Moduli for Testing | mplementat

Colin D.

ions of the RSA Cryptosystem

Walter

Computation Department, U.M.I.S.T.,
PO Box 88, Sackville Street, Manchester M60 1QD, U.K.
WWW. cO. um st . ac. uk

Abstract

Comprehensive testing of any implementation of the
RSA cryptosystem requires the use of a number of modul
It is shown how to generate a

with specific properties.
sufficient variety of these to enable testing which will

justify high confidence in the correctness of both the
design and the operation of hardware implementations.

The tests avoid the necessity of another implementatio

for comparison. Many of these moduli are also suitable

for testing software implementations. Furthermore, the
methods apply equally well to other similar modular
arithmetic based cryptosystems which use
exponentiation, such as Diffie-Helman key exchange.

Key Words: Computer arithmetic, cryptography, RSA
modulus, testing, correctness, verification,
implementation validation benchmark.

1 Introduction

The RSA cryptosystem [5] is widely used for key

exchange and increasingly for the long term storage o ; : e
ehegative residue modulM because this involves full

sensitive data. A large number of such systems hav

been designed and built in both software and hardware.

In a quest for greater efficiency, software
implementations can often be too complex to be fully
verified and hardware implementations can have
fabrication errors that need to be screened out. &fere

reasonably certain of their correctness. To our
knowledge there is currently no bench mark suite of test
i\/alues for the correctness of an RSA cryptosystem
although plans exist for a correctness validation program
in connection with ANSI X9.31-1998 [8]. The
discussion here aims to contribute some ideas in this
direction. Although most of the discussion is aimed at
hardware, many of the observations are directly
applicable also to software systems.

Encryption and decryption in RSA are achieved by
exponentiating the plain, respectively encrypted, Tetd
the power of one of two keysor d modulo a produciv
of two large primes:T°=T modM or T°=T modM
respectively. In order to recover the plain text fritra
obscured text, the two keyd and e must have the
property T®® = T mod M, which is guaranteed by
selecting them so thatde = 1 mod @(M) for the Euler
phi-function.

The modular exponentiation is achieved by a sequence
of modular multiplications which are themselves
performed through a repetition of modular additions.
Typically, efficient implementations of RSA do not
freduce intermediate calculations to yield a least non-

n

length carry propagation. Instead, the partial resuéts ar
stored in a redundant form bounded by a small multiple
of M. The multiple ofM to subtract (or add) in order to
keep the result within this range is decided by the first
few (the most significant) digits in the traditional

faults can arise during operation in both hardware and &l90rithm [1] and the last few (the least significant)

software systems for various reasons.
containing a variety of moduli is therefore required t
enable development, fabrication and in-service tesiing

(0]

A test suitedigits if Montgomery's method [4] is used [2,7].

To
check fully the correctness of such implementations, we
therefore need at least a set of moduli which inclutle al

correctness. We show how to build such a test suite.POSSible choices for the top few digits and, separaaély,

This suite aims to provide exhaustive testing of the main

components expected to form the implementation as wel
as exercising all other components sufficiently to be

78

possible choices for the bottom few digits. The majori
(of this paper is concerned with the generation of such
moduli.

C.D.Walter

Intermediate digits in any encryption/decryption will Under the very reasonable assumption that any errors
normally all be processed in the same way by a repeate will tend to propagate wildly, the implementation can
digit slice. So the correctness of this aspect of the then be tested by computii™ (modM) or T"™** (mod
implementation’s design might reasonably be verified by M) and comparing it with the expected result for a
looking at just one of the most significant or least sufficient variety of choices fdvi andT.
significant digit slices, and ensuring that all possible In the next section we derive properties which ensure
inputs are generated for it. The moduli required above moduli satisfy P3 and also guarantee a straightforward
for checking the multiple ofM for the modular construction to obtain P1 and P2. After performing a
subtraction should also cover this part of testing if construction which enables P1 to hold simultaneously at
sufficiently many end digits are considered. both ends, we look at how to make use of such moduli to

Fabrication or failure errors can occur at any pant i form an appropriate test suite, how errors might
hardware implementations. It may thus be useful to havepropagate and how probabilistic arguments might enable
moduli in which any short subsequence of internal digits fewer moduli to be used than one for every possible
can be specified so that specific digit slices can tede sequence of end digits. Some consideration is given to

Hardware generally re-aligns the modulus by a left or
right shift. So any digit slice can normally be tdste
through the most or least significant digits of the
modulus just by varying the total number of its digits.
We assume that this is the case so that only theligitd
and total length oM need to be specifiable. Indeed, by
varying the length oM we can check the correctness of

alternative constructions, the time complexities ingd|
and the implementation errors that may not be coveyed
such a test suite.

