Montgomery Multiplication

CeTiN K. Kog,
ISTANBUL SEHIR UNIVERSITY
&

UNIVERSITY OF CALIFORNIA SANTA BARBARA
CoLiN D. WALTER,
INFORMATION SECURITY GROUP,
RovaL HoLLoOwAY, UNIVERSITY OF LONDON.

Related Concepts and Keywords

— Modular Arithmetic
— Modular Multiplication
— Modular Exponentiation

Definition

Suppose a machine performs arithmetic on words of w bits. Let a, b and n
be cryptographically sized integers represented using s such words. Then the
Montgomery modular product of a and b modulo n is abr~! (mod n) where
r = 2%, This is computed at a word level using a particularly straightforward
and efficient algorithm. Compared with the normal “school book” method, for
each word of the multiplier the reduction modulo n is performed by adding
rather than subtracting a multiple of n, only a single digit is used to decide on
this multiple, and the accumulating product is shifted down rather than up.

Background

The modular reduction u (mod n) is typically computed on a word-based
machine by repeatedly taking several leading digits from u and n, obtaining
the leading digit of their quotient, and using that multiple of n to reduce w.
This takes a number of clock cycles on a general processor, and the machine
has to wait for carries to propagate from lowest to highest word before the
next iteration can take place. Peter Montgomery designed his algorithm [5] to
simplify or avoid these bottlenecks so that the modular exponentiations typical of
public key cryptography could be significantly speeded up. The consequent initial
and final scalings by a power of r are relatively cheap. Resource constrained
environments such as those in a smart card or mobile device benefit particularly
from the choice of this modular multiplication algorithm.

Theory

Introduction

In 1985, P. L. Montgomery introduced an efficient algorithm [5] for computing
u=a-b (mod n) where a, b, and n are k-bit binary numbers. The algorithm is



particularly suitable for implementation on general-purpose computers (signal
processors or microprocessors) which are capable of performing fast arithmetic
modulo a power of 2. The Montgomery reduction algorithm computes the re-
sulting k-bit number u without performing a division by the modulus n. Via an
ingenious representation of the residue class modulo n, this algorithm replaces
division by n with division by a power of 2. The latter operation is easily ac-
complished on a computer since the numbers are represented in binary form.
Assuming the modulus n is a k-bit number, ie., 271 < n < 2* let r be 2%.
The Montgomery reduction algorithm requires that r» and n be relatively prime,
i.e., gcd(r,n) = ged(2F,n) = 1. This requirement is satisfied if n is odd. In the
following, the basic idea behind the Montgomery reduction algorithm is summa-
rized.

Given an integer a < n, define its n-residue or Montgomery representation
with respect to r as

a=a-r (modn).

It is straightforward to show that the set
{i-r(modn)|0<i<n-—-1}

is a complete residue system, i.e., it contains all numbers between 0 and n — 1.
Thus, there is a one-to-one correspondence between the numbers in the range 0
and n—1 and the numbers in the above set. The Montgomery reduction algorithm
exploits this property by introducing a much faster multiplication routine which
computes the n-residue of the product of the two integers whose n-residues are
given. Given two n-residues @ and b, the Montgomery product is defined as the
scaled product
@=a-b-r' (modn)

where 71 is the (multiplicative) inverse of r modulo n (see modular arithmetic),
i.e., it is the number with the property

r~t.r=1 (modn).
As the notation implies, the resulting number @ is indeed the n-residue of the

product
u=a-b (mod n)

since
@=a-b-r~' (modn)
=(a-r)-(b-r)-7~1 (mod n)
=(a-b)-r (modn).

In order to describe the Montgomery reduction algorithm, an additional quantity,
n' is needed. This is the integer with the property

rerl—m-n=1.



