
ACTA ARITHMETICA
       XXXV (1979)

3 – Acta Arithmetica XXXV.1

Brauer’s class number relation
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C. D. WALTER (Dublin)

The main part of this paper proves R. Brauer’s class number relation
[1] in a shorter and more natural way. Consequently it is possible to
obtain Stark’s generalization [8] with no extra effort and to observe that
the theorem may be applied using only the units of the occurring fields.
Nehrkorn’s conjecture [6] that there exists a corresponding class group
isomorphism is also shown to be correct.

I should like to thank Professors Cassels and Fröhlich for many
helpful suggestions, and Trinity College, Cambridge, for financial
support.

1. Relation theorems. In this first section are derived some general
results to describe relations in torsion modules and in torsion-free
modules. All the modules concerned will be finitely generated.

Let 4 be a Dedekind domain contained in a field K of characteristic
zero and write 4`� = {α/β∈ K α∈ 4, β∈ 4−`} for its localisation at the
prime ideal ̀ . Then a 4-lattice M is a finitely generated torsion-free 4-
module. M will be identified with its natural embedding in KM = K⊗ 4M
and M` will be written for 4`⊗ 4M.

If M and N are two 4-lattices of KM = KN then the index [M : N]
may be defined through the local indices [M` : N`] for the free 4`-
modules M` and N`. Let δ` be the determinant of a matrix which
describes a basis of N` in terms of one for M`. Then [M` : N`] = 4`δ` is
well-defined and non-zero. By taking free 4-submodules of M and N
with the same rank as M and N it is clear that the δ` can be chosen equal
for almost all ̀  and that the ratio of two δ` is always in the field of
fractions k of 4. Hence the intersection over all primes ` which defines
the index, viz.

[M : N]   =  I
`

[M` : N`]

is the product of an ideal in 4 and an element of K. If M and N are
isomorphic then [M : N] = 4δ for the determinant δ∈ K of the
corresponding automorphism of KM. Thus for 4 = ¦ and K = C this
coincides with the usual definition of the index viewed as an ideal, and
when K = k the definition coincides with that of Fröhlich [2]. If K/k is a

number field extension with norm K
kN , 4k is the ring of integers of k,
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and Q, R are ideals of K then [Q:R] = )( 1RQ−K
kN .

Now let G be a finite group. A 4[G]-lattice is just a 4-lattice which
is a 4[G]-module.

THEOREM 1.1. Suppose { ei}  is a finite set of idempotents in k[G], χi

is the character of K[G]ei, and ∑aiχi = 0 for ai ∈  ¦. If M and N are
isomorphic 4[G]-lattices and KM = KN then

∏
i    

[Mi : Ni]
ai = 4

where Mi = M∩eiKM and Ni = N∩eiKN.

Proof. Any two K[G]-modules X and Y and a K[G]-automorphism α
of X induce an automorphism αY of HomK[G](Y, X), namely αY(f ) =
α  f. Clearly det αY = ∆(α, χ) depends only on α and the isomorphism
class of Y, which is determined by the character χ of Y.  If Y = Y1 ⊕  Y2

then 0 ≠ det αY = (det αYl)(det αY2), and so

∆(α, χ1+χ2) = ∆(α, χ1) ∆(α, χ2).

Thus χ õ ∆(α, χ) extends to a homomorphism from the additive group
of the virtual characters of G into the multiplicative group of K. In
particular,

(*) ∑ aiχi = 0    ⇒     ∏ ∆(α, χi)
ai = 1 .

Let e be an idempotent of K[G] and χ the character of Y = K[G]e.
Then there is a K-isomorphism β : HomK[G](Y, X) ú eX given by f õ
f(e) with inverse x õ (f: y õ yx). Define αe as the restriction of α to eX.
Then αe  β = β  αY from which ∆(α, χ) = det(αe). If α is chosen so
that αM = N then 4det(αe) = [Mi : Ni] and (*) proves the theorem.

Remark (J.-J. Payan). From the local definition of index, the theorem
still holds if the 4[G]-lattices M and N are just assumed to be in the
same genus, i.e. M` ≅  N` for all ̀ .

THEOREM 1.2. Let S = {ei} be a finite set of idempotents in k[G] and
4S the subring of k generated over 4 by |G|−1 and the coefficients of the

ei ∈  S.  Suppose χi is the character of k[G]ei and ∑aiχi = ∑biχi for some
non-negative integers ai and bi. If M is a finite group and a 4S[G]-
module then there is a 4S-module isomorphism

)(
1

)(
1

j
i

b
ji

j
i

a
ji MeMe ii

== ⊕⊕≅⊕⊕        for    M(j) ≅  M .