2 TheOrder Property mod M

Most of the results used in this section can be found in

such shifting, and the correctness of the associatedany elementary number theory text such as Chapter 1 of

number of addition cycles.
The third main aspect of implementation is the
correctness of the exponentiation algorithm. In arlat

section we will discuss the adequacy of testing this using

the exponents which occur naturally for the moduli
which are generated.

Clearly, if the implementation is just a modular
multiplier with external access to set any digits,
including carries, then a number of single multiplications
may suffice for full testing. Otherwise, when intdrna
carries are inaccessible, or only one infdutcan be
presented to the multiplier, it may be only possible to
carry out exponentiations in testing. Then, where&s it
possible to verify the exponentiation output against the

same computation under a different system, it may be . ML
fmodM holds if, and only if, T™*! = T modQ holds for

much easier and cheaper to make use of the obvious sel
test analogous t3°® = T mod M, namely the property
T*M*1 = T modM which is used to determine a suitable
from a givene.

With these three implementation aspects to consider,

we therefore initially seek modulM with the three
properties:

P1) Any short subsequence of end digits can be
specified (most or least significant digits) fdr of
any length;

P2) ¢(M) can be computed easily; and either

P3) T =1 modM holds for a large known set &f
or

P3)T™" = T modM holds for a large known set of
T.

79

[8]. The classes of residues prime k form a
multiplicative group of order ¢(M). Hence, by
Lagrange’s theorem (see any book on group theory),

T = 1 modM

whenevefT andM have no common factor. Thus P3 and
P3' will hold. Euclid’s algorithm can easily determine
whether a giveT satisfies the co-primality condition. In
the case oM being prime, this is just Fermat's Little
Theorem, which Euler generalised to

TM*1 = T modM

for prime M in order to cover alll, including the case
when T shares a factor witM. For generaM, by the
Chinese Remainder Theorem, the propa®™ = T
each maximal prime powd® dividing M. Moreover,
since@ is a multiplicative functiong(Q) dividesg(M) for
each suctQ. So T"™*"* =T modQ holds if T"¥™ =T
modQ for everyf. WhenM is square-free, as it is in the
RSA cryptosystem, each releva@tis a prime. Then, by
virtue of Fermat's Little Theorem, T*9™! = T mod Q
holds for everyf when T is prime to Q and also,
otherwise, because both sides are 0 modulo the @ime
Thus M being square-free guarantees that™** = T
modM for all T. This proves:

THEOREM1.

i) Property P3' holds for all if M is square-free;

ii) The congruences of P3 and P3' hold for angndM
which are relatively prime.

Proc. 14th IEEE Symposium on Computer Arithmetidglaide, 14-16 April, 1999, IEEE Press, 1999, pi8%8

Clearly the congruences of P3 and RPAad for at least
the (M) classes moduld! which are prime tdM and
this will be a high proportion of all classesMf is not
divisible by any small primes. Later we will want lie
able to choosé explicitly to be 1, 2 oM-1. AsM is
generally odd, they will satisfy this theorem.

3 A Construction for Moduli M

The key property from which the RSA cryptosystem
derives its strength is the difficulty of derivirmggM) from
M. In effect this requires the prime factorizationMf
Hence, if we need to know the value@M), it follows
from the multiplicative nature af that the best approach
to constructing modulM is via a product of factors for
which @ can be easily found.

Implementations of the arithmetic for RSA
encryption/ decryption rarely make use of any
factorization properties dfl. Hence we should not feel
bound to limit the choice dfl to a product of just two
large primes. The only exception is where the Chinese

Remainder Theorem is used, and we return to this point

below (Section 7). Thus there should be no need to
generate large primes in order to obtain suitdldle
products of small factorisable numbers will normally

suffice. However, we may need to exclude some primes

from dividing M. The most obvious case is the prime 2:
many implementations may assuMes odd because this
property holds for the moduli used in the RSA
cryptosystem.

