a subformula of () with the form
Vr@: or 3zQ);, where V and 3 are the usual quantifiers “for all” and “there
exists”. Occurrences which are not bound by a quantifier are free. However, the
formation of Q(x/t) may also involve renaming some bound variables in order
to prevent confusion between occurrences of variables introduced into @ by the
substitution and those already associated to the quantifiers appearing in Q.

The definition of assignment is an axiom scheme in the proof system we would
use to verify any imperative code. From it we can deduce the partial correctness
of, for example,

{True} z:=2 {z=2}.

This statement claims that any input satisfying the empty condition True (i.e. no
restriction on the input) will, after execution of x := 2, produce data satisfying
x = 2. This is certainly what we would expect the code to do. To prove it,



4 Concise Encyclopedia of Software Engineering

the assignment rule is applied. The pre-condition which yields the desired post-
condition x = 2 is obtained by replacing free occurrences of x by 2. This gives
2 = 2, which is equivalent to True. So the specified code {True} z := 2 {z = 2}
is partially correct. A proof of total correctness is straightforward here because
the expression 2 on the right side can certainly be computed on any machine
without run-time errors or non-termination, and assignment of the result to
memory should not cause problems.

3.2 Verification Conditions

The equivalence of 2 = 2 to True really just needed a proof of the implication
True — 2 = 2. In general, our specification provides a pre-condition P to the
code, but partial verification, as above, generates a weakest pre-condition P’. In
effect P’ describes the widest set of input for which the code will produce output
with the desired properties. So we are left with a formula P — P’ which needs
to be proved. Thus, the need to prove pure predicate formulae arises naturally
in program verification, and is the point where theorem provers are required.

3.3 Sequencing and Branching

The other basic components of programming languages are sequencing, branch-
ing and looping. Each is constructed from smaller sections of code. If these
subsections are known to satisfy particular specifications, then a specification
for the whole construct can be deduced using an inference rule. For example,
writing the list of hypotheses above a line, and the consequence below, we have
the sequencing rule

{Ppycie}, {@}D{R}
{P}C; DA{R}

(sequencing)

The two hypotheses above the line say we start with the assumptions (i) that if
computation starts with data satisfying P and executes C' successfully then @
will hold, and (ii) that if computation starts with data satisfying @ and executes
D successfully then R will hold. Clearly, if we start with data satisfying P, and
then successively and successfully execute first C', so that @ holds, and then D,
then the output data will satisfy R. This is what is claimed by the conclusion
given below the line.
Branching can be defined axiomatically in a similar fashion:

{pyCc{Q}, {R}D{Q}
{(P&B) or (R & not B)} if Bthen Celse D {Q}

(branching)

In this case, the output from executing C' or D is assumed to be @, given in-
put data with properties P and R respectively. The conclusion of the rule is
that (P&B) or (R & not B) is the pre-condition required for the conditional
statement to give output satisfying @). This formula involves the logical op-
erators &, or and not which are identical to the Boolean operators found in



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 5

the programming language itself. The Boolean expression B is, of course, a re-
spectable formula of predicate calculus. As observed in the assignment example
with True — 2 = 2 the apparently complicated pre-condition can often be
simplified substantially.

3.4 Repetition

Repetition is the most interesting construct as far as verification is concerned.
Its axiomatic specification is this:

(PyC (P} |
{P} while BdoC {P & not B} (looping)

It is really not at all obvious that this rule is the slightest bit helpful! Above
the line, the hypothesis about what C' does seems to say very little: execution
of C' does not do anything to the property P of the data. Worse still, the loop
itself seems to do little more: the output data fails to satisfy B, but at least still
satisfies P, as it did before. The key to seeing the usefulness of the rule is that
not B provides information that allows P & not B to release the properties we
want. This is illustrated in the procedure Add below.

However, the major difficulty of this rule in verification is that knowledge
of the formula P & not B does not enable the formula P to be deduced. The
problem is that the formula P & not B is not provided syntactically separated
conveniently into components P and B, but as a semantically equivalent formula.
Thus, (P' & not B) & not B is semantically equivalent to P’ & not B, but
syntactically we could extract either P’ & not B or P’ as the formula P. We
cannot know what formula to pick for P without help from the programmer.
The formula P is called a loop invariant, and in it the programmer needs to
state the cumulative properties he intends the loop to have achieved at the end
of a typical iteration.

