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Abstract.  In smartcard encryption and signature 
applications, randomised algorithms are used to 
increase tamper resistance against attacks based on side 
channel leakage.  Recently several such algorithms 
have appeared which are suitable for RSA 
exponentiation and/or ECC point multiplication.  We 
show that under certain apparently reasonable 
hypotheses about the countermeasures in place and the 
attacker’s monitoring equipment, repeated use of the 
same secret key with the algorithm of Liardet and 
Smart is insecure against any side channel which leaks 
enough data to differentiate between the adds and 
doubles in a single scalar multiplication.  Thus the 
scalar needs to be blinded in the standard way, or some 
other suitable counter-measures employed, if the 
algorithm is to be used safely in such a context. 
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1 Introduction 
 
Major progress in the theory and practice of side 
channel attacks [5, 6] on embedded cryptographic 
systems threatens to enable the capture of secret keys 
from single applications of cryptographic functions       
[10, 11, 14].  This is particularly true for the more 
computationally intensive functions such as 
exponentiation, which is a major process in many 
crypto-systems such as RSA, ECC and Diffie-Hellman.   

       

If the same unblinded key value is re-used for many 
exponentiations, there is a danger that the repeated use 
of the same operand can be determined [14].  This 
would enable individual digits of the exponent base m 
to be identified and hence the key recovered.  
Unfortunately, particularly for ECC as opposed to RSA, 

 
Timing attacks on modular multiplication can usually 
be avoided easily by removing data-dependent 
conditional statements [16], but, with timing variations 
removed, attacks which make use of data-dependent 
variation in power and electro-magnetic radiation 
become easier.  Initial attacks of this type required 
averaging over a number of exponentiations [8].   
 

One counter-measure is to modify the exponent from e 
to e+rg where r is a random number, typically 32-bits, 
and g is the order of the (multiplicative) group in which 
the exponentiation is performed [5].  This results in a 
different exponentiation being performed every time.  
However, if squares and multiplications can be 
distinguished during a single exponentiation, then use 
of the standard binary exponentiation algorithm 
immediately leads to exposure of the secret key. 
 
For elliptic curve cryptography (ECC), the most 
efficient schemes for point addition and point doubling 
involve different numbers of operations in the field over 
which the curve is defined, and these numbers vary 
depending on the representation used for the curve.  A 
counter-measure which reduces the likelihood of 
distinguishing between these point operations involves 
equalising the number and type of the component field 
operations [12] or making the point addition look 
exactly the same as two point doublings [1].   
 
However, squares and multiplications in the field 
behave differently [13] and so there is no reason to 
believe that such recoding will necessarily hide fully 
the distinction between point additions and point 
doublings: for example, in [12], field squares appear for 
point additions, but field cubes when the same formula 
is used for point doublings.  Side channels can 
distinguish these if the Hamming weight of arguments 
can be deduced.  So exponentiation algorithms are 
chosen in which there is still an ambiguity in the 
correspondence between multiplications (i.e. point 
additions in ECC terms) and properties of the secret key 
(such as bit or digit values).  M-ary exponentiation [4] 
for m > 2 provides one solution because each addition 
represents an unknown choice from a set of several 
non-zero digits. 
 

applying the above exponent blinding technique is 
expensive when the secret key is typically only 192 
bits.  It adds about 17% to the cost of point 
multiplication.  Hence randomised exponentiation 
algorithms may be a preferred option for ECC. 
  
There are currently several algorithms which randomise 
the operations associated with specific inputs so that the 
exponentiation scheme is different on successive runs 
with the same data [7, 9, 17, 2, 3].  That of Liardet and 
Smart [7] uses a sliding window of random, variable 
width.  If the attacker’s equipment is insufficient to 
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obtain information from a single EC point 
multiplication, then it seems that averaging over 
different multiplications with the same key would dilute 
any data dependency in the side channel leakage.  
However, we will show here that if individual point 
multiplications do leak information about what 
operation is being performed, then the secret key can be 
obtained straightforwardly.  Indeed, one might even be 
better off with m-ary multiplication. 
 
We begin by recalling the algorithm and looking at 
various parameters which might be chosen to improve 
efficiency or security.  Next, the assumptions about the 
attacker’s equipment and cryptosystem counter-
measures are outlined.  These are initially quite tight to 
make the presentation of the attack easier.  The attack 
starts with extracting a least significant digit, and then 
uses this repeatedly to reconstruct one possible 
representation for the secret key.  An essential part of 
the discussion is an assessment of the probability          
that the attack can be completed successfully.              
Before concluding with some counter-measures and 
alternatives, we explain how the attack can still be 
performed in a more realistic environment where the 
side channel leakage is much poorer. 