Suppose numbers are represented using radikhis
will normally be a small power of 2. It corresponds to
the smallest group of bits processed uniformly in the
repeated arithmetic operation which performs a modular

additon. r = 2 or Z is typical for hardware
implementations and r = 2 for software
implementations which use the built-in machine

arithmetic. Suppose also thiet has a standard, non-
redundant representation, that is, all its digits arthé
range Or-1.

Let m be the short sequence of several digits which we
wish to have as themost significant digits of M.
Normally our construction foM will make m a factor of
M. So, ifm would thereby contribute undesirable factors
to M, it must be extended to have one or two more digits
which are then chosen to avoid such factors. Furtéer,

k be the number of digits i other than those which are
inm.

A tentative initial proposal foM is to take O for each
of the digits ofM below the requiredn. ThenM = mr*.
Although @(M) is easy to compute, it will have a high
power of 2 (assuming is a power of 2). Therefore

80

exponentiation byp(M) may not fully exercise the non-
squaring multiplication hardware, nor allow a sufficient
versatility in our later choice df which are prime tdv,
nor perhaps even be a legitimate choice for the
implementation. So a slightly different choice fdris
desirable.

Thus, alternatively, assunié has the form

M=mP where P = []_;(r" 1) andk= $_;n
Then; and the signs will be chosen so that the product
just exceedsr® and each factor has a known prime
decomposition. The examples section illustrates how the

factors of P may be chosen and even varied from the
given form in order to obtain specific factorization o

congruence properties. Thu8+1 may be replaced by a

set of values around', if convenient.

We must consider how to choose the signs sonthiat
indeed the initial sequence of most significant digity. B
choosing eachn; sufficiently large, each corresponding

factor ofP is close ta™ so thatP is close ta* andM is
close tom. The hope is tha® should just exceed so
that it has a leading digit of 1 followed by a sufficient
number of Os to guarantee that the top digitsMof
coincide with those ah.

With only + signs in the factors, the produetwill
exceed whilst with only minus sign® will be less than
r*. Thus the signs can be systematically changed one by
one from + to — in order to make approachr® more
closely, stopping before the product falls betéw The 2
choices give considerable scope for pickihgery close
to r* or giving P with other desirable properties. In
particular, enough minus signs might be chosen so that
changing the sign in a pre-determined factor chafges
from more than® to less tham*. Alternatively, so many
signs could be changed from + to — that no further sign
change keepB abover,

Supposa"+1 is one of the factors with a + sign, and
assumem has at mosh-1 digits. LetP’ denote the
product given by changing'+1 tor"-1. Assume that
this sign change mak&less than®. ThenP'<rk< P
and hence

mP = mP{r"+1)/("-1)

mi(r"+1)/(r"-1)

mr + 2mr/(r"-1)

mr¢ + miY(r"-1)

(m+1)r

because Z r andmr < (r" -1y <r™-1. But m+1)* -1
is the largest number with leading digit sequente
Consequently,

(/AN | AN |

N

THEOREM 2. TakeM = mP where P is the product
defined above. Supposes such that"+1 is a factor

of P and changing its sign would maReess tharr®.
If m has at most—1 digits then the leading digits of
M are those ofn.

In practice, the looseness of these inequalitieshfer t
factorr"+1 means that more often than motan haven
or even more digits, all of which will appear at thartt
of M. Indeed, to obtain more available digits for the
signs of as many factors as possible could be changed.

Numbers of the formr"+1 include the Fermat and
Mersenne primes (whenis 2). Their factorization has
been widely studied. Clearly by algebksl is a factor of
r"+1 when the signs are the sarhéjvidesn, andn/f is
odd if the shared sign is +. Also by algehbral is a
factor ofr™~1 whenf dividesn andn/f is even. Since no
exponent; is required to be very large, it is reasonable to
assume that all the factors & have known prime
decompositions, so thagM) can be calculated easily.
Furthermore, with care it may be possible to make

C.D.Walter

digits and than, = n for eachi. Then, viewingP as a
polynomial inr, the lowest non-constant powerroin P
has exponent at least So its lowesh digits except the
last are all 0 and the last digit is 1. This mekhs IP
will have | as a digit subsequence at its least significant
end.