Proof. Again let M` = 4`⊗ 4M for each prime ̀ of 4. Then M` is a
4`[G]-module which is trivial for almost all ̀ and, in particular, for ̀
dividing the ideal 4|G|.  As M ≅  ⊕ `�M` we may assume without loss of
generality that M = M` for some prime ̀ not dividing 4|G|.
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Let Ni = 4`[G]ei. Then there is a 4`-isomorphism Hom4`[G](Ni, M)
ú eiM given by f õ f(ei). Two 4`[G]-lattices N and N’, of the same
character satisfy kN ≅  kN’ and therefore the work of Maranda ([5],
Theorem 4) shows that N ≅  N’. Combining these isomorphisms gives

)(
1

j
i

a
ji Mei
=⊕⊕ ≅   ),Hom( 1 MNi

a
ji
i
=⊕⊕

≅   ),Hom( 1 MNi
b
ji
i
=⊕⊕   ≅   )(

1
j

i
b
ji Mei
=⊕⊕ .

2. Nehrkorn’s theorem. Let K/k be a normal extension of algebraic
number fields with Galois group G. Suppose 1H

G is the character on G
induced from the unit character on a subgroup H, and for a module X on
which G acts let HX be the submodule fixed under H. Write H

~
 for the

sum of the elements in H. As usual let us define U to be the group of
units in K; W its subgroup of roots of unity; w(H) the order of HW; and
w2(H) the 2-component of w(H).

THEOREM 2.1. Let C(HK) be the part of the ideal class group of HK
formed from classes whose orders are prime to |G|. If

∑
H
  a(H) 1H

G    =   ∑
H
  b(H) 1H

G

where a(H) and b(H) are non-negative integers then there is a group
isomorphism

)()(
1 )( jHa

jH HKC=⊕⊕   ≅  )()(
1 )( jHb

jH HKC=⊕⊕     for C(HK)(j) ≅  C(HK).

Nehrkorn indicated in [6] that the above result holds but proved it
only for K/k abelian. It is immediate from Theorem 1.2 because of the
natural isomorphism C(HK) ≅  HC(K) and because the character 1H

G

corresponds to the idempotent H
~
/|H|.

LEMMA 2.2. Suppose M is a finite ¦[G]-module fixed by a normal

subgroup N over which G is cyclic.  If ∑a(H)1H
G = ∑b(H)1H

G where a(H)
and b(H) are non-negative integers then there is a trivial group
isomorphism

)()(
1

jHa
jH HM=⊕⊕   ≅  )()(

1
jHb

jH HM=⊕⊕        for   M(j) ≅  M.

Proof. From ∑1H
G(g)g = |H|−1∑gH

~
g−1 for both sums over g∈ G

we deduce that 1H
G(gN

~
) = |N|1

G
HN(g). Hence ∑ NG

NHNHa /
/1)(  =

∑
H

NG
NHNHb /

/1)( . By Brauer [1], Satz 2, or Rehm [7], Satz 1, this relation

is trivial for G/N cyclic. Thus the stated group isomorphism holds
trivially as M is a ¦[G/N]-module with HM = (HN/N)M.
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THEOREM 2.3 (Brauer [1], §5). If  ∑
 
a(H)1H

G = 0 then

∏H w(H)a(H)   =   ∏H w2(H)a(H) .

Suppose also that W2 is the group of 2-power roots of unity in K and
k(W2)/k is cyclic. Then

∏H w2(H)a(H )   =  1 .
Proof. Let Wp be the Sylow p-subgroup of W. Then, with the

possible exception of p = 2, k(Wp)/k is cyclic and the theorem is a direct
consequence of Lemma 2.2 on taking orders.

3. Brauer’s theorem. With the notation of §2 let us assume also that
k = «; n(H) = [G:H] is the degree of HK over k; r1(H) and r2(H) are the
numbers of real and non-real infinite valuations of HK; r(H) is the rank
of HU/HW; R(H) is the regulator and h(H) the class number of HK; and
δ(H) = 2 or 1 according as HK is totally complex or not. For some fixed
embedding of K into the complex numbers C let C be the Galois group
of the maximal real subfield of K. Thus C is generated by the auto-
morphism γ which induces complex conjugacy on K.

Let L and L* be ¦[G]-lattices which make

0 → ¦ → ¦[G]C
~
 → L → 0   and   0 → L* → ¦[G]C

~
 → ¦ → 0

exact sequences of left ¦[G]-modules. Here the maps from and to ¦ are

given by n õ nG
~
 and aC

~
 õ 1(a) respectively for the unit character 1.

