
Montgomery Multiplication

Çetin K. Koç,
Istanbul Şehir University

&
University of California Santa Barbara

Colin D. Walter,
Information Security Group,

Royal Holloway, University of London.

Related Concepts and Keywords

– Modular Arithmetic
– Modular Multiplication
– Modular Exponentiation

Definition

Suppose a machine performs arithmetic on words of w bits. Let a, b and n
be cryptographically sized integers represented using s such words. Then the
Montgomery modular product of a and b modulo n is abr−1 (mod n) where
r = 2sw. This is computed at a word level using a particularly straightforward
and efficient algorithm. Compared with the normal “school book” method, for
each word of the multiplier the reduction modulo n is performed by adding
rather than subtracting a multiple of n, only a single digit is used to decide on
this multiple, and the accumulating product is shifted down rather than up.

Background

The modular reduction u (mod n) is typically computed on a word-based
machine by repeatedly taking several leading digits from u and n, obtaining
the leading digit of their quotient, and using that multiple of n to reduce u.
This takes a number of clock cycles on a general processor, and the machine
has to wait for carries to propagate from lowest to highest word before the
next iteration can take place. Peter Montgomery designed his algorithm [5] to
simplify or avoid these bottlenecks so that the modular exponentiations typical of
public key cryptography could be significantly speeded up. The consequent initial
and final scalings by a power of r are relatively cheap. Resource constrained
environments such as those in a smart card or mobile device benefit particularly
from the choice of this modular multiplication algorithm.

Theory

Introduction

In 1985, P. L. Montgomery introduced an efficient algorithm [5] for computing
u = a · b (mod n) where a, b, and n are k-bit binary numbers. The algorithm is



particularly suitable for implementation on general-purpose computers (signal
processors or microprocessors) which are capable of performing fast arithmetic
modulo a power of 2. The Montgomery reduction algorithm computes the re-
sulting k-bit number u without performing a division by the modulus n. Via an
ingenious representation of the residue class modulo n, this algorithm replaces
division by n with division by a power of 2. The latter operation is easily ac-
complished on a computer since the numbers are represented in binary form.
Assuming the modulus n is a k-bit number, i.e., 2k−1 ≤ n < 2k, let r be 2k.
The Montgomery reduction algorithm requires that r and n be relatively prime,
i.e., gcd(r, n) = gcd(2k, n) = 1. This requirement is satisfied if n is odd. In the
following, the basic idea behind the Montgomery reduction algorithm is summa-
rized.

Given an integer a < n, define its n-residue or Montgomery representation
with respect to r as

ā = a · r (mod n) .

It is straightforward to show that the set

{ i · r (mod n) | 0 ≤ i ≤ n− 1 }

is a complete residue system, i.e., it contains all numbers between 0 and n− 1.
Thus, there is a one-to-one correspondence between the numbers in the range 0
and n−1 and the numbers in the above set. The Montgomery reduction algorithm
exploits this property by introducing a much faster multiplication routine which
computes the n-residue of the product of the two integers whose n-residues are
given. Given two n-residues ā and b̄, the Montgomery product is defined as the
scaled product

ū = ā · b̄ · r−1 (mod n)

where r−1 is the (multiplicative) inverse of r modulo n (see modular arithmetic),
i.e., it is the number with the property

r−1 · r = 1 (mod n) .

As the notation implies, the resulting number ū is indeed the n-residue of the
product

u = a · b (mod n)

since

ū = ā · b̄ · r−1 (mod n)

= (a · r) · (b · r) · r−1 (mod n)

= (a · b) · r (mod n) .

In order to describe the Montgomery reduction algorithm, an additional quantity,
n′ is needed. This is the integer with the property

r · r−1 − n · n′ = 1 .