One objective is to construé with m at the most
significant endand | at the least significant end. So
supposeM has the form

M =mrP + IP’

wheren is the number of digits ih P is constructed as
in the previous section so thatr"P providesm in the
right place for the most significant digits 1. Of
course, itan least significant digits are all 0P’ will be
constructed as in the previous paragraph to niBke
provide | for the least significant digits, but not quite
large enough to prevent the digit sequemcftom being
at the most significant end . We will also choos®

square free by noting that the highest common factor @andP’ to share most of their factors so tigghl) can be

betweenr"+1 andr"+1 is 1, 2,r%1 or 2¢%1) whereg is
the greatest common divisor mfandn’. (This is derived

easily found. This is done by starting with= P. If this
choice ofP’ is too big, factors are removed one by one

by repeatedly noting that the highest common factor Until the remaining produce’ is small enough not to
divides the sum or difference of such numbers, but not affect the topmost digit sequenee The lowest digit of

the power ofr which appears in that sum or difference.)
Thus an obvious choice for tineis to take them pairwise
coprime.

As examples below illustrate, the choice of factors

P’ as a polynomial i is thentl. So one more factor
(with a -) is removed if necessary to produce +1 as the
lowest digit. This resulting®’ can be further adjusted
with other factors if desired, providing the main

r"+1 can be varied. Each factor could offer a choice Properties are retained. In consequefce,pRandP’ =
between any two factorisable numbers where one is jus PR for some smalp andp’ whereR is the product of the

abover™ and the other just less than it. The closeness to

r in enough cases will make near enough to* to
obtainm in the leading digits oM. As before, from an
initial choice of the larger factor in each case féictors
are replaced by the smaller alternative, stopping vile
is still greater tham* or when changing a selected factor
would makeP less tharr®.

factors common toP and P’ which remain after
modifying P to P’. This yields

M = (mr"p+Ip)R
which is easily factored becauser"p+lp’ is relatively
small. So@M) can be evaluated. Moreover, the wide
choice for all the parameters enables the factdp+Ip’

to avoid any undesired divisibility properties. In

Any of these constructions enables P2 to be satisfied, particular, by constructiop’ is already prime to so that

as well as P1 where the specified digit subsequemce
appears initially. Moreover, the produetneed only be

computed once and then used for all choices of the

initial, most significant digitsn.

4 Least Significant Digitsfor M

M will share divisors wittr only as far as is necessary to
obtainl at the least significant end.

5 Examples

Take the radix to be= 4. If we seek a square-frbe
then it is reasonable to replace eathl by a pair of

Although setting the lowest digits to a given sequence numbers on either side of which are prime to all

| can be achieved simply by taking = I, there are

numbers earlier in the list. Thus, fo= 1,2,3,... the list

situations where a modulus of more than these few digitsof selected pairs might be chosen as { (3, 5), (13, 17),

is desired. In fact, the previous construction provides
m as the digit sequence at the least significant erd of

(61, 67), (253, 257), (1021, 1031), (4093, 4099), (16381,
16387), (65531, 65537), ... }. As well as (4093, 4099)

under suitable conditions. Assume that there are an eve we might also include the pair (4091, 4111). In this way

number of minus signs in the produet thatl hasn

81

Proc. 14th IEEE Symposium on Computer Arithmetidglaide, 14-16 April, 1999, IEEE Press, 1999, pi8%8

several factors can be close to the saingithout losing
the square-free property by repeating the same factor.
SupposeM must allow any two initial digits. These
yield a number in the range 4 to 15. To maintain the
square-free property the initial sequenoerequires a

given by 1én+l. Rounding up the rest d¢® and P
namely 1310.,.up to 2000.,, we observe that the rest of
P and P’ contribute at most 2(16+l) div 4° to the top 5
digits of M. This quantity is at most 1, and so could
affect the 5th digit, propagating a carry. Then, only for

third digit, chosen to make it square free whatever the = 33, might a carry (at most 1) propagate to the third top

choice of the first two digits. This is always possib
thus the square;¢= 10, at the head oM is given by
takingmas 17, = 104 or 19, = 103 and the square®
= 21, is given by takind as 37, = 211, 38, = 212 or

39 =213,

These choices fom may have common factors with
(3,5) or (13,17), which are therefore deleted from the list
of numbers used fdpP. Similarly, the choice afn should
avoid the 7 dividing 16387 and the 19 dividing 65531 if
either is used it.