     { If (k mod 2) = 0 then      
While k > 0 do 

 
 
2 The Algorithm 
 
This section contains a brief outline of the 
(exponentiation) algorithm of Liardet and Smart.  
Because it generates an addition-subtraction chain 
rather than simply an addition chain, inverses have to 
be computed when it is applied.  This means that 
applications to RSA cryptography are unlikely because 
of the expense of computing inverses.  However, in 
elliptic curve cryptography (ECC), inverses are 
essentially for free.  Hence, we will assume the 
algorithm is applied to an additive group, such as that 
formed by the points on an elliptic curve, and use 
appropriate terminology.  Processing of the secret key k 
therefore produces a sequence of instructions which 
result in additions (A) and doublings (D) of group 
elements. 
 
Suppose we wish to compute the element Q = kP for a 
given positive integer k (the secret key) and a given 
member P of some group E.  As in m-ary 
exponentiation, Liardet and Smart pre-compute the odd 
multiples iP of P for integers i ∈ (–½m, ½m] where       
m = 2R, and then employ the standard sliding windows 
technique but with a window which has a random width 
showing up to R bits.  In other words, k is recoded to 
obtain digits ki (0 ≤ i ≤ n) which are determined using a 
randomly-chosen variable base mi which divides m.  

The digits are chosen in the order k0, k1, ..., kn and the 
digit representation knkn–1...k1k0 satisfies 

k = ((...((kn)mn–1+kn–1)mn–2+...)m1+k1)m0+k0         (1) 

The group element multiplication processes these digits 
from most to least significant following the related 
scheme defined by 

kP = m0(m1(...mn–2(mn–1(knP)+kn–1P)+...)+k1P)+k0P   (2) 
 
 
2.1 Code for the Key Recoding 
 
More explicitly, if minmod is the function which returns 
a residue of minimal absolute value, the algorithm for 
choosing the digits is this: 
 
RANDOMISED SIGNED m-ARY WINDOW DECOMPOSITION 
[7]:  

i ← 0 ; 

{ mi ← 2 ; 
ki  ← 0 ; 

} 
else 
{ Randomly choose base mi ∈ {21,22,..., 2R} ; 

ki ← k minmod mi ; 
} ; 
k ← (k–ki)/mi ; 
i ← i+1 ;  

} ; 
 
Here, both 1 and 1  could be allowed as digits for base 
1, but that involves the added complication of a random 
bit to decide which to select, and also (to avoid non-
termination) restricting the choice to only 1 when k 
reaches 1.  Our attack would work also in these 
circumstances with few changes. 
 
 
2.2 Efficiency Considerations 
 
There are still some parameters to be chosen in the 
algorithm.  Varying these affects efficiency, but there 
are also security implications.  As we see later, certain 
choices will increase the difficulty of mounting the 
attack, forcing, in particular, more samples to be 
required.   

 
The value for R has the greatest effect on efficiency.  In 
elliptic curve applications, subtraction may have the 
same cost as addition.  Then it will be unnecessary to 
store the negative pre-computed multiples of the input 
point.  So only space for 2R–2 multiples is likely to be 
required.  Increasing R improves speed, but with 
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diminishing returns for the space required for pre-
computed values. 
 
No suggestions are made in [7] about how to choose the 
mi randomly.  A uniform distribution is not very 
efficient, and indeed perhaps the least secure under this 
attack.  It is most efficient to make the maximum 
possible use of the pre-computed values by choosing 
the maximum base size 2R always.  But, to maintain 
generality for later, suppose mi = 2j is chosen with 
probability pj when k is odd and p0 = 1 is the probability 
of selecting base 2 when k is even.   
 
Choosing pR = 1 means that mi = 2R whenever k is odd.  
This yields the usual m-ary sliding window method 
with fixed m = 2R.  Taking R = 1 yields the usual binary 
“square-and-multiply” algorithm.  However, such 
choices would remove any non-determinism from the 
sequence of point operations. 
 
Observe that biasing in the choice of mi does not 
change the uniformity in the distribution of residues       
k mod m

  

Randomisation prevents the obvious averaging of the 
traces of many point multiplications which was used in 
initial power analysis attacks on the binary “square-
and-multiply” algorithm.  Here every point multiplic-
ation determines a different sequence of doublings and 
additions.  With matched code for additions and 
doublings, averaging may hide the difference between 
the two operations because they are no longer separated 
in time, but in current implementations such averaging 
will certainly reveal the start and end of the individual 
point operations which make up the scalar 
multiplication. 

i inherited from k, assuming k is randomly 
chosen.  This means that every new key value k 
generated during the recoding retains the same random 
properties: in particular, residues modulo 2j will be 
uniform for every key encountered.   
 
