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Background
Several standard SW measures to counteract 

Side Channel Leakage from Exponentiation:

1. Blind the exponent by adding 

a random multiple of the group order.

2. Pick an algorithm where the pattern is 

independent of the secret exponent, e.g.
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independent of the secret exponent, e.g.

– Square-and-always-multiply

– Montgomery Powering Ladder

3. Use an algorithm where the pattern is randomised:

– Liardet-Smart – Ha-Moon 

– Oswald-Aigner – Mist

We look at the strength of (3) with Ha-Moon for examples.
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Problems for an Attacker
• There is always a lot of noise in measurements.

• Averaging to determine correct key bits is essential.

• For randomised exponentiation algorithms, 

Square & Multiply operations 
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Square & Multiply operations 

cannot be aligned directly with key bits.

• Incorrect bit deductions will always occur.

• The locations of likely errors must be identified 

for a computationally feasible algorithm.
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Example: Ha-Moon 

Recode the binary representation of key K from right to left:

• Add in the Carry of 0 or +1 to give new K.
• Choose digit 0 if K even.
• Randomly choose digit ±1 if K odd.
• Set Carry to be 1 for digit –1, otherwise 0, & shift K down. 

Exponentiation MK in ECC:
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Exponentiation MK in ECC:

• Repeatedly:

i) read next digit (from left to right) 

ii) perform point double 

iii) do point add if d =1 or point subtract if d = –1. 

Traces may have different lengths: the ith operation is 
associated with different bits in different traces.
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Ha-Moon (II)
Here are some recodings of 32n+13:

(D = double, A = add)

… 0   1   1   0   1 … D   D A   D A   D D   A

… 0   1   1   1 –1 …   D D   A D   A D   A D   A

… 1   0   0 –1 –1 … D   A D   D D   A D   A
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… 1   0   0 –1 –1 … D   A D   D D   A D   A

… 1   0 –1   0   1 … D   A D   D A   D D   A

… 1   0 –1   1 –1 …   D A   D D   A D   A D   A

… 1 –1   1   0   1 …   D A   D A   D A   D D   A

Aim: to recover K from leakage like the above.

The average operator yields almost no information: 

data from the top bit gets spread over several columns.
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History

Karlov & Wagner (CHES 2003)

Green, Noad & Smart (CHES 2005)

• Uses a Hidden Markov Model 

• Applies Viterbi’s algorithm to find the best fit key.

• Treats traces serially one by one
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• Convergence is unlikely with weak leakage – it can’t get started.

Walter (CHES 2008)

• Restructured to process traces in parallel, and bits serially

• Better convergence on weak leakage

• Lack of sound theoretical justification

Schindler (PKC 2005)

• Optimal decision strategy identifying most likely key

• Computationally infeasible in this context
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A Formal Approach (I)

Set of admissible keys:

• K ⊆ F2*

Set of all possible recoding sequences:

• R ⊆ D* where D = {admissible recoding digits}
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• R ⊆ D* where D = {admissible recoding digits}

Strategy (generic description):

• For each power trace powj (1≤j≤N) guess the individual 

recoding digits, yielding (disturbed, possibly invalid) 
noisy recoding sequences G1,…,GN ⊆ D*. 

• Select the key K* that fits G1,…,GN best.  
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A Formal Approach (II)

Interpretation of the noisy recoding sequences 

as a two-step random experiment:

• jth randomised recoding sequence: 
φ: K × Y → R , ϕ(K,yj) := Rj

where y is a random number. The target 
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where yj is a random number. The target 

device contains a Finite Automaton to do this.

• jth noisy recoding guess: 
ψ: R × Z → D*, ψ(R,zj) := Gj

where zj is a random number.  The result of 

the adversary’s inaccurate measurements.
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Main Theorem (I)
Theorem 1(ii) (a special case):

Assumptions:

• The unknown key K has been selected randomly 
according to some probability distribution η

• Given recoding sequence guesses G1,…,GN.
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• Given recoding sequence guesses G1,…,GN.

• The adversary can detect whenever an operation of 
the recoded sequence R is carried out and guesses 
the types of these operations independently. 

Notation: p(g|r) := 

Prob(guessed opn type is g given the true opn type is r)
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Main Theorem (II)

Theorem 1(ii) (special case, ctd’):

The optimal decision strategy selects a key K* ∈ K

that maximises the term
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Note: Theorem 1(i) in the paper treats the most general case.

assuming keys and recodings are distributed uniformly.
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Traces

The side channel gives a sequence of probabilities that the 
underlying operations correspond to particular digits.

• So we define a trace by   T = (ti){0 ≤ i < len(G)}

with ti = probability distribution on D 

(depending on the power trace)
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i D 

(depending on the power trace)

• Thm 2 (a corollary of Thm 1 for traces) enables us to 
replace p(gj|r) by ti and so avoid guessing recodings G.
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Example (I)
Application of Theorem 1(ii): 

Ha-Moon recoding with artificially small parameters:

• K = {0,1}n \ {(0,…,0)}, D = {‘S’,’M’, ‘M’}

Stochastic simulations
– Select K randomly

– Generate N recoding sequences R ,….,R

_
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– Generate N recoding sequences R1,….,RN