SupposeM is to have 20 digits (in radix 4). Théh
must be chosen to be just ovel’ 4incem uses three
digits. The partition 17 = 8+5+4 leadsRdaving three
factors close to% 4° and 4 respectively. One acceptable
choice is

P = 65531,%x1021,,x257, = 100000322033230033

Here the 257 cannot be replaced by 253 without
makingP less than 4 since the other factors are already
the lower of the two choices from the list. Henbg,
Theorem 2 applied to 257 241, we know thaM = mP
will provide m for its three initial digits. Indeed, the five
Os after the initial 1 ifP ensure thaM could provide up
to five given initial digits. M is square-free providinm
is chosen as above and is not divisible by 19. Tg{ih
= @Mx19%x3449%x1021x25A @(m)x18x3448x1020%256.

Now consider adding the requirement Bhfor two
arbitrary final digitsl. The lowest digits oP’ must be
01, to achievel. So a different choice of factors is
required inP andP’ than above. For convenience, we
choose factors 1 mod 4 so that the same is true of the
product. To achieve this the list of factors to cledvem
might be modified to { ..., (16369, 16417), (65521,
65537), ... }. The form of isM = mr°P + IP’ whereP
must now be just above'4so thatmr’P has 20 digits.
Using 15 = 7+8 yields

P = 65521,% 16417, = 10000131033201Q1

which again allowsm to appear as the leading digit
sequence foM. TakingP’ =P gives

M = (16n+l) x 65521x16417
which produceg in its lowest two digits.

HowevePR’

may require further adjustment because it may now be

large enough for the tert®’ to affect the two leading
digits of M, which we want to be given bgn. By
considering only the first 5 digits dP and P’ and
ignoring any lower digits, the first 5 digits bf would be

82

digit. This position contains the third, chooseabletdigi
of m. It is therefore first selected to be at magsin2order

to absorb any carry and, secondarily, to make+l6
square-free if possible. So the top 2 digitenateally are
the top digits ofM, as required. Agaip(M) is easily
calculated as 65521 and 16417 are both prime.

6 TheTest Suite

In this section we wish to consider what pairs of
values M,T) would form an appropriate set for testing
the design, fabrication and run-time correctness of a
modular exponentiator, where th&ls have been
constructed as in the previous sections. Although testin
is phrased in terms of hardware, some aspects apply
equally to the testing of software implementations.

From the published literature it is quite clear that
implementations of modular exponentiation vary widely
in design. The suggestions here may therefore need
adapting or extending to particular applications. Section
1 outlined the major components most likely to be
present and in need of testing: a digit slice which is
repeated to form the modular addition cycle, a module
receiving end digits (either msd or Isd) which decides the
modulus multiple for subtraction, and the component for
controlling the squares and multiplies of the
exponentiation. In addition there are various counters
determining, for example, how many shifts are given to
inputs and outputs, and how many addition and
multiplication cycles are performed.

The requirement for speed generally means that most
operations are entirely locally defined (i.e. withimigit
slice or equivalent), so that different components might
be fully testable individually. In a well designed system
the main global operation is usually only a final modular
reduction and carry propagation step to obtain a non-
redundant output within the required range di[€1].

This section concentrates on the testing of those
components which will benefit from the above
construction for moduli although for completeness some
remarks are also made about other components.

