
Data Integrity in Hardware for Modular
Arithmetic

Colin D. Walter

Computation Department, UMIST
PO Box 88, Sackville Street, Manchester M60 1QD, UK

www.co.umist.ac.uk

Abstract. An increasing mass market for cryptographic products leads
to greater pressure on companies to fabricate chips which will recover
from, and correct, sporadic errors resulting from design and fabrication
faults, inadequate testing, smaller technology, ionising radiation, random
noise, and so on. Where encryption is subject to such errors, large quan-
tities of data can become totally corrupted or inaccessible unless fault
detection is an integral part of the hardware arithmetic. Here realisti-
cally cheap methods are examined for checking the correctness of the
arithmetic computations which are the basis of the RSA cryptosystem
and Diffie-Hellman key exchange. As in ordinary integer multiplication,
a modular residue checker function is used to detect errors and trigger
re-computation when necessary. The mechanism will also detect most
permanent faults. Some suggestions are made on how to correct infre-
quent errors without using additional hardware.

Key Words: Computer arithmetic, cryptography, RSA, modular multiplication,
modular exponentiation, soft errors, error correction, fault tolerance, checker
circuit, testing, correctness, data integrity, Montgomery multiplication.

1 Introduction

Mass production of embedded cryptographic systems is fast approaching for
applications ranging from electronic purses and e-commerce authentication to
secure mobile video telephony. Chip technology for these has advanced to the
point where random effects, such as noise and ionising radiation, are already
causing so many errors that the aerospace industry regularly performs com-
putations three times and takes a majority decision [1]. Indeed, some attacks
on cryptosystems involve the introduction of such transient hardware errors to
perform differential fault analysis [3]. But faults can occur at any point in the
process from design to fabrication as well as during operation. Consequently,
as with other products, incorporation of fault tolerance methods should mean
increased yield from chip fabrication, less expensive testing and higher customer
satisfaction during operation. The disaster with the Pentium division algorithm
[2] illustrates the company critical issues of releasing faulty products even when



2 LNCS Vol. 1965 Springer Verlag, 2000, pp. 204-215

errors are extremely rare. So, in the light of such experience, it has been sug-
gested that checking should become an integral part of all arithmetic operations
beyond those with the simplest implementations [2].

Standard error correction coding techniques are not generally applicable to
arithmetic operations. So incorrect functioning of the ALU cannot usually be
detected this way. Moreover, whilst all 32-bit operations might be fully tested
before each unit is shipped, this is not realistic for the larger co-processors which
might soon be employed in a typical RSA implementation. Nevertheless, excel-
lent test suites can still be built for RSA hardware [10]. Duplication and tripli-
cation of hardware for non-safety critical fault recognition is too expensive, and
in any case does not solve design faults.

Whilst any error will almost certainly generate random junk which is imme-
diately detected on decryption, it is not always easy to signal this and request
the recomputation, especially when this then invokes two way communication
between the parties involved. Indeed, storing incorrectly encrypted data or ses-
sion keys on disk or smartcard memory may not be detected for some time. In
the case of message signing, the inverse process of signature verification is often
a relatively cheap way of checking the computation [8], §3. However, with RSA
encryption [9], checking by decrypting (a large exponent) requires knowledge
of a secret key, which may not be available, and is also much more expensive
than the encryption (a small exponent). So this form of verification is generally
impossible or uneconomic. Furthermore, it is well understood that the conse-
quent re-encryption of the same data after a glitch can leak secret data from an
embedded system [3]. Thus, correctness should be verified before any output is
released and an identical recomputation avoided in making any correction.

The aim of this paper is to consider much more cost effective alternatives
than decrypting everything or duplicating hardware. We first show how to apply
a cheap residue check which, with high probability, will find any intermittent
or random arithmetic fault. We will argue that it will also detect other errors
caused by permanent physical and logical flaws which have passed unnoticed
during design, production and testing or which develop during use. We then
describe how to correct such errors by modifying arguments in such a way as to
avoid performing the same flawed calculation again. The efficacy of the check is
discussed as well as the checking frequency. We conclude with an assessment of
the time and area costs of the method.

2 Notation

The RSA algorithm [9] uses a public modulus M which is the product of two
large primes, typically of around 29 bits each. For keys d and e, encryption of
plain text T in the range [0,M−1] and decryption of cipher text C are defined
by C = T e modM and T = Cd modM respectively. One of the keys d, e
is kept secret, and the two satisfy the property de ≡ 1 modφ(M) where φ is
Euler’s totient function. The strength of the system depends on the difficulty of
factorising M , which is required in order to deduce one key from the other.