The integers r−1 and n′ can both be computed by the extended Euclidean algorithm
[2]. The Montgomery product algorithm, which computes

ū = ā · b̄ · r−1 (mod n)

given ā and b̄, is given below:

——————————————
function MonPro(ā, b̄)
——————————————
Step 1. t := ā · b̄
Step 2. m := t · n′ (mod r)
Step 3. ū := (t + m · n)/r
Step 4. if ū ≥ n then return ū− n

else return ū
——————————————

The most important feature of the Montgomery product algorithm is that the
operations involved are multiplications modulo r and divisions by r, both of
which are intrinsically fast operations since r is a power 2. The MonPro algorithm
can be used to compute the (normal) product u of a and b modulo n, provided
that n is odd:

———————————————————–
function ModMul(a, b, n) { n is an odd number }
———————————————————–
Step 1. Compute n′ using the extended Euclidean algorithm.
Step 2. ā := a · r (mod n)
Step 3. b̄ := b · r (mod n)
Step 4. ū := MonPro(ā, b̄)
Step 5. u := MonPro(ū, 1)
Step 6. return u
———————————————————–

A better algorithm can be given by observing the property

MonPro(ā, b) = (a · r) · b · r−1 = a · b (mod n) ,

which modifies the above algorithm to:

———————————————————–
function ModMul(a, b, n) { n is an odd number }
———————————————————–
Step 1. Compute n′ using the extended Euclidean algorithm.
Step 2. ā := a · r (mod n)
Step 3. u := MonPro(ā, b)
Step 4. return u
———————————————————–

However, the pre-processing operations, namely steps (1) and (2), are rather
time-consuming, especially the first. Since r is a power of 2, the second step
can be done using k repeated shift and subtract operations. Thus, it is not a
good idea to use the Montgomery product computation algorithm when a single
modular multiplication is to be performed.



Montgomery Exponentiation

The Montgomery product algorithm is more suitable when several modular mul-
tiplications are needed with respect to the same modulus. Such is the case
when one needs to compute a modular exponentiation, i.e., the computation
of Me (mod n). Algorithms for modular exponentiation decompose the opera-
tion into a sequence of squarings and multiplications using a common modulus n.
This is where the Montgomery product operation MonPro finds its best use. In
the following, modular exponentiation is exemplified using the standard “square-
and-multiply” method, i.e., the left-to-right binary exponentiation method, with
ei being the bit of index i in the k-bit exponent e:

———————————————————–
function ModExp(M, e, n) { n is an odd number }
———————————————————–
Step 1. Compute n′ using the extended Euclidean algorithm.
Step 2. M̄ := M · r (mod n)
Step 3. x̄ := 1 · r (mod n)
Step 4. for i = k − 1 down to 0 do
Step 5. x̄ := MonPro(x̄, x̄)
Step 6. if ei = 1 then x̄ := MonPro(M̄, x̄)
Step 7. x := MonPro(x̄, 1)
Step 8. return x
———————————————————–

Thus, the process starts with obtaining the n-residues M̄ and 1̄ from the
ordinary residues M and 1 using division-like operations, as described above.
However, once this pre-processing has been completed, the inner loop of the
binary exponentiation method uses the Montgomery product operation, which
performs only multiplications modulo 2k and divisions by 2k. When the loop
terminates, the n-residue x̄ of the quantity x = Me (mod n) has been obtained.
The ordinary residue number x is recovered from the n-residue by executing the
MonPro function with arguments x̄ and 1. This is easily shown to be correct
since

x̄ = x · r (mod n)

immediately implies that

x = x̄ · r−1 (mod n) = x̄ · 1 · r−1 (mod n) := MonPro(x̄, 1) .

The resulting algorithm is quite fast, as was demonstrated by many re-
searchers and engineers who have implemented it; for example, see [1,4]. How-
ever, this algorithm can be refined and made more efficient, particularly when the
numbers involved are multi-precision integers. For example, Dussé and Kaliski
[1] gave improved algorithms, including a simple and efficient method for com-
puting n′. In fact, any exponentiation algorithm can be modified in the same way
to make use of MonPro: simply append the illustrated pre- and post-processing
(steps 1 to 3 and 7) and replace the normal modular multiplication operations in



the iterative loop with applications of MonPro to the corresponding n-residues
(steps 4 to 6 in the above).