Further constructs can be specified in a similar manner to obtain the full
axiomatic semantics of the language. Procedure and function calls are compli-
cated by such things as various parameter passing mechanisms, side effects, lazy
or eager evaluation, and order of evaluation of expressions and parameters. This
clearly requires a deeper treatment than can be given here. For this, the inter-
ested reader is referred to [2] or [3].

4 Programming Example

4.1 Informal Description & Code

Let us look at an example in Pascal, starting with a brief semi-formal description
of the notation and an idea of the specification. This forms the bridge between the
formal specification, which is presented by annotating the code, and an informal
requirements description. It should explain both the code and its specification.



6 Concise Encyclopedia of Software Engineering

The main data structure of the program segment given below is Register =
Array[Index] of Bit. It is used to hold the bits of numbers written in binary no-
tation. So the bit element A[i] of the array A : Register is the coefficient of 2 in
the number held in A. Hence the value of the number in A is " M¢* /™% A[j]% 27,
which will also be written as A.

Part way through the hand calculation of the sum of two numbers, the sum of
the numbers represented by the first few digits has been found. The procedure
Add here mimics this, and so it is useful to define A; to be the value of the
number in the first 741 bits, those with indices from 0 up to I. So we take Ay =
Zf:o Ali]x2!. The number represented by taking no bits at all is 0, and so we
have A 1 = 0. In this notation the value of A is Apjazrndes Since the array has a
maximum index value of MaxIndex. The largest Register value possible is given
by an array in which every bit is 1. If we call this M azReg, then MaxzRegl[i] =1
for each i : Index. It represents the number MazReg = 2MaozIndez+1 _ 1,

The procedure below is to output an overflow condition when the sum of the
inputs is greater than MaxReg and otherwise output the sum Inl+In2 of the
inputs. The addition is done bit-wise as in a simple hardware adder or as in a
hand calculation, with the same definition of carries. (Here the latter analogy is
slightly more appropriate as the bit values are expressed in terms of mathemat-
ical functions rather than logic gates.)

Const MaxIndex = 31 ;

Type Index = 0..MaxIndex ;
IndexPlusl = 0..MaxIndex+1 ;
Bit =0..1;
Register = Array[Index] of Bit ;

Procedure Add(Inl,In2 : Register ;
Var SumOut : Register; Var Overflow : Bit) ;
{ Write only: SumOut, Overflow }
{ Pre-Add: True }
{ Post-Add: (Inl+In2 < MaxReg ¢+ Overflow = 0
< SumQut = Ini+In2 }

Var I : IndexPlusl ;
Carry : Bit ;
Begin { Add }
I =0 ;
Carry := 0 ;
While I <= MaxIndex do
Begin
SumOut [I] := (Carry + Ini[I] + In2[I]) mod 2 ;
Carry := (Carry + Ini[I] + In2[I]) div 2 ;
I := Succ(I)

{ (In1;_;+ In2;_; = SumOuty_;+ Carry*QI) &
(0 < I < MaxIndex+1) }
End ;
Overflow := Carry



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 7

End ; { Add }

4.2 The Specification

As in this example, code should contain in-line the formal specification. This
includes, first of all, against each type declaration, data invariants which are
properties expected to hold for all variables of that type. There are no restrictions
for the types used here, but examples of this are given below where we describe
some specification languages. Next, pre- and post-conditions for the procedure
need to be given in the procedure heading. These are of the kind described at
the beginning of this article, and refer to the functional properties of the body
of the procedure.

Also in the heading there should be information about any use made of vari-
ables global to the procedure. Lists of those variables whose values are accessed
or updated must be provided. This enables one to deduce the following. If P is
a property which holds before a call to the procedure and P contains no free
occurrences of any global variables which are updated, then P will still hold after
execution of the call. In other words, property P will hold after the procedure call
if it held beforehand and none of its free variables has had its value changed. The
consequence of including these lists is that pre- and post-conditions for proce-
dures can be made simpler because they do not need to include such properties.
Indeed, the post-condition need only describe what changes have been made to
variables which are updated, that is, those in the write lists.