 
3 The Attack 
 
3.1 Introduction & Initial Hypotheses 
 
The purpose of randomised exponentiation algorithms 
is to frustrate side channel analysis by an attacker.  In 
particular, they are counter-measures against using 
knowledge of the exponentiation process to extract the 
secret key k.  Several different levels of leakage are 
possible, depending on the resources of the attacker.  A 
poor signal-to-noise ratio (SNR) means that many 
samples have to be taken, and averaging the side 
channel leakage is one way of improving the SNR.  So 
a critical parameter is whether or not the attacker’s 
equipment is good enough for him to extract sufficient 
meaningful data from the side channel trace of a single 
scalar multiplication.  If it is, then the standard key 
blinding described earlier suddenly fails to provide the 
data hiding protection afforded by averaging away local 
data dependencies.  Improved equipment and laboratory 
techniques mean that this barrier might soon be 
breached without excessive expenditure [10, 11]. 
 
The categories of leakage which could be considered 
include the following: 

i) individual point operations can be observed on 
power, EM or other side channel traces; 

ii) point doublings and point additions can be 
distinguished from each other; 

iii) re-use of operands can be observed;  and 
iv) operand addresses can be deduced. 

Point (i) may hold simply because program instructions 
and data need to be fetched at the start of each point 
operation, and these cause different effects on the side 
channels than field operations.  Point (ii) may then hold 
as a result of different patterns of field operations for 
point additions than for point multiplications.  
Properties (iii) and (iv) might hold as a result of being 
able to deduce Hamming weights of data and address 
words travelling along the bus. 
 

 
The attack described here requires the SNR to be good 
enough to extract some useful data from single 
multiplications on the curve.  Specifically, initially we 
assume that 

• Adds and doublings can always be identified 
correctly and distinguished from each other using 
traces obtained from side channel leakage for a 
single point multiplication, and  

• A number of traces are available corresponding to 
the same secret key value applied to different 
scalar multiplications. 

Both of these hypotheses will be relaxed later to some 
extent, providing a more realistic scenario. 
 
 
3.2 Overview of the Attack & Notation 
 
The outline of the attack is as follows.  For simplicity, 
by the first hypothesis,  

• Every trace can be viewed as a word over the 
alphabet {A,D}. 

Every occurrence of an A (add) in the trace splits the 
word into a prefix and a suffix which correspond to two 
integers kp and ks that are precisely defined in terms of k 
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and the position of A in the trace.  All traces determine 
the same values to within ±1.  By looking at the 
patterns to the left of a given A, one obtains the residue 
of kp modulo a small power of 2, and hence a few bits 
of k.  Repeating this for the position of each A enables 
all the bits of k to be recovered. 

This lemma is obvious from the definition of the digit 
sequence given by equation (1) except, perhaps, for the 
last part.  That part follows easily by induction.  Digit ki 
is chosen with |ki| ≤ ½mi ≤ mi–1.  This property for           
i = 0 starts the induction.  Then the induction step is 

|ks
(i+1)|  =  |kim(i)+ks

(i)|  <  |(ki+1)m(i)|  ≤  mim(i)  =  m(i+1). 
  
Definition.  The position of a specific instance of 
character A or D in a trace word is the number of Ds 
which are to the right of the selected character. 

We will continue to use the notation m(i) for  
and k

∏ −
=
1
0

i
j jm

p
(i) and ks

(i) for the key values associated respect-
ively with the prefix knkn–1...ki and the suffix ki–1...k1k0 
of the digit sequence.  The next lemma uses the equality 
and bound of Lemma 1 to identify two possible values 
for ks

(i), corresponding to it being a positive or negative 
residue of k modulo m(i): 

 
We will exploit a close relationship between positions 
in which A appears in traces and bits which are 1 in the 
corresponding position of the binary representation of k. 
 

 In order to be able to give examples, we fix the 
character order of words over {A,D} to correspond to a 
left-to-right processing order.  Thus, the digit sequence 
12021 404, with most significant bit on the left, is 
processed from most to least significant bit, i.e. from 
left to right, and so would result in the word 
DADDDADD.  There are As in positions 2 and 5, and 
Ds in positions 0 to 5.  In fact, every A is paired with a 
preceding D with the same position, and so one could 
view the DA combination as a single character.  Then 
the position would correspond directly to a character 
index, counting from 0 at the right hand end, as in a 
binary representation. 

Lemma 2.   With the previous notation, either  
i) ks

(i) = k mod m(i)  and  kp
(i) = k div m(i),  or  

ii) ks
(i) = (k mod m(i))–m(i) and  kp

(i) = (k div m(i))+1  
where mod returns the least non-negative residue, and 
div is integer division given by rounding down the real 
quotient. 
 