The expected algorithm has the following format. For
any non trivial textT, if M has n bits, then the
computation off™** mod M will require around 115
multiplications and Q) addition cycles. This requires
two or more registers which hold partial products and

powers ofT as well as the register containiky Sincee

= 17 is a typical encryption key for RSA, after onlyesyw
small number of multiplication/ squaring cycles, the
initial text should have been transformed into a number

C.D.Walter

multiplication circuitry, a bit error is usually copied to
many or all digit slices so that a large number of output
bits are affected. It follows then that, as exporatittn
involves all bits in multiplications, almost all ersoafter

which can be assumed to be a randomly distributed bitthe input registers should have a catastrophic effect on

sequence. This fact enables one to compute probabilitie
for various situations with a high degree of accuracy.
The first component for consideration is the digit

the output. Thus the tests for regidiérin the previous
paragraph will normally reveal any such errors in the
digit slices.

slice, whose design can be tested by exhaustively Simulations of errors in a digit slice can easily be,r

checking all combinations of input digits again$branal
specification. However, such testing of individual dice
in a fabricated chip is generally impossible since inputs
such as carries are not wusually accessible
manipulating. The fabrication faults which need to be
checked for can exhibit widely differing characteristics
and need a range of inputs to detect.

Every input bit forM andT needs to be tested in both
positions in case a register bit is stuck in one vakiek
a value forM which is of maximal length. Then choose
two values fofT, one to be any value less thiinbut with
the same length abl and the other its complement.
Raising thesd's to the power 1 and checking the output
is still T should test th& input and result output registers
for stuck bits.

To test the registd, construct a small set of moduli
with known ¢ values such that for each bit position there
is a pair of moduli representing both values for the bit.
(This can be done just by taking as a product of
numbers with known prime decompositions, irel and
I=0.) Suppose the hardware behaves ad’ihad been
loaded instead df1. If M’ # M then the expected value
for @M) is very unlikely to match the valug€M’) needed
for the exponentiation test to work. Hence, using any
non-trivial T satisfying Theorem 1, evaluatingd™ mod
M or T"™** mod M will generally yield an unexpected
value if registeM or its I/O is not operating properly: to
obtain the expected value of 1 Brthe supplied value of
(M) would have to be a multiple of the order Bf
moduloM’, which is unlikely. (The likelihood of a false
negative is certainly at most the inverse of theraye
order of an element in the multiplicative group of residue
classes of a modulus the sizevbl)

In the addition circuitry which forms the main body of
the digit slice, a single error at any point tends teehan
effect equivalent to adding a bit to, or subtracting a bit
from, the output whenever some input condition is

satisfied. Due to carry propagation, several result bits

may then be affected. Over the large number of addition
required for a single modular multiplication, the
randomness of the bits ensures that this conditiothfor
error occurring is most likely to be satisfied manyesn
So most multiplications will be affected. In the

83

and thereby good approximations obtained for the
probability of an addition or multiplication cycle
displaying the error. These can reveal that someserro

for may not be caught with the above tests. In partictiar,

inclusion of table driven digit multiplications or carry
lookahead circuits can lead to some errors arising only
when particular bit combinations arise for the asgedi
digit of M. Because adjacent digit slices interact through
carries, it may be necessary to determine sequences of
several digits oM in order to generate every situation.
The number of such digits can be discovered by
investigating the particular implementation. Thus the
testing of some implementations will need a collectibn
moduli M which provides some or all digit sequences of a
given length at a particular position. Such moduli are
constructed as described in previous sections: the length
of M is varied over all allowable choices, and onenair

| is fixed while the other varies over all the necessa
sequences. This usually generates a sufficient variety o
moduli because the hardware will shiftof a particular
length to align the variablm or | with the digit slice to

be tested. Then, with the same argument as above, usin
one non-trivial T with each suchM should normally
expose any error. Of course, whishbecomes short so
does @M), so that more values af may need to be
considered in order to maintain any certainty thaeadt
some combinations which expose the error have arisen.

Note that the shifting oM implies that short moduli
will not use the digit slice containing the error, but
longer ones will. Thus outputs will normally suddenly
change from being correct to being incorrect as the
length ofM is increased past the point of the fault. This
enables the general position of the fault to be detecte
accurately.