With the detail in the heading fixed, the programmer can complete the code.
This construction demands that he or she decides how the addition is to be done,
and, in particular, what needs to have been achieved at the end of each iteration
of the loop. This is inserted in the code as an assertion, which, in this specific
instance is called a loop invariant and is the property named P which we use
when applying the looping inference rule above to verify the code. It contains
algorithmic information which a program verifier cannot be expected to deduce.

In the procedure Add, there is one loop invariant, namely,

(Inlr—y + In2;_1 = SumOutr—_; + Carry * 21) & (0 < T < MazxIndex+1)

The loop inference rule states that at the end of the loop this property holds
together with not B where B is the Boolean condition in the loop. Since not B
is I > MaxIndex and the loop invariant gives I < MaxzIndex+1, it is easy to
deduce I = MaxIndex+1. Substituting this value into the loop invariant yields
In]-MazIndem + InzMamIndez = SumOUtMamIndez + Ca”“y * 2Max1ndea:+1 at the
end of the loop, that is,

Inl + In2 = SumQOut + OaT‘Ty % 2Max1ndex+1

This illustrates how the rule for loops really does produce something useful.
It is the pre- and post- conditions and loop invariants which are essential to
enable automatic program verification, for human understanding of the code, and



8 Concise Encyclopedia of Software Engineering

for maintenance purposes. However, the informal specification was also useful,
making it easier to understand the formal one which documents the code, and
being fairly important to the understanding of the code.

4.3 Partial Verification

A program verification tool starts with the post-condition, applies the inference
rules and axioms as above which define program constructs, and makes use of
loop invariants to deduce the weakest pre-condition, say (), which the initial
data has to satisfy. This may not match the pre-condition P supplied in the
specification. Clearly, to complete the proof we need P — @ to hold initially.
This is called a verification condition, and is a pure predicate calculus formula.
We had the example 2 = 2 — True above. Verification conditions arise in
particular at points where assertions have to be supplied. Consider loops as an
example. To prove the loop against its specification, the verifier must first prove
the hypothesis in the looping rule and then apply that rule to conclude the loop
is correct. In proving this hypothesis, the supplied loop invariant P is used as
the post-condition on the loop body, and the verifier deduces the weakest pre-
condition ). This may not coincide with the pre-condition, also P, required by
the inference rule for loops. In such a case, P — () would need to be proved in
order to show that input satisfying P will indeed satisfy the pre-condition Q.

4.4 Termination

Total verification of the example above requires a proof that everything termi-
nates properly. Assuming that the range of implemented integers includes the
values of MaxzIndex+1 and 3, it is fairly straightforward to check that every-
thing respects the type restrictions, including all intermediate calculations. So
the only possible source of improper termination would be if the while loop were
infinite. Normally, to prove termination of loops we need to exhibit a function of
the data with certain properties in respect of its values at the end of each itera-
tion. The function needs to reach an acceptable value in a finite number of steps.
With real number computing, this function might be an estimate of error, which
we must show tends to zero so that it is eventually small enough. In discrete
computing, as here, the function is often a monotonically decreasing natural
number valued function. Thus, in the example, the function MaxIndex+1—1I
decreases strictly on each iteration, is initially positive, and is always at least
0 (by the type constraints, which ought to have been checked). As the number
of values that the function can have is at most one more than its initial value,
there are at most that number of iterations of the loop: a finite number. So the
code terminates properly.

Further detail about specification of languages and programs and their veri-
fication is to be found in references [1], [2], [3] and [6].



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 9
5 Specification Languages

There is much more to verification than the total correctness considered so far.
Two specification languages, Z and VDM, provide notation which makes easy a
systematic treatment of further aspects.

Specifications of operations in VDM, and in the similar specification method
Z, make use of a state which, in terms of Pascal, may be thought of as the set, of
values of the global variables which our operations or procedures may use. This
is often expressed by saying that VDM and Z are model-oriented approaches,
meaning that their specifications define operations by their effect on external
variables from a state. This requires

1. definition of the set of states

2. definition of the initial state(s)

3. specification of implementable operations whose external variables
are parts of the state.