C. D. Walter, Data Integrity for Modular Arithmetic 3

Hardware implementations of the cryptosystem often use a high radix or
base for representing numbers. Typically this is a power of 2 such as 216 or 232

corresponding to the size of multiplier available. Let r denote this radix and n
the number of base r digits in the modulus M . We will not encounter numbers
larger than rM , so that a number A always has a representation

A =

n∑
i=0

air
i

(The extra top digit may be required because occasionally numbers greater than
M are encountered, in particular, just prior to modular reductions.) Exponentia-
tion is performed by repeated modular multiplication, which in turn is performed
by repeated modular addition. Thus the key operation is calculating products
P = (A×B) modM using a close relative of the following standard algorithm:

Classical Modular Multiplication Algorithm:

P <- 0 ;

For i <- n downto 0 do

Begin

P <- rP + aiB ;

qi <- P div M ;

P <- P - qiM ;

End

{ Post-condition: P = (A×B) mod M }

The initially generated sequence of digits qj (j = n, n−1, ..., i) can be formed
into an integer Qi =

∑n
j=i qjr

j−i and the initially consumed digits of A form
a similarly defined integer Ai. Then it is easy to verify by induction that P =
Ai×B−Qi×M and 0 ≤ P < M are invariants which hold at the end of each iter-
ation of the loop. Hence the given post-condition holds when the loop terminates
and, for Q = Q0,

P = A×B −Q×M (1)

Some dedicated hardware implementations of RSA with small radix r (typ-
ically r = 2 or 4) provide combinational logic circuitry for the equivalent of a
complete modular addition cycle

P ← rP + aiB − qiM (2)

Then, for speed, only an approximate value for qi is used and this is calculated
in advance from P . It is sufficiently accurate to keep P less than a small multiple
of M , often 2M or rM . So a small, final modular subtraction may be necessary
to obtain a result P in the range [0,M−1]. If we assume this extra modular
correction is incorporated into P and Q then their final values still satisfy (1)
and Q is again the integer quotient (A×B) divM .

There is a widely used alternative algorithm due to P. Montgomery [7] which
processes the bits of A in the opposite order with a shift of P downwards instead



4 LNCS Vol. 1965 Springer Verlag, 2000, pp. 204-215

of upwards. The advantage of this is primarily in hardware implementations
rather than in software: successive modular reductions can commence without
waiting for carries to propagate over the full length of the adder. The algorithm
is the following, but it computes a shifted modular product instead, namely
(A×B×R−1) modM where R = rn+1.

Montgomery’s Modular Multiplication Algorithm:

P <- 0 ;

For i <- 0 to n do

Begin

qi <- (P + aiB)(-M
-1) mod r ;

P <- (P + aiB + qiM) div r ;

End

{ Post-condition: P ≡ (A×B×R-1) mod M for R = rn+1 }

For M−1 mod r to be defined properly, we require M to be prime to r. Invariably,
r is a power of 2 and M is odd, so this is not a significant restriction. Observe
that the definition of qi means that the division by r is exact. Hence A×B is
computed, reduced by a multiple of M , and shifted by R. It is easy to obtain a
bound on the size of the output P , e.g. P < B+M , which shows that it is the
least non-negative residue (A×B×R−1) modM to within a known, very small
multiple of M [11]. The mod r operation is fast because it only depends on the
lowest digits of M , B and P , and the div r operation is fast because it only
involves a hardware shift.

As with the classical algorithm above, the initially generated sequence of
digits qj (j = 0, 1, ..., i) can be formed into an integer Q′i =

∑i
j=0 qjr

j and the
initially consumed digits aj (j = 0, 1, ..., i) of A form a similarly defined integer
A′i. Then it is easy to verify by induction that

P = (A′i×B +Q′i×M)/r−i−1 (3)

is an invariant which holds at the end of each iteration of the loop. Taking
Q = Q′n, when the loop terminates,

P×R = A×B +Q×M (4)

So the post-condition holds. (The analogy with (1) is that Q is an r-adic ap-
proximation to the quotient (−A×B)/M .) A small, final modular subtraction
may be necessary to obtain a result P in the range [0,M−1]. If we assume this
extra modular correction is reflected in a corresponding update to Q, then the
final values of P and Q still satisfy (4).