This shows that, whatever choices are made for the base 
elements, a given digit suffix can determine only one of 
two possible values when the product of the 
corresponding base elements is fixed.  We would like at 
least the occurrence of the one which will make the 
corresponding prefix odd because it leads to an addition 
(A) which can be used to identify a corresponding point 
in the trace. 

  
The initial DA corresponds to the digit 12 and might be 
omitted if efficient initialisation takes place instead.  
Assuming this is the case, we will delete any initial Ds 
but leave the initial A as an unambiguous reminder that 
there is an initial digit to take into account.  Thus words 
always commence with A.  In the above example, 
ADDDADD will be the word corresponding to the 
given digit sequence. 

 
Lemma 3.  For all powers 2j ≤ k, there is a choice of 
base elements mi' and an integer i such that 2j = m(i).  
On average, for at least 1–2–R of all values of j, there 
are choices which make kp

(i) odd, and, for at least half 
of all values of j, there are choices which make kp

(i) 
even.  
  
Proof.  The existence of the choice of basis elements is 
clear: taking mi' = 2 for all i' allows one to satisfy the 
equality for m(i) with i = j.  For that choice, ki is the 
usual index i bit of k, and takes either parity with equal 
probability.  It is the lowest bit of kp

(i), and so kp
(i) is the 

desired parity with probability ½.   

3.3 Properties of Key Digits 
 
We now look at the sequence of digits generated by the 
Liardet-Smart algorithm.  The notation used here is the 
same as for a fixed base, and many standard properties 
have analogues. 

  
Other choices of base elements exist, and they may 
result in kp

(i) being odd even when the bit of interest in k 
is even.  This increases the average number of cases for 
which oddness occurs.  Instead of choosing mj–1 = 2, we 
try choosing mj–i' = 2i' for any i' with 1 ≤ i' ≤ R.  The 
ability to select them depends on a corresponding bit of 
kp

(j–R) being 1 (otherwise base 2 must be chosen).  These 
bits are independent and so the alternative bases can be 
chosen with probability ½.  Each will give odd parity to 
the next kp if chosen.  Hence the prefix key 

Lemma 1.  Suppose knkn–1...k1k0 is a digit represent-
ation of k generated by the Liardet-Smart algorithm, 
with sequence mn, mn–1, ..., m1, m0 of bases.  For some i, 
let kp

(i) denote the integer corresponding to the prefix  
knkn–1...ki and let ks

(i) denote the integer corresponding 
to the suffix ki–1...k1k0.  Then k = kp

(i)m(i)+ks
(i) where       

m(i) = ∏  and  |k−
=
1
0

i
j jm s

(i)| < m(i). 
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corresponding to 2j can be made odd with probability at 
least 1–2–R.                                                                    ■ 
 
Of course, this argument just gives a lower bound on 
how many js will give rise to two key prefix and two 
suffix values.  It doesn’t guarantee that when both 
values are possible they will both appear with non-
negligible frequencies.  The actual relative frequencies 
appear to depend on the lowest R bits of the kp 
corresponding to m(i') = 2j–R.  However, in the next 
section, a lower bound on the ratio will be produced as 
necessary for each choice of these bits. 
 
 
3.4 Recovering One Digit of k 
 
In this section we show how to recover the least 
significant digit k0 and associated base m0 in one 
representation of k and how to identify the subset of 
traces which correspond to the associated prefix key kp 
such that k = kpm0+k0.  Exactly the same process yields 
other digits of k independently.  Those digits can then 
be assembled together to give k in the manner described 
in the next section. 
 
If Tr is the full set of all sample traces, then we denote 
by Tri the set of traces obtained by taking each member 
of Tr and deleting the suffix to the right of, but not 
including, the D of position i.  Thus Tr0 = Tr.  Tri is 
partitioned into two complementary subsets: Tri

A which 
consists of those traces which terminate with A, and 
Tri

D which consists of those traces which terminate with 
D.  We need to identify one of these subsets for each 
digit choice so that its neighbour to the left can be 
selected correctly.  Tri

A always represents the odd 
choice for kp

(i), but some traces in Tri
D may contain only 

some of the operations for the rightmost prefix digit, 
and so not represent any kp

(i) properly. 
 
The derivation here does make specific use of the fact 
that in this implementation 1  is not allowed as a digit 
for base 2.  Similar arguments apply when 1  is allowed, 
but there is a duality which leaves a complicating 
ambiguity between the two values of ±ks throughout the 
reconstruction process.  This is only resolved when the 
complete value of k is reconstructed and under the 
assumption that the true sign of k is known. 
 
Lemma 4.  Select any trace for key k.  Then k is exactly 
divisible by 2i where i is the uniquely defined integer 
such that ADi is a suffix of the trace.   
 