Here, as an example, the computation of x = 710 (mod 13) is illustrated
using the Montgomery binary exponentiation algorithm.

– Since n = 13, the value for r is taken to be r = 24 = 16 > n.
– Step 1 of the ModExp routine: Computation of n′:

The extended Euclidean algorithm is used to determine that 16·9−13·11 = 1,
and thus r−1 = 9 and n′ = 11.

– Step 2: Computation of M̄ :
Since M = 7, M̄ := M · r (mod n) = 7 · 16 (mod 13) = 8.

– Step 3: Computation of x̄ for x = 1:
x̄ := x · r (mod n) = 1 · 16 (mod 13) = 3.

– Step 4: The loop of ModExp:
ei Step 5 Step 6

1 MonPro(3, 3) = 3 MonPro(8, 3) = 8
0 MonPro(8, 8) = 4
1 MonPro(4, 4) = 1 MonPro(8, 1) = 7
0 MonPro(7, 7) = 12

– Step 5: Computation of MonPro(3, 3) = 3:
t := 3 · 3 = 9
m := 9 · 11 (mod 16) = 3
u := (9 + 3 · 13)/16 = 48/16 = 3

– Step 6: Computation of MonPro(8, 3) = 8:
t := 8 · 3 = 24
m := 24 · 11 (mod 16) = 8
u := (24 + 8 · 13)/16 = 128/16 = 8

– Step 5: Computation of MonPro(8, 8) = 4:
t := 8 · 8 = 64
m := 64 · 11 (mod 16) = 0
u := (64 + 0 · 13)/16 = 64/16 = 4

– . . .

– Step 7 of the ModExp routine: x = MonPro(12, 1) = 4
t := 12 · 1 = 12
m := 12 · 11 (mod 16) = 4
u := (12 + 4 · 13)/16 = 64/16 = 4

Thus, x = 4 is obtained as the result of the operation 710 (mod 13).

Efficient Montgomery Multiplication

The previous algorithm for Montgomery multiplication is not efficient on a gen-
eral purpose processor in its stated form, and so perhaps only has didactic value.
Since the Montgomery multiplication algorithm computes

MonPro(a, b) = abr−1 (mod n)



and r = 2k, it is possible to give a more efficient bit-level algorithm which
computes exactly the same value

MonPro(a, b) = ab2−k (mod n)

as follows:

———————————————————–
function MonPro(a, b) { n is odd and a, b, n < 2k }
———————————————————–
Step 1. u := 0
Step 2. for i = 0 to k − 1
Step 3. u := u + aib
Step 4. u := u + u0n
Step 5. u := u/2
Step 6. if u ≥ n then return u− n

else return u
———————————————————–

where u0 is the least significant bit of u and ai is the bit with index i in the
binary representation of a. The oddness of n guarantees that the division in
step (5) is exact. This algorithm avoids the computation of n′ since it proceeds
bit-by-bit: it needs only the least significant bit of n′, which is always 1 since n′

is odd because n is odd.

The equivalent word-level algorithm only needs the least significant word n′0
(w bits) of n′, which can also be easily computed since

2k · 2−k − n · n′ = 1

implies

−n0 · n′0 = 1 (mod 2w) .

Therefore, n′0 is equal to −n−10 (mod 2w) and it can be quickly computed by the
extended Euclidean algorithm or table look-up since it is only w bits (1 word)
long. For the words (digits) ai of a with index i and k = sw, the word-level
Montgomery algorithm is as follows:

———————————————————–
function MonPro(a, b) { n is odd and a, b, n < 2sw }
———————————————————–
Step 1. u := 0
Step 2. for i = 0 to s− 1
Step 3. u := u + aib
Step 4. u := u + (−n−10 ) · u0 · n
Step 5. u := u/2w

Step 6. if u ≥ n then return u− n
else return u

———————————————————–



This version of Montgomery multiplication is the algorithm of choice for sys-
tolic array modular multipliers [6] because, unlike classical modular multiplica-
tion, completion of the carry propagation required in Step 3 does not prevent the
start of Step 4, which needs u0 from Step 3. Such systolic arrays are extremely
useful for fast SSL/TLS servers.