The integers r—! and n/ can both be computed by the extended Euclidean algorithm
[2]. The Montgomery product algorithm, which computes

-b-r~' (mod n)

Is]

u =

given @ and b, is given below:

function MonPro(a, b)

Stepl.t:=a-b

Step 2. m :=t-n' (mod r)

Step 3. 4 := (t+m-n)/r

Step 4. if @ > n then return @ —n
else return u

The most important feature of the Montgomery product algorithm is that the
operations involved are multiplications modulo r and divisions by r, both of
which are intrinsically fast operations since 7 is a power 2. The MonPro algorithm
can be used to compute the (normal) product u of a and b modulo n, provided
that n is odd:

function ModMul(a, b,n) { n is an odd number }

Step 1. Compute n’ using the extended Euclidean algorithm.
Step 2. @ :=a-r (mod n)

Step 3. b:=b-r (mod n)

Step 4. @ := MonPro(a, b)

Step 5. u := MonPro(u, 1)

Step 6. return u

S Ql

A better algorithm can be given by observing the property
MonPro(a,b) = (a-7) - b-r ' =a-b (modn),

which modifies the above algorithm to:

function ModMul(a, b, n) { n is an odd number }

Step 1. Compute n’ using the extended Euclidean algorithm.
Step 2. @ :=a-r (mod n)

Step 3. u := MonPro(a, b)

Step 4. return u

However, the pre-processing operations, namely steps (1) and (2), are rather
time-consuming, especially the first. Since r is a power of 2, the second step
can be done using k repeated shift and subtract operations. Thus, it is not a
good idea to use the Montgomery product computation algorithm when a single
modular multiplication is to be performed.



Montgomery Exponentiation

The Montgomery product algorithm is more suitable when several modular mul-
tiplications are needed with respect to the same modulus. Such is the case
when one needs to compute a modular exponentiation, i.e., the computation
of M¢ (mod n). Algorithms for modular exponentiation decompose the opera-
tion into a sequence of squarings and multiplications using a common modulus 7.
This is where the Montgomery product operation MonPro finds its best use. In
the following, modular exponentiation is exemplified using the standard “square-
and-multiply” method, i.e., the left-to-right binary exponentiation method, with
e; being the bit of index 4 in the k-bit exponent e:

function ModExp(M,e,n) { n is an odd number }

Step 1. Compute n’ using the extended Euclidean algorithm.
Step 2. M := M -r (mod n)

Step 3. Z:=1-r (mod n)

Step 4. for i = kK — 1 down to 0 do

Step 5. Z := MonPro(Z, Z)

Step 6. if e; = 1 then 7 := MonPro(M, )

Step 7. z := MonPro(z, 1)

Step 8. return x

Thus, the process starts with obtaining the n-residues M and 1 from the
ordinary residues M and 1 using division-like operations, as described above.
However, once this pre-processing has been completed, the inner loop of the
binary exponentiation method uses the Montgomery product operation, which
performs only multiplications modulo 2¥ and divisions by 2. When the loop
terminates, the n-residue Z of the quantity = M¢ (mod n) has been obtained.
The ordinary residue number x is recovered from the n-residue by executing the
MonPro function with arguments Z and 1. This is easily shown to be correct
since

T =uz-r (mod n)

immediately implies that
r=2-r " (modn) = -1-7"" (mod n) := MonPro(z,1) .

The resulting algorithm is quite fast, as was demonstrated by many re-
searchers and engineers who have implemented it; for example, see [14]. How-
ever, this algorithm can be refined and made more efficient, particularly when the
numbers involved are multi-precision integers. For example, Dussé and Kaliski
[1] gave improved algorithms, including a simple and efficient method for com-
puting n’. In fact, any exponentiation algorithm can be modified in the same way
to make use of MonPro: simply append the illustrated pre- and post-processing
(steps 1 to 3 and 7) and replace the normal modular multiplication operations in



the iterative loop with applications of MonPro to the corresponding n-residues
(steps 4 to 6 in the above).

Here, as an example, the computation of x = 7'° (mod 13) is illustrated
using the Montgomery binary exponentiation algorithm.