Proof.  Clearly, if k is divisible by 2i then base 2 must 
be chosen for the lowest i digits, which are then all 
zeros.  This leads to a character sequence Di of i 
consecutive Ds as a suffix in every trace.  If k is not 

divisible by 2i+1 then, whatever the next choice of base, 
the digit will be non-zero and hence cause A to be 
appended to the sequence, yielding the suffix ADi.      ■ 
 
This result enables these i occurrences of D to be 
identified with i least significant digits 0, each of base 
2.  Moreover, all traces confirm this conclusion.  So, 
removing the digits one at a time, 
 
Lemma 5.  If every trace in Tr has final character D 
then we may take k0 = 0, m0 = 2 and the traces of Tr1 all 
represent the associated kp. 
 
If k is odd, no digit has been deduced yet, and further 
work must be done. 
 
Lemma 6.  Suppose k ≡ 1 mod 2i where i ≤ R.  Then      
k ≡ 2i+1 mod 2i+1 if Tr contains a trace with suffix 
ADiA.  If k ≡ 2i+1 mod 2i+1 then the probability that Tr 
contains no trace with suffix ADiA is (1– pi')|Tr| where       
pi' = p1+p2+...+pi.  
 
Proof.  If k ≡ 1 mod 2i+1 then a base of m0 = 2i+1 or 
larger will lead to suffix Di+1A.  However, a smaller 
base m0 = 2j will lead to suffix DjA with digit k0 = 1 and 
the forced selection of base 2 at least i+1–j times.  This 
again leads to suffix Di+1A. 
 
Now suppose k ≡ 2i+1 mod 2i+1.  A base of m0 = 2i+1 or 
larger again leads to suffix Di+1A.  However, the choice 
of base m0 = 2i means lowest digit k0 = 1 and next digit 
determined by k div 2i, which is odd.  Hence the suffix 
is ADiA for that choice.  Similarly, a base m0 = 2j with     
j < i, will lead to suffix DjA, digit k0 = 1 and kp ≡ 2i–j 
mod 2i–j+1.  So this choice is followed by the forced 
selection of base 2 exactly i–j times with associated 
digit 0. The subsequent digit is then odd, resulting in 
the overall suffix ADiA.   
 
Thus, suffix ADiA guarantees k ≡ 2i+1 mod 2i+1 and it 
occurs precisely when the least significant base choice 
is 2j with j ≤ i.  These choices occur for a given trace 
with probability pi' = p1+p2+...+pi.  Hence suffix ADiA 
will not happen for any trace in Tr with probability        
(1–pi')|Tr|.                                                                       ■ 
 
Lemma 7.  Suppose k ≡ 1 mod 2i.  If Tr contains a 
trace with suffix ADiA then k ≡ 2i+1 mod 2i+1, we may 
take k0 = 1 and m0 = 2i, and the traces of Tri

A all 
represent the associated kp. 
 
This lemma deals with the recognisable instances of             
k ≡ 2i+1 mod 2i+1.  When base 2j is chosen for any j ≤ i,  
the suffix is ADiA for these cases.  As this occurs in pi' 
of cases, so we expect Tri

A to contain approximately 
pi'|Tr| elements.   
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We will assume k ≡ 1 mod 2i+1 if there is no suffix 
ADiA but we know k ≡ 1 mod 2i.  By Lemma 6, this 
introduces a small probability of error which can be 
decreased by taking a larger sample if necessary, or by 
further analysis, such as through a more exhaustive 
analysis of suffixes and their expected frequencies than 
there is space for here.  Note, however, that if pi' = 0 
then this choice of m0 will not resolve which residue 
mod 2i+1 is correct.  Hence an increase in security might 
be obtained by having p1 = p2 = ... = pi = 0 where i is as 
large as possible. 
 
Theorem 1.  Assume each base 2i is selected with 
probability pi for odd key values, and digit 1  is only 
used for bases greater than 2.  Let pi' = p1+p2+...+pi and      

'ip  = 1–pi'.  Suppose k is a random odd integer that 
has generated trace set Tr and j (1 ≤ j ≤ R+1) is such 
that Tr contains no trace with suffix ADiA for any i < j.  
Then k ≡ 1 mod 2j with probability ∏ . −

=
−+1

1
1|| )'1(j

i
Tr

ip
 
Proof.  We prove this by induction on j.  For j = 1 the 
statement claims nothing, and so holds.  For the 
induction step, assume the statement holds for some       
j ≤ R.  Suppose also that Tr contains no trace with 
suffix ADiA for any i ≤ j.  By the induction hypothesis, 
k ≡ 1 mod 2j with probability ∏ −

=
−+1

1
1|| )'1(j

i
Tr

ip . 