Specifically, L and L* will be identified with ¦[G]C
~
/¦G

~
 and {a∈ ¦[G]C

~

| 1(a) = 0}. Denote by a bar the natural maps U → U/W and ¦[G] →

¦[G]/¦G
~
 and define maps λ : Ū → CL and λ* : Ū → CL* by

λ( ε̄  )  =  ∑g∈ G log||g−lε||ḡ ,

λ*( ε̄  )  =  ∑g∈ G log||g−lε||g   for  ε ∈  U

where || || is the absolute value of the chosen embedding of K into C.
These are both ¦[G]-homomorphisms and they are injections because
the ranks of λ(Ū ), λ*( Ū ), L, L*, and Ū are all equal by the next theorem
and the Dirichlet unit theorem.

THEOREM 3.1. We have

[HL : λH̄ Ū ]  =  ¦n(H)2−r2(H)R(H)
and

[HL* : λ*H̄ Ū ]  =  ¦δ(H)2−r2(H)R(H) .

Proof. Let HgC denote the sum of the distinct elements in {hgc |
h∈ H, c∈ C} and |HgC| the number of such elements. If possible choose
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g0 ∈  G such that Hg0C is a single coset of H
~
 and otherwise take any g0.

Then δ(H) = |Hg0C|/|H| and the elements HgC − |HgC||Hg0C|−1Hg0C
generate HL* over ¦.  For ε ∈  HU we have

λ*( ε̄  )  =  ∑ log||g−lε||HgC =  ∑ log||g−lε||(HgC − |HgC||Hg0C|−1Hg0C)

for sums over double coset representatives g ∈  H\G/C.  Hence

[HL*:λ* H̄ Ū ]  =  ¦δ(H)2−r2(H)R(H) .

Now [HL:λH̄ Ū ] = [HL:H̄ L̄*] [ HL*:λ* H̄ Ū ] because CL* → CL̄* is
an isomorphism. As a basis of HL is given by {H̄ ḡC̄ } for g ∈  H\G/C
with g∉ Hg0C so [HL:H̄ L̄ *̄  ] = ¦det(ag,g’) where ag,g’ = δg,g’+|HgC|/|Hg0C|
for the Kronecker delta δ. But ∑g ag,g’ = n(H)/δ(H) gives a constant row
by which |HgC|/|Hg0C| may be subtracted from each ag,g’.  Thus
[HL:H̄ L̄ *̄ ] = ¦n(H)/δ(H) as required.

LEMMA 3.2.   If  ∑ a(H)1H
G  = 0  then

0 = ∑a(H)  = ∑a(H)r1(H)  =  ∑a(H)r2(H) = ∑a(H)r(H) = ∑a(H)n(H) .

Proof. The sums are the evaluations of the relation at G
~
/|G|, γ,

(1 −γ)/2, C
~
/|C|−G

~
/|G|, and 1 respectively because

r1(H)  = |{g∈ G | gγg−1 ∈  H}|/|H| = 1H
G(γ) .

LEMMA 3.3. If  ∑ a(H)1H
G  = 0 and M, M* ⊂   Ū  are ¦[G]-isomorphic

to L, L* respectively then

∏R(H)−a(H)  =  ∏(n(H)[H̄ Ū : HM])a(H)  =  ∏(δ(H) [H̄ Ū :HM*] )a(H).

Proof. M and M* exist because λ and λ* are injective
homomorphisms so that L, L*, and Ū  all have the same character.

Let π = ∏(n(H)[H̄ Ū :HM]R(H))a(H). By Theorem 3.1

¦π  =  ∏(2r2(H)[λH̄ Ū :λHM] [HL:λH̄ Ū ])a(H) .

Hence Lemma 3.2 and Theorem 1.1 yield

¦π  =   ∏[HL:λHM]a(H)   =   ∏[HL:HλM]a(H)  =  ¦

from L ≅  λM. The other relation holds similarly.
Application of the functional equation to the residue of the zeta

function ζHK(s) at s = 1 gives the well-known result

lims→0 s
−r(H)ζHK(s) = −h(H)R(H)/w(H) ,

while the interpretation of ζHK(s) as the Artin L-series L(s, 1H
G, K/«)

shows that ∑a(H)1H
G  = 0 implies ∏ζHK(s)a(H) = 1. Equating values at

s = 0 and using Lemma 3.2 yields (Kuroda [3])
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( )∏
H

HaHwHRHh )()(/)()(  =  1.

Comparing this with the limit of  ∏ζHK(s)a(H) = 1 as s → 1 shows that
the corresponding product of discriminants is also 1. However,
combining it with Lemma 3.3 and Theorem 2.3 immediately provides
Brauer’s theorem ([1], Satz 4) :

THEOREM 3.4. If the submodules M and M* of U¯ are ¦[G]-

isomorphic to L and L* respectively and if  ∑a(H)1H
G  = 0  then

∏
H

HaHh )()(  =  ( )∏
H

HaHMUHHwHn )(
2 ]:)[()(

=  ( )∏
H

HaHMUHHwH )(
2 *]:)[()(δ .