— Since n = 13, the value for r is taken to be r = 2* = 16 > n.
— Step 1 of the ModExp routine: Computation of n':
The extended Euclidean algorithm is used to determine that 16-9—13-11 =1,
and thus r~! =9 and n/ = 11.
— Step 2: Computation of M:
Since M =7, M := M -7 (mod n) = 7- 16 (mod 13) = 8.
— Step 3: Computation of Z for x = 1:
Z:=x-r (mod n) =1-16 (mod 13) = 3.
— Step 4: The loop of ModExp:
’ei\Step 5 \Step 6 ‘
1|MonPro(3,3 MonPro(8,3) = 8
0 [MonPro(8,8
1|MonPro(4, 4
0 [MonPro(7,7) = 12
— Step 5: Computation of MonPro(3,3) = 3:
t:=3-3=9
m:=9-11 (mod 16) = 3
w:=(9+3-13)/16 =48/16 = 3
— Step 6: Computation of MonPro(8,3) = 8:
t:=8-3=24
m :=24-11 (mod 16) = 8
w:=(24+8-13)/16 = 128/16 = 8
Step 5: Computation of MonPro(8,8) = 4:
t:=8-8=64
m :=64-11 (mod 16) =0
u:=(64+0-13)/16 =64/16 =4

)

MonPro(8,1) =7

— Step 7 of the ModExp routine: z = MonPro(12,1) = 4
t:=12-1=12
m:=12-11 (mod 16) =4
wi=(12+4-13)/16 = 64/16 = 4

Thus, © = 4 is obtained as the result of the operation 7' (mod 13).

Efficient Montgomery Multiplication

The previous algorithm for Montgomery multiplication is not efficient on a gen-
eral purpose processor in its stated form, and so perhaps only has didactic value.
Since the Montgomery multiplication algorithm computes

MonPro(a,b) = abr~' (mod n)



and r = 2F, it is possible to give a more efficient bit-level algorithm which
computes exactly the same value

MonPro(a,b) = ab2™* (mod n)

as follows:

function MonPro(a,b) { n is odd and a,b,n < 2% }

Step 1. u:=0

Step 2. for t=0to k—1
Step 3. ui=u—+ a;b
Step 4. U= u—+ ugn
Step 5. u = u/2

Step 6. if u > n then return u —n
else return u

where uq is the least significant bit of v and a; is the bit with index i in the
binary representation of a. The oddness of n guarantees that the division in
step (5) is exact. This algorithm avoids the computation of n’ since it proceeds
bit-by-bit: it needs only the least significant bit of n’, which is always 1 since n’
is odd because n is odd.

The equivalent word-level algorithm only needs the least significant word ny,
(w bits) of n’, which can also be easily computed since

2k .27k —p.p/ =1
implies
—ng-ny =1 (mod 2") .

Therefore, nj is equal to —ny ' (mod 2*) and it can be quickly computed by the
extended Euclidean algorithm or table look-up since it is only w bits (1 word)
long. For the words (digits) a; of a with index i and k = sw, the word-level
Montgomery algorithm is as follows:

function MonPro(a,b) { n is odd and a,b,n < 2°* }

Step 1. u:=0

Step 2. for i=0to s —1

Step 3. U= u+ ab

Step 4. wi=u+(—ngt)-ug-n

Step 5. u = u/2%
Step 6. if © > n then return u —n
else return u




This version of Montgomery multiplication is the algorithm of choice for sys-
tolic array modular multipliers [6] because, unlike classical modular multiplica-
tion, completion of the carry propagation required in Step 3 does not prevent the
start of Step 4, which needs uy from Step 3. Such systolic arrays are extremely
useful for fast SSL/TLS servers.