We shall give an example, which will also serve to show what kind of notation
is used. It concerns the storage manager of an operating system. The manager
must associate each available block of storage with its user.

5.1 Example in VDM: The Specification

Let B be the set of storage blocks and U be the set of users. The association of
blocks with users is specified by a partial function from B to U. The function is
partial because some blocks may not be used. It helps to keep explicit track of
the unused, or free, blocks. Hence we are led to consider a state whose external
variables are the partial function dir : B — U and the set free C B.

First, we shall show how to make use of this state using the notation of VDM.
The types of the variables in the state are written

dir : map B to U and
free:setof B.

The free blocks are precisely those which are not in the domain of definition of
dir. Hence we have the data invariant:

free = B — dom/(dir).

We could define a record, or composite, type to store this information if we liked.
The VDM notation for such a type is

SM :: dir : map B toU
free: set of B

or



10 Concise Encyclopedia of Software Engineering

SM A compose SM of
dir : map B toU
free: set of B
end

where each value, sm : SM, must satisfy the data invariant
inv—SM(sm) A free(sm) = B — dom(dir(sm)).

(The symbol A is shorthand for “is defined by”.) The initial state, with no
blocks allocated, has dir = () (the empty map) and free = B.

Consider the operation, REQU EST, which finds an unused block b for a user
u (and updates dir and free appropriately). We specify it by using a heading,
rather like a function head in Pascal, which shows the names and types of the
inputs and outputs. We then list the external variables from the state which the
operation uses. These are marked rd if they are read only or wr if they may also
be written to or changed. Finally we write a pre-condition which must be satisfied
by the inputs and state values before the operation is done and a post-condition
which must be satisfied by the outputs and state variables after the operation is
done. The post-condition is likely to have to refer to the values of the inputs and
values of state variable before the operation is done. To distinguish values of state
variables before and after the operation we decorate the previous values with a
hook. This decoration is only necessary in post-conditions since pre-conditions
can only refer to initial state values. The specification of REQU EST may be
written in this style as follows.

REQUEST(u:U)b: B
ext wr dir : map B toU
ext wr free: set of B

pre free £

—

post b € free A free = free —{b}

—

A dir = dir t{b— u}

In this specification we implicitly assume that dir and free satisfy the data-
invariant: free = B — dom(dir). T is the override operator which here gives
precedence to the new association of b with u rather than any previous associ-
ation given by dir. In this case we could equally well have used U but it would
then not have been so clear that our new value for dir is still well-defined.

5.2 Example in VDM: Proof Obligations

Such a specification immediately gives rise to a proof obligation. We must prove
that the operation is implementable. This does not usually mean writing a
computer program which satisfies the specification but one should show that,
given a state and input satisfying the pre-condition, there is a state and output



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 11

satisfying the post-condition. In particular one must show that the resulting state
does not contain variables which fail to satisfy the appropriate data invariants.
In our example this entails showing that free = B — dom/(dir) still holds after
the operation REQU EST is performed.

We usually start with an implicit specification which is very abstract and
does not say how to implement the operation, merely what it should do. This
has great advantages. Such a specification is likely to be more concise than an ex-
plicit definition which contains implementation detail. It also is more adaptable,
leaving us free to change the actual types and algorithms used in an implemen-
tation without having to rewrite our specification from scratch. Nevertheless we
shall have to make our specification more concrete in order to make sure that an
implementation really does satisfy the specification. This process, which usually
proceeds in several steps, is called data-reification. In our example we would
probably not be able to use sets to implement free or functions in order to im-
plement dir but might have to use some sort of list and list of pairs respectively.
We first define a new type for storing information about the storage manager
and then rewrite the specifications of our operations, REQU EST etc., to suit
this new type. In order to show that this reification step has worked properly
we must discharge several more proof obligations.

First we must show that our new type contains at least one representative
for each member of our previous storage manager type SM. If we can show this
than our new type is called an adequate representation of SM.

Then we must prove various properties of our new operations. First they must
be shown to be implementable. Then we must show that our new operations cor-
respond to the old ones. A proof of such a property is called an implementation
modelling proof.