 

Theorem 3.  With the same assumptions and notation 
as in Theorem 1, suppose every trace in Tr has suffix 
DR+1A.  Then, with probability ∏ =

−+R
i

Tr
ip1

1|| )'1( ,                   
k ≡ 1 mod 2R+1 and we may pick m0 = 2R.  For this 
choice k0 = 1, kp is the common key for TrR

D, kp is even, 
and TrR

D = TrR has the same cardinality as Tr. 

 
Since k is random, the two possibilities for k mod 2j+1 
are equally likely.  So, by Lemma 6, no occurrence of 
suffix ADjA means k ≡ 1 mod 2j+1 with probability 

1|| )'1( −+ Tr
jp .  This factor just needs multiplying into 

the product to obtain the claim for j+1 in place of j.     ■ 
 
Theorem 2.  With assumptions and notation as in 
Theorem 1, suppose k is odd and j is minimal such that 
1 ≤ j ≤ R+1 and Tr contains a trace with suffix ADjA.  
Then k ≡ 2j+1 mod 2j+1 with probability 

∏ −
=

−+1
1

1|| )'1(j
i

Tr
ip . 

If j ≤ R we may take k0 = 1 and m0 = 2j and then the set 
of traces for the associated kp is Trj

A. 
 
Proof.  Theorem 1 shows that, for the given definition 
of j, k ≡ 1 mod 2j with probability ∏ −

=
−+1

1
1|| )'1(j

i
Tr

ip .  
If k ≡ 1 mod 2j+1 then, as in the proof of Lemma 6, all 
traces must terminate with suffix Dj+1A, which is not the 
case.  Hence k ≡ 2j+1 mod 2j+1 with the stated 
probability. 
 
For the base m0 = 2j, k ≡ 1 mod m0 and so the associated 
digit is k0 = 1.  However, kp = k div 2j is odd, which 
forces the next digit to be non-zero.  Hence A is the 

next operation leftwards after the suffix DjA which 
corresponds to m0.  Thus, the relevant traces for the 
next digit are those of Trj

A.                                            ■ 
 
The values of k for which no least significant digit has 
yet been assigned are those satisfying k ≡ 1 mod 2R+1.  
Picking maximal base m0 = 2R gives k0 = 1 and makes 
kp even.  The associated set of prefix traces should be 
TrR

D.  A possible difficulty with this definition is that 
for some traces removing the suffix DRA may split 
subsequences which correspond to one digit.  However, 
every choice of base 2i corresponds to a suffix DiA 
where i ≤ R, and must be followed by a number of 
instances of base 2 with digit 0 which makes the total 
modular division by at least 2R+1.  Hence the suffix DRA 
corresponds to the operations for a whole number of 
digits.  Therefore TrR

D does indeed contain traces which 
represent only operations for sequences of complete 
digits, and so those traces all represent the same key 
value. 
 

 
 
3.5 Combining Digits to Recover k 
 
For every position j at which there is an occurrence of A 
in some trace of Tr, the procedures of the previous sub-
section can be applied to Trj

A to obtain a base and digit 
at that point.  These digits are used when determining a 
digit sequence for k.  Starting at j = 0, the digits are 
selected iteratively.  As well as a digit and base, each 
trace set Trj

A gives rise to another trace set defined at 
some position j' > j.  We will show that:  

• For this definition of j', the next digit is determined 
by whichever is appropriate of Trj'

A or (Trj
A)R

D. 
 
Here we need to check on the definition of the trace 
subsets.  If applied iteratively, the procedures above 
would actually determine smaller and smaller subsets: 
each time we apparently take a subset of the traces from 
the previous step.  However, because only two key 
values (one odd, one even) are associated with any 
position, every prefix which represents the operations 
of a complete number of digits must correspond to the 
odd key if it terminates with A and the even key if it 
terminates with D.  Of course, every trace prefix 
terminating with A must consist of the operations for a 
whole number of digits since A cannot appear in the 
middle of the sequence of operations for a single digit.  
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So every trace in Trj'
A is generated from a key value 

which is common to them all.  Hence, the full set Trj'
A 

can be used to determine the next digit, not just the 
subset of Trj

A determined by the procedures above. 
 
In the case of the prefix trace set Trj+R

D, it is not clear 
which traces are generated by a complete key.  In some 
cases, the final D may not be the final operation of the 
digit sequence from which it was derived.  Hence, the 
subset (Trj

A)R
D must be used, not Trj+R

D.  However, the 
construction observed that every such trace had suffix 
DR+1A.  So (Trj

A)R
D has the same cardinality as Trj

A.  
Hence the trace subsets bulletted above are indeed the 
correct ones to use for the key digits, and they do not 
progressively decrease in size. 
 