Testing the component which decides which multiple
of the modulus to subtract (or add) is done in much the
same way as testing an end digit slice. The multiple
depends on the top (or bottom) several digits of Ith
and the current partial product. Thus for full testinyg,

r I, as appropriate, must vary over all values using
sufficiently many digits to ensure all possibilitiessari
The other of or m can be kept fixed. Again a single
will normally suffice for eachM since its end digits will

Proc. 14th IEEE Symposium on Computer Arithmetidglaide, 14-16 April, 1999, IEEE Press, 1999, pi8%8

vary randomly over the many calls to the component In summary the following pairs M,T) might

during each exponentiation. constitute a suitable test suite for most implememtatio
Testing the exponentiation algorithm is normally a of modular exponentiation:

case of looking at boundary values, such as the maximumjy For M of maximal length, choose< M with the same

and minimum possible exponents, as well as checking|ength asM and its complement’. Raise these to the

that all possible bit combinations arise to exerdisky power 1 and check the output equals the input.

any bit recoding process which controls the scheduling of ii) Take a small set of moduli with knowp values such

multiplications and squarings. ~ This algorithm is hat for each bit position there is a pair of moduli

normally independent of both the tékiand the modulus o resenting both values for the bit. For each modulus

M so that it would suffice to fix both of these. Ifig . chooseT prime toM with 1<T<M and check™™ modM
desired to us@(M) or @M)+1 as the exponent to obtain yields 1.

self—gheckable Out.pl'Jt, then it may be possible to ge@erat iy With the length ofm and| determined as above
a suitableM after fixing(M). We won't supply details, take a set which includes a moduMsof each possible
but the basis of a method would be using the prime jength constructed as in section 3 or 4 with each pessibl
decomposition of M) and the fact thatp is a value for m or I, according as the test for modulus
multiplicative function (i.e.@(xy) = @X)@(y) if x andy subtraction is performed at the most or least sigmifica
are coprime). For bit recoding of exponents, the testsend respectively.

already described above may suffice: the valueg(idf For each suciM chooseT prime toM with 1<T<M and
used should make this clear. The boundary cases of veryheckT™™ modM yields 1.

small exponents can be checked easily by taRirg 2, iv) For an odd moduluM of maximum length and = 2,
say, and observing what power ofis output for the check the output of modM is reallyT fori = 0,1,2,...
exponents 0, 1, 2 etc. At the opposite extreme, test casesuch thafl' <M.

for maximal exponents should be easy to generatey) For a full length odd with known @M) and eachr
although this seems to require an independent_ 2" o M check tha™* modM yieldsT.
implementation to calculate the expected outpohe of vi)For a maximum length odkl of known ¢ value and
the things that has been avoided in the other tedlar so textsT = 0. 1. 2 andi-1. check™*X modM returnsT

The variety of exponentiation algorithms makes it .

inappropriate to be more specific. Generally speaking, T we assume the moduli have already been generated,
tests can be developed independently of the choitg of ~the number of differenm and| is a constant and the
and so is not the concern here. maximumM for a specific implementation hawsdigits,

The final main component tackles carry propagation then all the above tests take an effort of at mast) O
and reduction to the range 0-1]. Input to the carry times the time for exponentiating with an exponenm of

propagation unit will be the required result in a digits.

redundant form. Thus T = 2' < M is the expected Finally, observe that these tests can be used to
output of a non-trivial exponentiation, there is likety t determine the maximum clock speed at which a specific

be propagation of carries up most of the register to chip will perform correctly because each part of the

positionh. For a full lengthV, T = 2" should be used to circuitry is tested under all possible input conditions.
computeT™™** mod M for as large arh as possible as .
well as for several of the smallest possise 7 RSA using the CRT

For the reduction to an output in the rangevifal]
there may be extra subtractions to perform and signs to
determine. The obvious test cases are evaludtiffy*
mod M with textsT close to the boundary points, shy
0, 1, 2 anaM-1 for which the wrong multiple d¥i may
be added. If the pre-normalisation bound on the output
from the exponentiator isM (c is often about) then, T modM = ((1*™**® modp)(q™* modp)q
before the subtraction, the output should have the form + (T1™%%Y mod g)(p™* modg)p) modM
iM+T for somei in [O,C—l]. So several different moduli The properties used here are the prima”ty and
M will need to be used to ensure each possilzieises coprimality of the factors. The first enablggp) to be
during the test. Thedd should be of maximum length computed ap-1 and the second guarantees the existence
to test fully the subtraction and sign determination. of g mod p, which can be found via the Euclidean

Some implementations of RSA (e.g. [6]) make use of
the Chinese Remainder Theorem (CRT) and the
factorization oM = pqas a product of two primes to split
the exponentiationT™ modM into two smaller, parallel,
shorter exponentiations modulo the factors:

84

C.D.Walter

algorithm. Similar computations yield the second term. this should enable the full functional verification af

So knowledge of the factorisation bf roughly halves
the length of all the numbers, including the exponents,
and so cuts the work required by a factor of 4.