Application to Finite Fields

Since the integers modulo p form the finite field GF (p), these algorithms are
directly applicable for performing multiplication in GF (p) by taking n = p.
Similar algorithms are also applicable for multiplication in GF (2k), which is
the finite field of polynomials with coefficients in GF (2) modulo an irreducible
polynomial of degree k [3].

Montgomery squaring (required for exponentiation) just uses MonPro with
the arguments a and b being the same. However, in fields of characteristic 2
this is rather inefficient: all the bit products aiaj for i 6= j cancel, leaving just
the terms a2i to deal with. Then it may be appropriate to implement a modular
operation ab2 for use in exponentiation.

Secure Montgomery Multiplication

As a result of the data-dependent conditional subtraction in the last step of
MonPro, embedded crypto-systems which make use of the above algorithms can
be subject to a timing attack which reveals the secret key [9]. In the context of
modular exponentiation, the final subtraction of each MonPro should then be
avoided [7]. With this step omitted, all I/O to/from MonPro simply becomes
bounded by 2n instead of n, but an extra loop iteration may be required on
account of the larger arguments [8].

Recommended Reading

[1] S. R. Dussé and B. S. Kaliski Jr., “A Cryptographic Library for the Motorola
DSP56000”, Advances in Cryptology – Eurocrypt ’90, I. B. Damg̊ard (ed),
Lecture Notes in Computer Science 473, pp. 230–244, Springer Verlag, 1991.
http://www.springerlink.com/content/07h8eyfk4jnafy5c/

[2] D. E. Knuth, The Art of Computer Programming, Volume 2, Semi-
numerical Algorithms, Addison-Wesley, Third edition, 1998. ISBN 0-201-
89684-2.
http://www.informit.com/title/0201896842

[3] Ç. K. Koç and T. Acar, “Montgomery multiplication in GF(2k)”, Designs,
Codes and Cryptography 14(1), pp. 57–69, April 1998.
http://www.springerlink.com/content/g25q57w02h21jv71/

[4] D. Laurichesse and L. Blain, “Optimized implementation of RSA cryptosys-
tem”, Computers & Security 10(3), pp. 263–267, May 1991.
http://dx.doi.org/10.1016/0167-4048(91)90042-C

http://www.springerlink.com/content/07h8eyfk4jnafy5c/
http://www.informit.com/title/0201896842
http://www.springerlink.com/content/g25q57w02h21jv71/
http://dx.doi.org/10.1016/0167-4048(91)90042-C


[5] P. L. Montgomery, “Modular Multiplication Without Trial Division”, Math-
ematics of Computation 44(170), pp. 519–521, April 1985.
http://www.jstor.org/pss/2007970

[6] C. D. Walter, “Systolic Modular Multiplication”, IEEE Transactions on
Computers 42(3), pp. 376–378, March 1993.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=210181

[7] C. D. Walter, “Montgomery Exponentiation Needs No Final Subtractions”,
Electronics Letters 35(21), pp. 1831–1832, October 1999.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=810000

[8] C. D. Walter, “Precise Bounds for Montgomery Modular Multiplication and
Some Potentially Insecure RSA Moduli”, Topics in Cryptology – CT-RSA
2002, B. Preneel (ed), Lecture Notes in Computer Science 2271, pp. 30–39,
Springer-Verlag, 2002.
http://www.springerlink.com/content/3p1qw48b1vu84gya/

[9] C. D. Walter and S. Thompson, “Distinguishing Exponent Digits by Observ-
ing Modular Subtractions”, Topics in Cryptology – CT-RSA 2001, D. Nac-
cache (ed), Lecture Notes in Computer Science 2020, pp. 192–207, Springer-
Verlag, 2001.
http://www.springerlink.com/content/8h6fn41pfj8uluuu/

http://www.jstor.org/pss/2007970
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=210181
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=810000
http://www.springerlink.com/content/3p1qw48b1vu84gya/
http://www.springerlink.com/content/8h6fn41pfj8uluuu/