C. D. Walter, Data Integrity for Modular Arithmetic 5

3 A Simple Check for Soft Errors

A standard choice, [5] §7, for a checker function f in integer arithmetic is

f(A) = A modD (5)

where D > 1 is a suitable small number prime to at least 2r, such as 15. This
function is easily computed but fails to commute with the arithmetic operations
of modular arithmetic. Ideally, for the arithmetic operation ⊗ which we wish to
check, what is needed is a function f from integers modM to integers modD
with the property

f(A⊗B) = f(A)⊗ f(B)

for residues A and B in the ring of integers modM . However (5) fails to have
this property unless D divides M . The solution is to go back to the non-modular
integers that the machine uses for its representation and take into account the
modular subtractions made by the system. So, if P is the integer representing the
result of the calculation of A⊗B during which Q subtractions of M are made,
then

P = A⊗B −Q×M (6)

The function f of (5) can be applied to this integer relation to obtain that

f(P ) = f(A)⊗f(B)− f(Q)×f(M) (7)

holds modD if all the calculations involved have been performed correctly.
This applies to any modular arithmetic operation ⊗ from addition to expo-

nentiation and, in particular, to modular multiplication. From here on we will
interpret ⊗ as the particular modular multiplication operation of interest to us. 1

So (6) translates into (1) or (4). These equations re-phrase the output of the mul-
tiplication process entirely in terms of non-modular arithmetic operations and,
as stated, enable the checker function f to be applied. Then the main property
(7) to check becomes, respectively,

f(P ) ≡ f(A)×f(B)− f(Q)×f(M) modD (8)

or
f(P )×f(R) ≡ f(A)×f(B) + f(Q)×f(M) modD (9)

A difference between the left and right sides guarantees an error somewhere
(although perhaps in computing f rather than ⊗) and, conversely, we will see
that agreement is rare when the computation of A⊗B does contain an error.

1 In ”Method and apparatus for protecting public key schemes from timing and fault
attacks” (US patent 5,991,415, Nov 23, 1999), Adi Shamir recommends obtaining
and checking Ae modM by computing Ae modMD first, reducing this modM
for the result, and reducing it modD to check against (A modD)e. This avoids
computing Q modD. Similarly, any operation might be performed modMD and
then reduced modM for the result and modD for the check.



6 LNCS Vol. 1965 Springer Verlag, 2000, pp. 204-215

4 The Choice of Modulus D

What is the best choice for D? The smaller D is, the cheaper and easier it is to
compute the function f = fD. However, we need to analyse the different possible
faults to see how large D has to be to give the required degree of confidence in
the correctness of the calculations. It turns out that almost all the hardware can
be protected against a single fault with a very reasonable value for D.

To deal with register stuck-at faults, D should divide by a prime which does
not divide 2r. For most number representations likely to be used, any single bit
error in the input to f changes that input by a number of the form 2irj . So, by
the divisibility condition, this will be reflected in a different output value for f .
Suppose the stuck-at fault is in register P and that register is written to, but not
read from, during the multiplication. Then the left side of (7) will be incorrect
when the faulty bit is stuck at the wrong value. So it will differ from the correct
value computed for the right side. Hence this fault will be caught whenever it
occurs, which will be in 50% of all cases on average. Of course, once an error is
read from P , errors will start propagating further.

A similar argument applies to register M when it has a stuck-at fault. How-
ever, in this case all multiplications in an exponentiation are done correctly if
the bit is stuck at the value which M should have, or they are all incorrect if
the bit is stuck at the wrong value. Since f(Q) will be 0 in 1/D of all cases,
the equation (7) will not detect an error every time one occurs. However, over
a single exponentiation which involves at least several multiplications, f(Q) is
unlikely always to be 0. So, if every multiplication is checked, the error should
eventually be detected during the exponentiation, providing the calculation of
f(M) is based on the value of M kept in memory rather than the value in the
faulty register used by M during the modular multiplication. Indeed, the possi-
bility of errors in copying from and writing to memory illustrates the benefit of
storing the checker function value with the number itself, in the same way as a
parity bit.