The process of digit determination only begins to fail 
once a leading instance of A is encountered: Theorem 2 
guarantees progress up to that point.  Traces are not all 
the same length.  Some will use a large base for the 
most significant digit.  Their initial Ds are deleted, 
giving them fewer instances of D overall, making their 
traces shorter.  These traces are simply discarded when 
fully processed.  The procedures above still apply to the 
subset.  Again, following Theorem 2, further digits can 
still be defined until the trace set becomes empty.  
However, once the first (i.e. shortest) traces run out, the 
remaining key is representable by a single digit, so it is 
bounded in absolute value by 2R–1–1.  Each increment 
of the position in the trace set reduces the representable 
key by a factor of 2.  Eventually, assuming there are 
enough traces, the initial A of the longest trace has a 
digit bounded by 1, and so must be 1.  Hence k is 
completely determined.  “Enough” traces would be 
present if, for example, base 2 were chosen for the most 
significant digit.  Insufficient traces just increases the 
number of possible values of k which may need testing 
by a small factor (under 2R–1). 
 
 
3.6 The Probability of Error 
 
We have been careful to obtain the probability of error 
in each digit in order i) to see if it is feasible to recover 
the key and ii) to see how the probabilities pi might be 
adjusted in the algorithm definition to provide 
improved security.   
 
The procedures of §3.4 define the probabilities in terms 
of the size of the trace set being employed at that time.  
Generally, it is equal to the cardinality of a set of the 
form Trj

A.  This is equal to |Tr| times the number of DAs 
in position j divided by the number of DAs or Ds in that 
position.  This can be approximated by |Tr| times the 
overall probability pA of DA divided by the overall 
probability pD of DA or D.  Since the choice of base        

m = 2i produces i–1 occurrences of D followed by one 
of DA when i > 0, |Trj

A| ≈ π |Tr| where  
π = 

D

A
p
p  = 

R

R
Rpppp

ppp
++++

+++
...2

...
210

21  

For a uniform distribution this works out at π = 3
2
+R  

where typically we might expect R = 3; and for 2R-ary 
sliding windows it works out at π = 1

1
+R . 

 
In fact, the formula under-estimates the average size of 
Trj

A.  Some positions do not have any occurrences of A, 
and we do not use the associated trace subsets.  This 
increases the average for those positions which do have 
occurrences of A. 
 
Next, the distribution of base choices in the 
reconstructed key differs from that generated by the re-
coding process.  Suppose k is odd for the set of traces at 
some point during the reconstruction.  In Theorem 2, 
the distribution of odd residues k mod 2R+1 is uniform.  
So, neglecting the assumed small numbers of 
incorrectly assigned cases resulting from some of the 
possible suffixes not occurring, base 2j will be selected 
for the reconstructed key with probability 2–j for             
0 < j ≤ R and produce an odd next key.  Further, base 2R 
will turn up in the remaining 2–R cases of odd keys but 
produce an even next key.  In half of all cases, an even 
key will lead to an even key.  Consequently, out of 
every 2R+2 digit choices in the reconstruction, on 
average 2R will be odd and 2 will be even. 
 
By Theorems 2 and 3, the probability of the 
reconstructed key being correct is a product of factors 
of the form 1|| )'1 −+

A
jTr

ip( .  These factors can be 

approximated by 1)−||'1( + Tr
ip π .  Since choosing base 

2j leads to j such factors, there is essentially one such 
factor for every bit of k.  The exceptions are where an 
even key causes base 2 and digit 0.  Then there is no 
doubt about the correctness of the digit 0.  This last case 
occurs for 2(2R+2)–1log2k bits of the initial key k.  
Otherwise, for odd keys, the relative frequency of 
different bases means that the factor 1|| )'1( −+ Tr

ip π  will 
appear on average for 2R–i(2R+2)–1log2k bits if                
0 < i < R and for 2(2R+2)–1log2k bits if i = R.   
 
Because pR'  = p1+p2+...+pR = 1, the factor for i = R is 1, 
and so can be ignored.  Hence, 
 
Lemma 8.  The key  k  can be recovered with a 
probability approximately  

∏ −
=

− −
+1

1
2|| )'1(R

i
nTr

i
i

p π  
where  n = (1+21–R)–1log2k  and  π   is as defined above.   
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The property 'ip ≤ 1–p1 provides a lower bound for this 
product.  Consequently, 
 
Lemma 9.  For a uniform distribution of base, the key k 
can be recovered with a probability at least 

(1+ )( 1
R

R− π|Tr|)–n 

where  n = (1–21–R)(1+21–R)–1log2k  and  π = 3
2
+R . 

