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Abstract 

 The use of a redundant system allows many arithmetic operations to process digits 

sequentially most significant digit first.  Final conversion back to a standard binary 

representation can require time to propagate any carries.  We analyse and report on the 

delays encountered when this is done by an on-line algorithm, giving a good upper bound 

on the expected delay.  The delay is approximately logrk for the kth digit in a 

representation with base r. 
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1. Introduction. 

 High speed arithmetic employs several standard techniques to avoid the delay caused 

by carries which may propagate the whole length of a number.  These include the use of a 

redundant number system to enable digit operations to be performed in parallel, and 

reorganising algorithms to operate digit serially from the least significant digit.  However, 

for many applications, such as image compression and real time systems [1], on-line 

methods [2] are preferable.  Such algorithms consume and generate data digit serially but 

most significant digit first. 

 On-line output is generally in redundant form since carries cannot be propagated up.  

However, on-line input may have to be in a standard non-redundant form.  For example, if 

redundancy is given by including negative digits, then exponentiating by an on-line 

exponent which contains negative bits in a ring which contains no inverse (or for which 

the inverse is expensive to compute) is a problem.  Another example might be supplying 

input to pre-existing components which expected non-redundant input.  Hence there is a 

need for an on-line converter from redundant to standard representations.  On-line 

algorithms tend to produce and consume data at a constant speed, say one digit per clock 

cycle.  Such a converter cannot do this without occasional delays as it awaits sufficient 

information to propagate the carries.  Generally, such delays may accumulate because 

subsequent on-line processes cannot catch up; they can only process a single digit at once 

or wait if an input digit is not available.  This article looks at the average delay expected, 

as this may be of interest in real time systems. 

 Ercegovac and Lang [4] have already shown how to convert back to non-redundant 

form in such cases.  Although their method converts as fast as possible, they do not 

attempt to measure the average expected delay.  The complexity of the delay turns out to 

be logarithmic, and thus coincides with the complexity of carry propagation and of 

performing a parallel digit conversion (see [5]).  The results are applicable also when on-

line output is to be rounded (see [3]). 
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2.  Examples. 

 We begin with some illustrative decimal examples which use the usual digits together 

with a digit X of value 10 and, for the first, also a digit 1  of value –1.   The redundant 

numbers 0.1999...9X... and 0.2000...0 1 ... may convert to 0.2000... and 0.1999... 

respectively.  In both cases we can allow for any eventuality by maintaining a lower 

bound L = 0.1999... and an upper bound U = 0.2000... which are in standard non-

redundant form and are updated as each input digit in received.  Eventually an input digit 

will determine which of these to choose.  The common prefix of such bounds will belong 

to the standard representation of the input and so can be sent to output.  If, as here, the 

largest carry up from the unread part of the redundant input is ±1, then only sequences of 

9s or 0s in the converted output could lead to lead to carry propagation affecting more 

than one digit.. 

 With the same notation, consider the input 0.29993954...  Only when the ‘3’ is 

received is it clear that the ‘2’ is correct and can be output.  A delay of three cycles builds 

up as a result of the three ‘9’s.  This holds up the output of all subsequent digits.  

However, the next ‘9’ does not further delay the output of its preceding ‘3’ because, by 

the time the   ‘3’ can be output, the ‘5’ has already been read.  Thus the delay of a given 

output digit depends not on the total number of preceding digits ‘9’, but on the length of 

the maximal substring of consecutive ‘9’s which precede it. 

 Clearly the relative distribution of digits affects the average delay.  If only digits ‘0’ to 

‘9’ occur, then the number is already in standard form and the delay is clearly 0.  If the 

digit set includes X but not 1 , then a process may require to generate an ambiguous 

sequence of ‘9’s which can be upgraded by ‘X’ rather than a sequence of ‘0’s which it 

could not decrease.  Thus ‘9’s would be more frequent, increasing the average delay.   

Complexity also arises because consecutive digits are not usually independent.  This is 

readily verified for a carry save adder in base 10, if the carry and save are added to give a 

digit between 0 and X: a digit position with output ‘9’ is unlikely to generate a non-zero 

carry, so that it is unlikely to be followed by an X. 
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3.  Determination of the Output Digits. 

 We will consider converting the redundant representation A = �i�1air
�i

 of a fractional 

real number into a standard, non-redundant representation A' = �i�1a'ir
�i

.  Here r is the 

radix of the representations.  We assume the redundant digits ai are in the range 0..2(r−1) 

whereas those of A' are to be in the standard range 0..r−1.  In the representation A we 

assume consecutive digits occur independently and r−1 occurs with probability 1/r.  

(Since no other digit has the same residue mod r as r–1, it is reasonable to assume it 

occurs with probability 1/r.)  We will use B[k] to denote a number representation of k 

digits, i.e. one of the form �1≤i≤kbir
�i

.  Then B[k] = C[k] will mean the values of B[k] and C[k] 

are equal, whereas B[k] ≡ C[k] will mean their representations are identical. 