– Generate N noisy recoding sequences G1,….,GN 

by flipping recoding digits randomly

• More precisely:

p(‘M’ | ‘S’  ) = 0.2,   p(‘M’ | ‘S’ ) = 0.1

p(‘M’ | ‘M’ ) = 0.2,   p(‘S’ | ‘M’ ) =  0.1

p(‘M’ | ‘M’ ) = 0.2,   p(‘S’ | ‘M’ ) =  0.1

_
_

_

_
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Example (II)
Application of Theorem 1(ii): 

Ha-Moon recoding with artificially small parameters:

• 100 stochastic simulations per table row

The correct key was ranked
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Key 
length

# traces 1st 2nd 3rd -
9th

10th -
99th

100-
999

>1000

15 10 84 5 9 1 1 0

20 10 57 20 20 2 1 0
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Example (III)
Application of Theorem 1(ii): Ha-Moon recoding with 

artificially small parameters:

• These numerical results are remarkable since each 

recoding digit is correctly recognised despite 

probability of only 70% for individual operations!

However,
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However,

• unlike in many other side-channel attacks the optimal 

decision strategy cannot be applied to small portions 

of the key.

• Hence the application of Theorem 1 is infeasible 

for real-world key parameters.

• Starting from the optimal decision strategy a 

computationally feasible approximator is derived.                        
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The Metric (I)
Replace CHES08 distance between a trace t and recoding r

µ(t,r)  =  ∑i (1-pi) by “credibility”  µ(t,r)  =  ∏i pi

where pi is probability that the ith operation in t is the 

same as the ith operation for r. (Hamming dist. vs Proby.)

p p p
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A

D
Double/Add pattern of recoding

Trace probabilities of matching “A” or “D”

µ = p1 × p2 × p3 × p4 × ...

p1

p2

p3 p4

p5
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The Metric (II)
• Define the credibility of key choice K for a trace t by

µ(t,K) = ∑r { µ(t,r) | r is a recoding of K }

This selects the best match recoding of K.

1

1
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1

0

1

0

0

1 0 1 0 0 1

... max µ

Werner Schindler (BSI) & Colin Walter (RHUL)
17/24

Apply to trace prefix:

Build tree of depth λ,

Select leaf with max µ,

Pick bit at root of that branch



The Metric (II)
• Define the credibility of key choice K for a trace t by

µ(t,K) = ∑r { µ(t,r) | r is a recoding of K }

This selects the best match recoding of K.

1

1

Oops!  Nothing works!
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1

0

1

0

0

1 0 1 0 0 1

... max µ

Oops!  Nothing works!
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Apply to trace prefix:

Build tree of depth λ,

Select leaf with max µ,

Pick bit at root of that branch



The Metric (III)
• Modify the credibility definition, replacing “sum” by “max”:

µ(t,K) = max { µ(t,r) | r is a recoding of K }

to select the best match recoding of K.

1

1
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1

0

1

0

0

1 0 1 0 0 1

... max µ
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Apply to trace prefix:

Build tree of depth λ,

Select leaf with max µ,

Pick bit at root of that branch



The Metric (III)
• Define the credibility of key choice K for a trace t by

µ(t,K) = max { µ(t,r) | r is a recoding of K }

This selects the best match recoding of K.

1

1

This works!
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1

0

1

0

0

1 0 1 0 0 1

... max µ

This works!
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Apply to trace prefix:

Build tree of depth λ,

Select leaf with max µ,

Pick bit at root of that branch



The Metric (IV)
1. Define the credibility of a recoding r for trace t by

µ(t,r) = ∏i pi

where pi is probability that the ith operation in t

is the same as the ith operation for r. 

This should be large for correct interpretation of the trace.
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2. Define the credibility of a key choice K for trace t by

µ(t,K) = max { µ(t,r) | r is a recoding of K }

to select the best match recoding of K.

3. Define the credibility of a key K for trace set T by

µ(T,K)  =  ∑t∈∈∈∈T log(µ(t,K))  or  ∑t∈∈∈∈T µ(t,K) 

The best fit key maximises this.  (The latter is slightly better.)
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Properties

• Traces become aligned correctly (or almost correctly) 

with key bits/digits by selecting the best fit recoding.

• Summing the metric values for best recodings of each trace 

provides the averaging that reduces noise 

and enables the best key bit to be selected.
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and enables the best key bit to be selected.

• Locations for incorrect bits can be determined 

by looking at the difference in the credibility

of the 0- and 1- branches of a node in the tree.

A small difference means lack of certainty about the decision.

• Key bit positions can be ordered 

according to this probability of correctness.
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Some Figures

• Take the Ha-Moon 1 recoding.

• Assume a 70% chance of deciding correctly between

a square or multiplication from the side channel trace, 

but unable to distinguish the multiplications for –1 and +1.

• Take typical 192-bit ECC key & only 5 traces.
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• Take typical 192-bit ECC key & only 5 traces.

• On average there are only 20.7 bit errors

• In 1.3% of cases there are no errors in the 168 bits we are 

most certain of, leaving just 24 known bits to check. 

• It is computationally feasible to correct all errors in these. 
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Conclusion

• Traces from randomised exponentiation algorithms

can be aligned effectively to pool weak side channel 

leakage associated with individual key bits.

• Locations of possible bit errors are identified with ease, 

making it computationally feasible to correct them.
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making it computationally feasible to correct them.

• Theoretical results on the optimal decision strategy were 

applied to redesign a previous algorithm for this. 

• A more successful algorithm resulted, with sounder basis 

and better understanding of good parameters to choose.
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