Most registers used by a modular multiplication, apart from that holding M ,
will be both written to and updated a number of times, resulting in a propagation
of errors. One might reasonably assume that this leads to the values on the left
and right sides of (7) being essentially independent, so that 1−D−1 of all errors in
multiplications are detected. (The undetected cases arise from the value in error
being multiplied by 0.) Consequently, virtually all incorrect exponentiations will
be detected, especially if each multiplication is checked, and permanent faults
will be detected with greater probability than transient faults because more
checks may contain the error.

A similar argument applies for faults in the combinational logic of a digit slice
of an adder used to perform (2) or the equivalent step in Montgomery’s method.
The adder has three inputs, of which B and M are scaled by a digit and B may
have a redundant form. At the level of the jth digit slice, the equation for the
classical algorithm is

pj + r×cout ← pj−1 + ai×bj − qi×mj + cin (10)



C. D. Walter, Data Integrity for Modular Arithmetic 7

where cin and cout are carries from/to neighbouring slices and bj and qj may
have redundant forms. Hardware for computing this may be repeated for every
digit, or instead there will be a digit multiplier and adder which is reused for each
digit position. For convenience, let us ignore the negative sign and assume all
quantities are positive. (In practice there is a borrow to achieve this.) Typically
the non-redundant digits might be bounded above by r−1, the redundant digits
by 2r−1 and the carry by 4r−2. Then the expression on the right is bounded
above by 4r2−r−1, which splits into a non-redundant digit of P and a carry
still bounded by 4r−2. Thus each line into, or out of, the combinational logic of
the jth digit slice typically represents a value drj where d is a small power of
2 equal to, or less than, 2r2. Then summing the output values for all lines will
give a total bounded above by 4r2−1. In this case, any error within the slice
will make an absolute difference to the output also of the form drj where now
d < 4r2. Our desire is that any such difference should make a non-zero change
to f(P ), i.e. the change should not be divisible by D. Thus any D larger than
and prime to 4r2 is acceptable as it will detect all such single errors. In general,
whatever the circuitry and bounds on the digit values, any value larger than the
sum of all digit slice output lines would do for D. If some output values d cannot
arise without multiple errors, a smaller choice for D might well be possible. All
such possible values of d can easily be determined from the circuit design before
fabrication, and the tendency will be for d to be a multiple of 2 times a small
odd number.

The digit slice error may propagate in two ways, depending on whether it is
transient or not. With a permanent fault, a substantial proportion of the addition
cycles are likely to be affected in the same way. As RSA multiplications contain
many addition cycles, f(P ) is most likely to change in a way which makes the
differences between correct and incorrect values uniformly distributed modD,
even although they may all be multiples of the above d. Then the checker function
will detect all but 1/D of the errors which occur. However, with a transient
fault, the difference between the correct and computed values of P is shifted
up or down by a power of r on each iteration. So its initial primeness to D is
preserved. Eventually the error may affect the value of Q, but there will be a
compensating deduction of a multiple of M from P which will not obscure the
difference between the values of the left and right sides of (7). So such errors
should always be spotted.

The rest of the combinational logic includes counters, clocks, control cir-
cuitry, etc. These subcircuits take less area than the multiplier or digit slices
and could mostly be checked by duplication. However, errors there will tend to
have a random effect on the outputs, yielding approximately a 1/D probability
of the residue check falsely approving an incorrect calculation. Hence employing
a large D could be an alternative to duplicating such hardware. The main ex-
ception is the exponentiation circuitry. Although this controls the sequence of
multiplications and so cannot affect the truth of (7), it is usually implemented in
software. So this remains unchecked because f only checks hardware arithmetic
operations.



8 LNCS Vol. 1965 Springer Verlag, 2000, pp. 204-215

Finally, there may be specialised hardware for computing digits of Q. In
most cases an error in a digit of Q will either lead to overflow/underflow because
after several more iterations during which P is shifted, P will grow too large
or become negative. Alternatively, the self-correcting nature of the choice of qi
will successfully compensate for the error. Either way, the possibility of over-
or under- flow must be monitored because the equation (7) will not detect such
errors: the compensating multiple of M will re-adjust the equation so that it still
holds. So a final range check on P might not come amiss.