 
For specific choices, it is possible to evaluate the 
product in Lemma 8 exactly.  A typical choice would 
be to have a key with 192 bits, R = 3 (which requires 
storing two pre-computed multiples, namely P and 3P), 
and a uniform choice of base, i.e. p1 = p2 = p3 = ⅓.  
Then π = ⅓ and the product in Lemma 8 is just under     
2–31 for |Tr| = 9.  So, if a key can be reconstructed and 
checked for correctness in unit time, 
 
Theorem 4.  If doubles and adds can be distinguished 
on individual traces, and traces are captured from 9 
applications of the same unblinded 192-bit key, then the 
Liardet-Smart algorithm with uniform selection of base 
≤ 23 can be broken with a computational effort of about 
O(231).  With twice as many traces, the computational 
effort falls to under O(210).  
 
Of course, the full force of all the patterns available and 
their relative frequencies has not yet been applied.  
Hence the danger is probably substantially under-
estimated.  Once a possible key has been recovered, 
there is considerable unused data in the traces that has 
not yet been used and can be investigated for checking 
purposes.  In the uniform case, about 3

1
+
+

R
R  of the data is 

so far unused – that in the complementary sets Trj
D.  

This contains information about digits whose bases 
were not aligned with those of the reconstructed 
representation of k.  Choosing a different base from that 
of the reconstruction process described above will 
provide confirmation about the correctness of each bit 
of k.  Indeed, each trace has to be consistent with some 
choice of bases, and the rightmost inconsistency in a 
trace will usually be very close to the rightmost bit in 
error.  There is insufficient space here to improve the 
probabilities which are a consequence of this approach, 
but the computational feasibility of the attack is already 
assured. 
 
If the attacker is unable to distinguish clearly between 
adds and doubles, then the unused data vastly increases 
his ability to make corrections.  Moreover, as each digit 
is obtained through a purely local extraction of data 
from traces, it is easy to automate an exhaustive process 
to check for the overall best digit solutions using all 
traces, and hence prioritise the order for considering the 
most likely values for k.  However, for the data that has 

been used, any indistinctness between A and D is 
unimportant.  In this attack, it is only necessary to 
establish whether or not an A has appeared at each 
position.  The relative frequency of As means that the 
certainty of this can be determined with high degree 
just by increasing the number of traces sufficiently. 
 
 
4 Counter-Measures 
 
Our formulae for bounding the accuracy repeatedly 
used the probabilities of smaller bases much more than 
larger bases, and the accuracy improves when these 
probabilities are increased at the expense of the 
probabilities of larger bases.  This is consistent with the 
greater ambiguity afforded by digits of larger bases.  
Thus we recommend not using a uniform choice for the 
base, but employing a strong bias towards large bases, 
such as was illustrated in §2.2.  In the extreme,                   
the standard, non-randomised, m-ary exponentiation 
technique is obtained, and this is not susceptible to the 
attack. 
 
The cost of key masking is not entirely trivial in the 
context of ECC.  Adding a 32-bit random multiple of 
the group order to the key increases the point 
multiplication cost by some 17% for 192-bit keys, 
although it is a much smaller fraction of the total 
encryption cost.  Adding a smaller random multiple is 
probably ineffective if it results in a number of 
repetitions of the same key value within the lifetime of 
the key.  The highly repetitive nature of the traces 
resulting from the same prefix keys turning up again 
and again means that a duplicated key could be 
assumed if, and only if, traces matched closely enough. 
 
The “double-and-add-always” method of computation 
provides a good measure of protection, but is 
expensive.  The attacker then has to determine whether 
or not the result of the addition is used before he can 
mount the attack.  This is much more difficult than 
distinguishing the two operations.  Hence traces will be 
susceptible to much more frequent errors, and a much 
greater number of traces will have to be recovered. 
 
There are alternative randomised algorithms for which 
this type of attack does not apply, and others that 
display similar weaknesses.  That of Oswald and 
Aigner [9] can be attacked in a similar way.  MIST         
[15, 17] does not exhibit the same repetition of key 
values during key processing, and so may be a safer 
choice.  A new algorithm by Itoh et al. [18] may also be 
worthy of consideration. 
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5 Conclusion 
 
It might have been hoped that the Liardet-Smart 
algorithm would avoid the cost of any additional 
counter-measures such as key blinding when the same 
secret key is repeatedly re-used, but this now appears 
not to be so.  Specifically, the key needs to be masked, 
or the pattern of adds and doubles has to be well hidden 
for individual point multiplications.   
 
Of course, there are many circumstances in which the 
algorithm is clearly of value, such as ECDSA, for 
which a different random key is used every time.  Then, 
for suitable parameter choices, the space of keys 
generating a given pattern of adds and doubles is 
infeasibly large, and so cannot be attacked successfully 
without additional data. 
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