Application to Finite Fields

Since the integers modulo p form the finite field GF(p), these algorithms are
directly applicable for performing multiplication in GF(p) by taking n = p.
Similar algorithms are also applicable for multiplication in GF(2*), which is
the finite field of polynomials with coefficients in GF'(2) modulo an irreducible
polynomial of degree & [3].

Montgomery squaring (required for exponentiation) just uses MonPro with
the arguments a and b being the same. However, in fields of characteristic 2
this is rather inefficient: all the bit products a;a; for ¢ # j cancel, leaving just
the terms a? to deal with. Then it may be appropriate to implement a modular
operation ab? for use in exponentiation.

Secure Montgomery Multiplication

As a result of the data-dependent conditional subtraction in the last step of
MonPro, embedded crypto-systems which make use of the above algorithms can
be subject to a timing attack which reveals the secret key [9]. In the context of
modular exponentiation, the final subtraction of each MonPro should then be
avoided [7]. With this step omitted, all I/O to/from MonPro simply becomes
bounded by 2n instead of n, but an extra loop iteration may be required on
account of the larger arguments [§].

Recommended Reading

[1] S.R.Dussé and B. S. Kaliski Jr., “A Cryptographic Library for the Motorola
DSP56000”, Advances in Cryptology — EUROCRYPT ’90, I. B. Damgard (ed),
Lecture Notes in Computer Science 473, pp. 230-244, Springer Verlag, 1991.
http://www.springerlink.com/content/07h8eyfk4jnafy5c/

[2] D. E. Knuth, The Art of Computer Programming, Volume 2, Semi-
numerical Algorithms, Addison-Wesley, Third edition, 1998. ISBN 0-201-
89684-2.
http://wuw.informit.com/title/0201896842

[3] C. K. Kog and T. Acar, “Montgomery multiplication in GF(2¥)”, Designs,
Codes and Cryptography 14(1), pp. 57-69, April 1998.
http://www.springerlink.com/content/g25q57w02h21jv71/

[4] D. Laurichesse and L. Blain, “Optimized implementation of RSA cryptosys-
tem”, Computers €& Security 10(3), pp. 263-267, May 1991.
http://dx.doi.org/10.1016/0167-4048(91)90042-C


http://www.springerlink.com/content/07h8eyfk4jnafy5c/
http://www.informit.com/title/0201896842
http://www.springerlink.com/content/g25q57w02h21jv71/
http://dx.doi.org/10.1016/0167-4048(91)90042-C

[5]

[6]

P. L. Montgomery, “Modular Multiplication Without Trial Division”, Math-
ematics of Computation 44(170), pp. 519-521, April 1985.

http://www. jstor.org/pss/2007970

C. D. Walter, “Systolic Modular Multiplication”, IEEE Transactions on
Computers 42(3), pp. 376-378, March 1993.
http://ieeexplore.ieee.org/xpl/freeabs_all. jsp?arnumber=210181
C. D. Walter, “Montgomery Exponentiation Needs No Final Subtractions”,
FElectronics Letters 35(21), pp. 1831-1832, October 1999.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=810000

C. D. Walter, “Precise Bounds for Montgomery Modular Multiplication and
Some Potentially Insecure RSA Moduli”, Topics in Cryptology — CT-RSA
2002, B. Preneel (ed), Lecture Notes in Computer Science 2271, pp. 30-39,
Springer-Verlag, 2002.
http://www.springerlink.com/content/3plqwé48blvu8igya/

C. D. Walter and S. Thompson, “Distinguishing Exponent Digits by Observ-
ing Modular Subtractions”, Topics in Cryptology — CT-RSA 2001, D. Nac-
cache (ed), Lecture Notes in Computer Science 2020, pp. 192-207, Springer-
Verlag, 2001.

http://www.springerlink.com/content/8h6fn41pf j8uluuu/


http://www.jstor.org/pss/2007970
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=210181
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=810000
http://www.springerlink.com/content/3p1qw48b1vu84gya/
http://www.springerlink.com/content/8h6fn41pfj8uluuu/