In summary, most of the hardware is protected against transient and per-
manent faults by the checker function. When typical redundant representations
are used, errors are detected except in at most 1/D of cases if we are allowed to
choose D > 4r2 and prime to 2r. For compatibility with the hardware multiplier,
it is clearly advantageous to keep D < r, which is the built-in size of all non-
redundant digits. The arguments above suggest that taking a large D < r with
some large prime factors would achieve most or even all of our requirements, its
only disadvantage being to limit the probability of detecting some errors. This
is efficiently held as a single digit, so we will assume such a choice is made for
D. Other alternatives might be to pick a large two-digit D, i.e. one which is less
than r2, or even to use two co-prime values of D, each just less than r. This
might be preferred for very small r (such as 2) to retain good detection rates.

5 Time and Area Costs for Checking

The choice of D has implications for the cost of computing f . However, since the
processor cycle time is probably determined by the multiplier, it is likely that
digit sums and digit products are computed in essentially the same time. We
will assume r is a power of 2 and look at two possibilities.

First, suppose D is a divisor of 2s±1 for some s. This is the standard situ-
ation analogous to the case of checking divisibility of a decimal number by 3, 9
or 11. Suppose A has a standard, non-redundant, binary representation. Then
computing f(A) simply requires computing the (possibly alternating) sum of
s-bit digits of A (and perhaps repeating this on the result) and then reducing
the result modD. An obvious choice here is D = r−1, for which the digits of
A are summed. The result for typical RSA implementations will be a two digit
number whose digits are then themselves summed. If the result overflows one
digit, D is subtracted by adding 1 to the lower digit to yield a single digit for
f(A) after n+2 additions overall. Without adding extra, dedicated hardware,
taking D = r−1 is arguably the most economic solution. If A has a redundant
representation, the extra bits must be added into the calculation in the same
way, and this may double the number of additions required to obtain f(A).

In general, computing f(A) for some argument A can be performed iteratively
from the most significant end using

f(Ai) = (f(Ai+1)×f(r) + ai) modD (11)



C. D. Walter, Data Integrity for Modular Arithmetic 9

and f(An+1) = f(0) = 0, or computed similarly from the least significant end
using f(r−1). For the above choice of D = r−1, we have f(r) = ±1 so that the
multiplication is avoided.

Alternatively to this choice, suppose a large D<r is chosen for which f(r) or
f(r−1), as appropriate, is small. Prime choices for D might be r−16±1 for r =
216 or r−5 for r = 232. Assume, in fact, that f(r)2(f(r)+1) < r. By leaving most
of the reduction modD in (11) to the end, we can obtain f(Ai) < (f(r)+2)r for
each i by expressing f(Ai) = mir+li as a two digit number, where mi ≤ f(r)+1
and computing f(Ai) = mi+1×f(r)2 + li+1×f(r) + ai instead. This converges
and yields f(A) ≡ m0×f(r) + l0 < 2D if D is large enough, so that one more
subtraction of D gives f(A). The cost of computing f therefore amounts to 2n+2
digit multiply-accumulate operations in this case.

In the context of RSA, f(M) need only be calculated once for a given modu-
lus. Besides this and the exponent, the only other input to an exponentiation is
the initial text T for which f(T ) must be calculated. Thereafter, for each mul-
tiplication, only the check values for the outputs need to be calculated, namely
f(P ) and f(Q). For the more expensive of above choices, this adds 4n+ 4 digit
multiply-accumulate operations to the 2n2 required for a full length modular
multiplication using (10). A further 3, resp. 4, such operations are required to
check (7) via equations (8) and (9) respectively. So adding the checker function
should be equivalent to adding at most 1 to the number of digits in M . By
including another multiplier in an array of multipliers [11], [6], or extra cycles
when there is a single multiplier, the cost can normally be spread over time and
area so that both the time and area formulae reflect the increase in n by at most
1.

Finally, for very small values of r, such as r = 2 or 4, RSA hardware im-
plementing (10) consists of a full length adder and no multiplier. Then a D of
the order 4r2 is more appropriate than D = r−1. Computing f(A) is straight-
forward using only additions so that the clock speed is maintained, but more
digit additions are required. So, the work resulting from including the checker
function corresponds to adding several more digits to n. However, as n is also
greater, the proportion of extra work is not increased. It is in fact dependent on
the size of D and how well it matches the digit base r.