 The “on-the-fly” conversion method in [4] defines two non-redundant k-digit numbers 

L[k] and U[k] such that either  L[k] ≡ A'[k] or U[k] ≡ A'[k].   Thus, any common prefix     

of L[k] and U[k] is part of the output we desire.  The properties A[k] ≤ A < A[k]+2r�
k
,  

A'[k] ≤ A' < A' [k]+r�
k
, A = A' and  A'[k] = A[k]+nr�

k
 for some integer n, entail that n = 0 or 

1.  Hence L[k] = A[k] and U[k] = A[k]+r�
k
.  These values can be constructed 

incrementally.  By equating values, if ak+1 < r then L[k+1] ≡ L[k]+ak+1r
�k�1

, whereas if     

ak+1 ≥ r then L[k+1] ≡ U[k]+(ak+1–r)r�
k�1

.  Similarly, U[k+1] ≡ L[k]+(ak+1+1)r�
k�1

 if         

ak+1 < r–1 whereas U[k+1] ≡ U[k]+(ak+1+1–r)r�
k�1

 if ak+1 ≥ r–1.  Thus  L[k+1] and U[k+1] 

agree on their first k digits when ak+1 ≠ r–1, as we expected from the decimal examples 

above.  (We have actually chosen the largest range of redundant digits for which this is 

the case.)   So, for ak+1 ≠  r–1 the delay to outputting the kth digit is the same as for the k–

1th digit.  Moreover,  L[k+t] and U[k+t] will agree on only their first k digits precisely 

when  ak+1 ≠  r–1 but ak+i =  r–1 for 1 < i ≤ t.  This happens with probability (1−r�
1
)r

1�t
.  

Then, if ak+t+1 ≠ r–1, the next t digits are all determined together. 
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4.   The Average Delay −−−− An Upper Bound.  

 When output digits are determined they are added to an output buffer, from which any 

available digits are output at the rate of one per cycle, the same rate as digits are input.  If 

the kth output digit is determined by the k+1st input digit and the output buffer is empty, 

then it will be output immediately, i.e. one cycle after the corresponding input digit.  This 

is the minimal conversion time for a digit, and so its delay will be defined to be 0.  So, if 

after queueing in the output buffer the kth digit is output on the (k+1+d)th cycle, it is 

defined to have a delay of d.  We wish to determine the average value of d as a function of 

k. 

 An initial, crude upper bound on the average delay is easy to obtain. On average, an 

input of k digits will contain r�
1
k digits r−1, each of which contributes up to 1 to the 

delay.  However, there may be a further delay if the k+1st digit is r−1.  The average 

number of consecutive digits r−1 starting at the k+1st is ir i

i

−

=

∞

∑ 0
(1−r

-–1
) = (r−1)

-–1
.  

(The sum is over sequences of length i terminated by a digit other than r−1.)  So, overall, 

the average delay is at most r�
1
k + (r−1)

-–1
.  Numerical work soon shows that this is a 

rather poor estimate.  

5.   An Improved Upper Bound. 

 Each occurrence of an input digit r−1 leads to an extra delay of up to 1 time unit.  The 

delay may actually be less, as noted in one of the previous examples.  The delay is, in fact, 

determined by the maximum string of input digits r−1 from the beginning up to the next 

one different from r−1.  To see this, it suffices to establish that if the input digit is not r−1 

then the output buffer contains d digits where d is the maximum length of any input 

sequence of digits r−1.  The output buffer length does not change if another digit different 

from r−1 is received.  Otherwise, if d' consecutive digits r−1 occur and d' ≤ d then the 

buffer temporarily decreases in size by d', but is eventually restored to size d.  However, if 

a new maximal sequence of d' consecutive digits r−1 occurs, so d' > d, then the buffer 

empties and is restored with d' digits, all of which then experience a delay of d'.  
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 The main problem with the estimate of the average delay in the last section is that 

there are probably many submaximal sequences of consecutive digits r−1 for each of 

which 1 was unnecessarily added to the estimate.  One way to avoid most of this 

unwanted contribution is to force a minimum delay of t, say, on all output.  This makes an 

allowance once for all the subsequences of length t or less, rather than for every 

occurrence.  In effect the buffer starts with t elements. 

 So, suppose there is a built-in delay of t between input and output.  The kth digit will 

be processed at or before a time which is k+t plus the delay caused by digits r−1 lying in 

subsequences of length greater than t.  A subsequence of length l > t will add at most l−t 

to the delay.  So a single digit in such a sequence will add on average at most (l−t)l�
1
 to 

the delay.  The formula for the average delay therefore needs to be re-expressed with a 

summation over sequences of length l for each digit position. 

 Consider the probability that the κth input digit lies in a sequence of l consecutive     

(r−1)s, of which exactly p occur at or before position κ.  We assume p ≤ κ and p ≤ l since 

otherwise the parameters are impossible.  For l = 0 and p = 0 the probability is just 1−r�
1
.  