We will assume that the modular reduction dofs
easy to check and that, by pickimg= 1, a sufficient
variety of values forT, p and q can be chosen to test

implementation at any stage in its life cycle.

AcknowledgementThe author would like to thank the
anonymous referees for several useful comments to
improve the initial version of this paper.

thoroughly all the other operations apart from the References

exponentiations.

If the hardware allowsp(p) or d mod ¢(p) to be [1]
computed independently ob, then testing the first
exponentiation need not requipeto be prime. So the
previous methods can be used. Tpusan be chosen to
have the forrmP for productP and leading digitsn, and 2]
any q prime top with known @(q) can be used to
complete the definition dfl. Otherwise, ifp needs to be 3
prime because(p) is always assumed equalgel, then
we can use = m'+1 as a seed for a prime number
generator which will keep incrementinguntil a prime [4]
is found. Then, unless is very small,p will have the
leading digit sequence which is what we wish for the
test suite. Interchanging the rolesmfand q will test]
hardware which performs the other of the two
exponentiations.

. [6]
8 Conclusion

The aim of this investigation has been to develop a
suite of moduliM and textsT to test thoroughly the large [7]
number hardware exponentiators used in the RSA
cryptosystem [5] and Diffie-Helman key exchange [9].

Normally, with randomly generated test cases, an 8]
equivalent amount of external calculation needs to be
performed to verify any results. Such calculations may
have to be done on much slower implementations or
using a system which may have the same design errors af]
the hardware being tested.

However, the tests here are self checking: the output
should always be the same as the input or equal to 1,
depending on the test chosen. So the large quantity of
computation necessary to guarantee that even the rarest
fault has been exhibited is performed without having to
be matched by equivalent external work.

The effort involved is mainly in the construction of
moduli via a small number of producks with known
factorization properties. This work can be done elytire
independently of any algorithms which may be
implemented in the hardware being tested.

The result is a suitably large set of moduli for testing
most implementations of the RSA cryptosystem. It
contains moduli of every necessary length with anyrgive
initial and terminal sequences of digits. In most cases

85

E. F. Brickell, “A Fast Modular Multiplication Algorithm
with Application to Two-Key Cryptography,” iAdvances
in Cryptology - CRYPTO ’'82Chaum et al., Eds., New
York, Plenum, 1983, pp. 51-60.

S. E. Eldridge, “A Faster Modular Multiplication
Algorithm”, Intern. J. Computer Mathvol. 40, 1991, pp.
63-68.

N. Koblitz, A Course in Number Theory and
Cryptography Graduate Texts in Mathematics, vbl4,
Springer-Verlag, 1987.

P. L. Montgomery, “Modular Multiplication without Trial
Division”, Math. Computation vol. 44,1985, pp. 519-
521.

R. L. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems,"Comm. ACM vol. 21, 1978, pp. 120-
126.

M. Shand, P. Bertin & J. Vuillemin, “Hardware
Speedups in Long Integer Multiplication” ACM
Computer Architecture Newsol. 19, March 1991, pp.
106-113.

C. D. Walter & S. E. Eldridge, “Hardware
Implementation of Montgomery's Modular Multiplication
Algorithm,” IEEE Trans. Comp.vol. 42, 1993, pp. 693-
699.

ANSI X9.31-1998,Digital Signatures Using Reversible
Public Key Cryptography for the Financial Services
Industry, American National Standards Institute, New
York, USA, 1998.

W. Diffie & M. E. Hellman, “New Directions in
Cryptography”, IEEE Trans Inform Theoryvol. 22,
1976, pp. 644-654.