6 Recovering from Transient Errors

When an error is detected, it may be unwise to continue computations since an
attack on the system may be in progress. The checker function can indeed be
used to defeat some attacks which operate by inducing transient errors. However,
we will assume the system wishes recomputation to be performed. If errors are
rare enough it is reasonable to cancel the exponentiation and just start again.
This requires a single extra buffer for storing the original text T until the encryp-
tion/decryption has been approved. If the checking needs to be done on every
multiplication, then, for most exponentiation schemes, it is the output of the
previous multiplication which forms the only new argument to the multiplica-



10 LNCS Vol. 1965 Springer Verlag, 2000, pp. 204-215

tion which is in error. Thus, again, a single input needs to be buffered until the
check is complete.

Since f(Q) can be computed digit serially as its digits are generated, any
error can be detected immediately f(P ) becomes available. With such large
numbers, f(P ) would normally also be computed digit serially and is therefore
not available until some time after P , unless P is also generated digit serially.

Suppose the modular multiplier uses redundancy to allow parallel digit oper-
ations on an array of multipliers and one modular multiplication starts immedi-
ately upon termination of the previous one. This is the classical model described
by E. Brickell [4]. Now f(P ) can be computed using (11) and the check (7) just
completed in the time to set up and perform the next modular multiplication.
When an error is discovered, two modular multiplications must be discarded,
namely the current one and the previous one for which the test has just detected
an error. So, by buffering the new input of the current and previous modular
multiplications so that such steps can be repeated when necessary, the expo-
nentiation can proceed and be checked with a time penalty equivalent to 2k+1
extra modular multiplications where k is the number of multiplications contain-
ing detected errors. On average, one would expect k to be very close to 0.

More recently, systolic and linear arrays have been combined with Mont-
gomery’s algorithm to provide modular multipliers [11], [6]. These avoid some
of the drawbacks of the standard design, such as redundancy and digit broad-
casting which have time and area penalties. So a slightly faster clock is possible.
The arrays operate with digit serial I/O to the multiplier array and, by perform-
ing two streams of multiplications in parallel, can have the same throughput in
terms of clock cycles despite the inherent problem of only being able to use cells
on every alternate cycle. A single multiplication produces one digit only every
other cycle, resulting in just over 4n time slots between the first digit input and
last digit output. Now f(P ) can be computed as the digits of P are generated
and the correctness check made within a single clock cycle of P being produced.
In the case of the linear systolic array, it suffices to buffer the new inputs of the
four multiplications currently in progress in the multiplier (one starting and one
finishing in each of two interleaved streams) so that the ones just finishing can
be recomputed if necessary. The buffers might even be shared between the two
streams if the probability of a double error were sufficiently small.

Thus, in addition to the cost for detecting errors, the occurrence of random
encryption/decryption errors can be corrected by recomputation with an area
cost of only several full length buffers (the precise number being dependent on
the implementation), and a time penalty of 2k+1 extra modular multiplications
where k is the number of detected errors. For the smallest radix, r = 2, the
extra registers may easily double the total hardware area, but as r increases the
proportion devoted to registers falls and the relative cost diminishes. However,
this solution is still a much cheaper alternative than voting between three copies
of the hardware, or using backup registers to enable re-computation when two
copies of the hardware fail to agree.



C. D. Walter, Data Integrity for Modular Arithmetic 11

7 Permanent Faults

We have now treated transient errors and seen how most of these can be success-
fully recognised and recovered from. Finally, permanent errors need considera-
tion. Most design or fabrication faults should be caught during comprehensive
production testing [10], but this is expensive and shortcuts are bound to lead
to faulty products being delivered. Ideally, as a minimum, every combination of
inputs should be tested (i) for every digit slice and (ii) for the computation of qi.
However, as the modulus M is not usually changed very frequently, some errors
in the hardware logic may not surface at testing nor even occur during the chip’s
life.

Whilst the major test of correct encryption is that decryption does not yield
rubbish, in RSA one key is always kept private so that such a test for a specific
modulus may be denied. Thus, as encrypted text is indistinguishable from rub-
bish, some kind of on-board checking of output is desirable before destroying the
plain text input.

The arguments already presented for detecting transient errors apply almost
equally well to detecting permanent faults: the two are indistinguishable if the
hardware at fault is only operated once. But, in general, we have already seen
that repeated faults will cause (7) to detect all but at most 1/D of arithmetic
and some other errors, but that logical errors in the computation of qi are not
discovered since both P and Q are affected equally. In particular, our experience
of building previous chips suggests that the final adjustment to the last digit
of Q which puts P into the interval [0,M − 1] is the most frequent cause of
undetected errors, especially for P near a multiple of M . Such logical errors
can be very infrequent. However, it is the correctness of the modular arithmetic
which is the subject of this article. Such errors tend to keep recurring because the
faulty hardware is either reused with the same values for every exponentiation
or it is part of a digit operation which is executed a very large number of times
with effectively random data. Hence they will almost certainly be detected.