For l > 0 and fixed p < κ the probability is (1−r�
1
)
2
r�

l
 since both ends of the subsequence 

must have a digit other than r−1.  Otherwise, i.e. for l > 0 and p = κ, all the first l digits 

are r−1, but the l+1st is not, so the probability is (1−r�
1
)r�

l
.  Summing over the possible 

values of p, namely 0 ≤ p ≤ min{κ,l}, we find that the probability of the κth digit lying in 

a string of exactly l consecutive digits r−1 is  1−r�
1
 for l = 0,  l(1−r�

1
)
2
r�

l
 for 0 < l < κ and            

(κ−1)(1−r�
1
)
2
r�

l
 + (1−r�

1
)r�

l
  for κ ≤ l.  As a check, summing these over all l ≥ 0 gives 

probability 1.  

 The contribution to the average delay given by the first k digits is the sum over 

appropriate κ and l of the product of the probability of the case (κ,l) and the bound on the 

delay which it might cause.  This yields: 

( )( )( )( ) ( ) ( )( ) ( )
max{ , }

max{ , }
l t r r r r rl

l t

t l t
l

l

l t

k
− − + − − + −

− −

= +

− − − − −

= +

∞

= ∑ ∑∑ 1 1 1 11 2

1

1 1 2 1

11

κ

κκ
κ  
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For the contribution of the k+1st and subsequent digits, we sum over the lengths l of the 

subsequences of digits r–1 to which the k+1st digit might belong and the possible sizes p 

of the part which starts at position k+1.  The delay to add for each case is probability of 

the case times the length of the sequence starting there times the delay per sequence digit.  

This yields: 

  p l t l r r
p

l l

l t

k

=

− − −

= + ∑∑ − −
0

1 1 2

1
1( ) ( )        +  

    ( )( )( ) ( ) ( )l k r p r l t l r
p l k

l l

l k
− − + − −

− −

= − +

− −

= +

∞

∑∑ 1 11 1 2

1

1

1
 

 When k = t = 0 the sum of the two expressions is easily (r−1)
−1

. Using induction we 

obtain {kr
−1

 +
 
(r−1)

−1
}r

−t
 for the sum when k = t.  Then, with this as the base case, 

induction over k will establish the sum as {kr
−1

 +
 
(r−1)

−1
}r

−t
 whenever 0 ≤ t ≤ k.  So, 

LEMMA Under the above hypotheses and a built-in delay of t < k, the average 

delay for the kth digit is less than    t + { kr
−1

  +
 
(r−1)

−1
 }r

−t 
. 

Observe that for t = 0 this coincides with our initial, rough bound. Taking t = logrk now 

gives our main conclusion, namely:  

THEOREM  With the above assumptions about digit probabilities and 

independence for the input, an on-line converter from redundant to standard base 

r representations produces an average delay of at most  logrk + r
−1

 + (r−1)
−1

k
−1

  

between inputting and outputting the kth digits.  

 A marginally better choice of t can be obtained for known values of r and k by putting       

t = logrk − s in the lemma, and differentiating the formula for the delay with respect to s in 

order to obtain the minimum.  The theorem, with s = 0, provides a reasonable choice for 

small k, whilst taking s = 1 works well for medium sized k (as in Table 1).  Letting k tend 

to infinity, the best choice is  s = 1 + logrlogre ,  and it yields the following corollary: 

COROLLARY.    With the above notation and hypotheses, for sufficiently large k 

the average delay in establishing the kth non-redundant digit is less than logrk. 
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6.  Computational Results. 

 Despite the apparently reckless counting above of extra delays for digits which were 

not in a maximal subsequence, computational results suggest that the above formulae are 

fairly accurate.  Indeed, from Table 1 the difference between the actual delays in adjacent 

columns tends to 1, as the formula suggests.  So the most significant term does indeed 

seem to be logrk with coefficient 1, and the relative error between the true delay and our 

bound slowly decreases as k increases.  

 

k 2
0
 2

1
 2

2
 2

3
 2

4
 2

5
 2

6
 2

7
 2

8
 2

9
 2

10
 

Actual 

delay 
1.500    1.875    2.383    3.014    3.759    4.592    5.485    6.420    7.382 8.360 9.348 

Lemma  

bound 
1.500    2.000    2.500    3.250    4.125    5.062    6.031 7.015 8.008 9.004 10.002 

Table 1.   Delays for r = 2. 

 Exact computation of the true delay is not trivial because of the large number of 

numbers involved.  The most efficient manner found was the following.  For each �, the 

number of representations of length � with a maximal subsequence of digits r−1 with 

length l and an end subsequence of such digits with length l' were tabulated.  The results 

were used iteratively to compute the figures for �+1 from those of �, with a very careful 

tabulation order to minimise disk accesses and make the accesses sequential.  The table 

was computed in this way and similar results were also obtained for some small r > 2. 

7.  Conclusion. 

 The aim of this paper has been to prove the theorem of section 5, which shows that in 

converting numbers from a redundant representation to a non-redundant one in a most 

significant digit first order, the average delay due to waiting for carries to propagate is 

bounded essentially by the logarithm of its length.  This result depends on several realistic 

suppositions about the way the digits are distributed.  Computational results indicate that 

the bound is close to being the least upper bound. 
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