Without going into detail about what an implementation modelling proof
entails, we should note that it is considerably harder if the original type contains
two different elements which are not distinguishable by any finite sequence of its
operations. This undesirable property is called implementation bias. In our
example SM is unbiased but our new type is likely to be biased since there are
several lists with the same elements as any given set free with more than one
element, and we do not wish to distinguish between them. The absence of bias
in SM allows us to define the correspondence between the new type and SM by
means of a function from the new type to SM. This function is called a retrieve
function. The presence of a retrieve function makes implementation modelling
proofs simpler and also gives us a simple criterion for adequacy, namely that the
retrieve function should map the new type onto SM.

5.3 The Same Example in Z: The Specification

The specification language Z is a variant of VDM notation. It uses a generalisa-
tion of set comprehension notation, { € T'|P(x)}, called the schema. A schema
S has form S A [declarations|predicate] and is usually written vertically.



12 Concise Encyclopedia of Software Engineering

declarations

predicate

Such a schema may be used to define a composite type by putting the fields
of the type in the declaration part and the data-invariant in the predicate part.
Thus our storage manager type SM can be defined by:

— S
dir :B =+ U
free : IP(B)

free = B\ dom(dir)

The notation used by Z is often more like standard mathematical notation
than is the notation of VDM. For example the type of dir is written B — U
(sometimes with a line through the arrow to stress that we are using partial
functions) instead of map B to U, and the power set of B (i.e. the set of its
subsets) is written IP(B) instead of set of B.

Schemas are more versatile than the example above suggests; they may be
used not only for defining composite types but also for specifying operations.
The following decoration conventions are used:

Decoration with ! denotes an input to an operation.
Decoration with ? denotes an output from an operation.
Decoration with ’ denotes a state after variable.

For example, if s is the value before an operation then s’ is the value afterwards.
Both s and s’ must be declared in a schema defining an operation involving s
because the predicate part of the schema must show how s is changed by the
operation (even if there is no change and s = s').

The schema specifying our operation REQU EST is:



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 13

— REQUEST
dir, dir' : B > U
free, free' : IP(B)
b!': B
u? U

free = B — dom(dir) A
free' = B —dom(dir') A
free£0 A

bl € free A

free' = free — {bl} A
dir' = dir & {b! = u?}

Note that the override operator is now written &. The predicate part of this
schema could be simplified. For example it follows from b! € free that free # ().

There is a rich schema calculus for combining schemas and making specifica-
tions look acceptably concise. For example, a schema may have other schemas in
its declaration part. The convention is that if S has schema T in its declaration
part then we may expand S by merging the declarations of T with those explic-
itly present in S and anding the predicate part of T" with the explicit predicate
part of S.

Hence the following definitions:

_SMI
dir' : B —=U
free' : IP(B)

free' = B — dom(dir')
|

and

ASM
SM
SM'

i.e.



14 Concise Encyclopedia of Software Engineering

—ASM |
dir, dir' : B - U
free, free' : P(B)

free = B —dom(dir) A
free' = B — dom(dir')

permit the following, more concise, specification of REQU EST:

— REQUEST: |
ASM
b!': B
u?: U

free A0 A
bl € free A
free' = free — {bl} A
dir' = dir & {b! — u?}

Readers interested in pursuing the specification languages VDM and 7 fur-
ther will find very readable accounts in references [4], [5] and [7].

References

1. E.W. Dijkstra, C.S. Scholten, Predicate Calculus and Program Semantics, Springer-
Verlag, 1990.

2. R. Dowsing, V. Rayward-Smith, C.D. Walter, A First Course in Formal Logic
and its Applications in Computer Science, Blackwell Scientific, 1986, ISBN 0-632-
01308-7.

3. D. Gries, The Science of Programming, Springer-Verlag, 1981, ISBN 0-387-90641-
X.

4. D. C. Ince, An Introduction to Discrete Mathematics and Formal System Specifi-
cation, Oxford University Press, 1988, ISBN 0-19-859664-2.

5. C.B. Jones, Systematic Software Development using VDM, (2nd Edition) Pren-
tice/Hall International, 1990, ISBN 0-13-880733-7.

6. A. Kaldewaij, Programming, Prentice/Hall International, 1990, ISBN 0-13-204108-
1.

7. M. Spivey, The Z Notation — A Reference Manual, Prentice Hall, 1989.