Correction after transient errors is obtained simply by running the same
hardware again with the identical inputs. Of course, this is useless for permanent
errors. Instead, with the usual assumption that the errors are rare, rather than
use alternative hardware which may contain the same design errors, the inputs
can be modified in an attempt to avoid the errors.

An error with a particular digit slice might be avoided by a simple shift:
T e modM is computed via T e mod rM , so that the combination of bits which
cause the error might be avoided. This just requires a slight modification to
the hardware or software which makes the final modular correction to bring
the output of the modular multiplier into the correct range [0,M−1]. A bigger
shift might avoid the use of the faulty digit slice entirely. Of course, this form
of adjustment is not an option when Montgomery’s method is used since the
new modulus must stay prime to r, nor will it work if the same hardware is
used for every digit position. Then, or if the problem is with the most or least
significant digits of M , a similar solution of computing T e mod dM for a digit
d prime to r may succeed. Other inputs than M to the digit operations all vary



12 LNCS Vol. 1965 Springer Verlag, 2000, pp. 204-215

so much and so frequently that the digit combination expressing the error will
arise very frequently whatever input modifications are made. This is enough to
make disposal and replacement of the chip the best solution.

8 Summary and Conclusion

The detection and correction of transient errors in a hardware implementa-
tion of the RSA cryptosystem is straightforward to implement and can be used
to defeat certain types of active attack on embedded systems such as in smart-
cards. It can be done efficiently and reliably with acceptable time and area costs
equivalent to an increase in the size of the modulus by one digit or less plus
some extra buffering. Successful correction must usually assume the correctness
of the hardware. However, the checker function and other outlined methods will
also detect most logic errors and fabrication faults as well as transient ones.
With minor extra work which could be supplied by software, these too might be
corrected if they are sufficiently infrequent.

Incorporating a checker function such as (5) and keeping an eye out for
overflows are increasingly essential with shrinking technology and may prevent
the loss of considerable data when an error inevitably strikes.

References

1. J. M. Benedetto, “Economy-class Ion-defying ICs in Orbit”, IEEE Spectrum, vol.
35, no. 3, March 1998, pp 36-41

2. M. Blum and H. Wasserman, “Reflections on the Pentium Bug”, IEEE Trans.
Comp., vol. 45, no. 4, April 1996, pp 385-393

3. D. Boneh, R. DeMillo and R. Lipton, “On the importance of checking cryptographic
protocols for faults”, Eurocrypt ’97, Lecture Notes in Computer Science, vol. 1233,
Springer-Verlag, 1997, pp 37-51

4. E. F. Brickell, “A Fast Modular Multiplication Algorithm with Application to Two-
Key Cryptography”, Advances in Cryptology - CRYPTO ’82, Chaum et al., Eds.,
New York, Plenum, 1983, pp 51-60

5. G. Gerwig and M. Kroener, “Floating Point Unit in standard cell design with 116
bit wide dataflow”, Proc 14th IEEE Symposium on Computer Arithmetic, Adelaide,
14-16 April 1999, IEEE Press, 1999, pp 266-273

6. P. Kornerup, “A Systolic, Linear-Array Multiplier for a Class of Right-Shift Algo-
rithms”, IEEE Trans. Comp., vol. 43, no. 8, April 1994, pp 892-898

7. P. L. Montgomery, “Modular Multiplication without Trial Division”, Math. Com-
putation, vol. 44, 1985, pp 519-521

8. J.-J. Quisquater and M. De Soete, “Speeding up smart card RSA computations with
insecure coprocessors”, Proc. Smart Card 2000, D. Chaum editor, Elsevier Science,
1991, pp 191-197

9. R. L. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems”, Comm. ACM, vol. 21, 1978, pp 120-126

10. C. D. Walter, “Moduli for Testing Implementations of the RSA Cryptosystem”,
Proc 14th IEEE Symposium on Computer Arithmetic, Adelaide, 14-16 April 1999,
IEEE Press, 1999, pp 78-85

11. C. D. Walter, “Systolic Modular Multiplication”, IEEE Trans. Comp., vol. 42, no.
3, March 1993, pp 376-378