Remark 3.5. Set S = {H | a(H) ≠ 0} and let US be the group generated
over ¦[G] by {HU | H ∈  S}. Then ŪS̄   may have smaller rank than Ū  so
that more units need to be calculated to obtain a module M. However,
suppose LS is a ¦[G]-module satisfying HL ⊂  LS ⊂  L for all H ∈  S and
M’ ⊂  Ū  is the corresponding submodule of M. As HM = HM’ for all H ∈
S we may replace M by M’ in the theorem and by Theorem 1.1 the
substitution of any module MS ⊂  Ū  which is ¦[G]-isomorphic to LS is
also valid. In particular, the minimal choice of LS ensures that MS ⊂  ŪS̄ .
A module MS*  can be defined analogously. It is therefore possible to
apply Theorem 3.4 when only the units of the occurring subfields are
known.

Remark 3.6. The full extent of Theorem 1.1 has not yet been ex-
ploited but we expect that when the value of

c(χ)  =  lims→0 s
−r(χ)L(s, χ, K/«)

has been calculated for r(χ) = χ(C
~
/|C| − G

~
/|G|) and any character χ then

the same techniques will produce a relation similar to Theorem 3.4 (see
Lichtenbaum [4]). An intermediate result can be obtained. If the
character ρ is irreducible over «, contains an absolutely irreducible
character of degree d(ρ), and a(H) ∈  « are chosen to satisfy ρ =

∑a(H)1H
G , then the methods above give

)(/12/)1( ]:[2

)(
ρ

ρρ
γρ λ

ρ
dML

c
−±   =  

)(

]:)[()(

)(
Ha

H HMUHHwHn

Hh∏








where Lρ = L ∩ eρCL and Mρ = M ∩ eρCM for the central idempotent eρ

of «[G] corresponding to ρ. In [8] Stark derives essentially the same
formula by generalizing the methods of Brauer.
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4. Change of ground field. It remains to interpret Brauer’s theorem
in terms of the Galois group > of a relative normal extension B� /b
within K/«. ?� will denote a subgroup of >, L the unit group of B, and
G( b ) and G(B�  ) the Galois groups of K/b�  and K/B� . Then C  =
G(B� )L is a ¦[> ]-module whose precise structure will be determined
below.

THEOREM 4.1. Suppose ∑a(?� )1?
>
  = 0.  If the submodule D of L̄   is

¦[> ]-isomorphic to C  then

∏ )()( ?? ah  = ( ) )(
2 ]:)[()( ??DL??? awn∏

for n(?� ) = [?B�: b�].

Proof. Put H = G(B� )?�. Then C[> ]?~
 and C[G( b�)]H~ are C[> ]-

isomorphic under ?~
 ↔ H

~
.  So they have the same characters, i.e.

1?
>
  ( ^� ) = 1H

G( b )(g) if ^� ∈  > is the image of g ∈  G( b� ).  Hence the

character relation ∑a( H/G(B� )�)1H
G  = 0 holds and Theorem 3.4 may be

applied. Evidently H̄ Ū  = ?̄  L̄   and HM = ?D�’ for H = G(B� )?� and
D� ’ = G(B�)M. When these have been substituted Theorem 1.1 allows
any D� ≅  C� to be chosen because  D�’ ≅  C�, and Lemma 3.2 permits the
new value of n(?��).

The generators HgC of H¦[G]C
~
 may be identified with the

normalised infinite valuations

vHgC(x)  =  ||g−1x|| f          (x ∈  HK)

of HK where f = |HgC|/|H| and || || is the absolute value for the chosen
embedding of K into C.  So the subgroup

: i  =  (giCgi
−1  ∩  G( b�)) / G( B��)

of > which fixes G( B��)giC is the decomposition group in B�/b  of the
corresponding infinite prime. Thus the double coset decomposition

G
~
  =  ∑ r

i 1= G( b�)giC

determines up to conjugacy a decomposition group : i for each infinite

prime of  b.
The exact sequence defining L restricts to

0 → ¦ → G(B��)¦[G]C
~
 → G(B��)L → 0 .

This is also exact as fixing by a subgroup is a left exact functor and any
pre-image of an element in G(B� )L is necessarily fixed by G(B� ).

However, G(B� )¦[G]C
~
 ≅  ⊕ r

i 1= ¦[> ]:~
i under the ¦[> ]-map
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∑xiG(B�)giC  õ ⊕ xi:
~
i   for xi ∈  ¦[> ].  Hence

LEMMA 4.2. If {: i}  is the set of decomposition groups for one prime

divisor in B� of each of the r infinite primes in  b� then C� satisfies the
exact sequence

0  →  ¦  →  ⊕ r
i 1= ¦[> ]:~

i   →  C�  → 0

where n ∈  ¦ õ n ⊕ i >
~
.
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