
Breaking the Liardet-Smart
Randomized Exponentiation

Algorithm

Colin D. Walter

Comodo Research Lab
10 Hey Street, Bradford, BD7 1DQ, UK

colin.walter@comodo.net www.comodo.net

Abstract. In smartcard encryption and signature
applications, randomised algorithms are used to
increase tamper resistance against attacks based on side
channel leakage. Recently several such algorithms
have appeared which are suitable for RSA
exponentiation and/or ECC point multiplication. We
show that under certain apparently reasonable
hypotheses about the countermeasures in place and the
attacker’s monitoring equipment, repeated use of the
same secret key with the algorithm of Liardet and
Smart is insecure against any side channel which leaks
enough data to differentiate between the adds and
doubles in a single scalar multiplication. Thus the
scalar needs to be blinded in the standard way, or some
other suitable counter-measures employed, if the
algorithm is to be used safely in such a context.

Key words: m-ary exponentiation, Liardet-Smart
randomized algorithm, ECC, addition chains, sliding
windows, addition-subtraction chains, power analysis,
SPA, SEMA, blinding, smartcard.

1 Introduction

Major progress in the theory and practice of side
channel attacks [5, 6] on embedded cryptographic
systems threatens to enable the capture of secret keys
from single applications of cryptographic functions
[10, 11, 14]. This is particularly true for the more
computationally intensive functions such as
exponentiation, which is a major process in many
crypto-systems such as RSA, ECC and Diffie-Hellman.

If the same unblinded key value is re-used for many
exponentiations, there is a danger that the repeated use
of the same operand can be determined [14]. This
would enable individual digits of the exponent base m
to be identified and hence the key recovered.
Unfortunately, particularly for ECC as opposed to RSA,

Timing attacks on modular multiplication can usually
be avoided easily by removing data-dependent
conditional statements [16], but, with timing variations
removed, attacks which make use of data-dependent
variation in power and electro-magnetic radiation
become easier. Initial attacks of this type required
averaging over a number of exponentiations [8].

One counter-measure is to modify the exponent from e
to e+rg where r is a random number, typically 32-bits,
and g is the order of the (multiplicative) group in which
the exponentiation is performed [5]. This results in a
different exponentiation being performed every time.
However, if squares and multiplications can be
distinguished during a single exponentiation, then use
of the standard binary exponentiation algorithm
immediately leads to exposure of the secret key.

For elliptic curve cryptography (ECC), the most
efficient schemes for point addition and point doubling
involve different numbers of operations in the field over
which the curve is defined, and these numbers vary
depending on the representation used for the curve. A
counter-measure which reduces the likelihood of
distinguishing between these point operations involves
equalising the number and type of the component field
operations [12] or making the point addition look
exactly the same as two point doublings [1].

However, squares and multiplications in the field
behave differently [13] and so there is no reason to
believe that such recoding will necessarily hide fully
the distinction between point additions and point
doublings: for example, in [12], field squares appear for
point additions, but field cubes when the same formula
is used for point doublings. Side channels can
distinguish these if the Hamming weight of arguments
can be deduced. So exponentiation algorithms are
chosen in which there is still an ambiguity in the
correspondence between multiplications (i.e. point
additions in ECC terms) and properties of the secret key
(such as bit or digit values). M-ary exponentiation [4]
for m > 2 provides one solution because each addition
represents an unknown choice from a set of several
non-zero digits.

applying the above exponent blinding technique is
expensive when the secret key is typically only 192
bits. It adds about 17% to the cost of point
multiplication. Hence randomised exponentiation
algorithms may be a preferred option for ECC.

There are currently several algorithms which randomise
the operations associated with specific inputs so that the
exponentiation scheme is different on successive runs
with the same data [7, 9, 17, 2, 3]. That of Liardet and
Smart [7] uses a sliding window of random, variable
width. If the attacker’s equipment is insufficient to

Proceedings of Cardis 02 (San José, CA, Nov 20-22, 2002), USENIX Assoc., Berkeley, CA, 2002, pp 59–68

obtain information from a single EC point
multiplication, then it seems that averaging over
different multiplications with the same key would dilute
any data dependency in the side channel leakage.
However, we will show here that if individual point
multiplications do leak information about what
operation is being performed, then the secret key can be
obtained straightforwardly. Indeed, one might even be
better off with m-ary multiplication.

We begin by recalling the algorithm and looking at
various parameters which might be chosen to improve
efficiency or security. Next, the assumptions about the
attacker’s equipment and cryptosystem counter-
measures are outlined. These are initially quite tight to
make the presentation of the attack easier. The attack
starts with extracting a least significant digit, and then
uses this repeatedly to reconstruct one possible
representation for the secret key. An essential part of
the discussion is an assessment of the probability
that the attack can be completed successfully.
Before concluding with some counter-measures and
alternatives, we explain how the attack can still be
performed in a more realistic environment where the
side channel leakage is much poorer.

 { If (k mod 2) = 0 then
While k > 0 do

2 The Algorithm

This section contains a brief outline of the
(exponentiation) algorithm of Liardet and Smart.
Because it generates an addition-subtraction chain
rather than simply an addition chain, inverses have to
be computed when it is applied. This means that
applications to RSA cryptography are unlikely because
of the expense of computing inverses. However, in
elliptic curve cryptography (ECC), inverses are
essentially for free. Hence, we will assume the
algorithm is applied to an additive group, such as that
formed by the points on an elliptic curve, and use
appropriate terminology. Processing of the secret key k
therefore produces a sequence of instructions which
result in additions (A) and doublings (D) of group
elements.

Suppose we wish to compute the element Q = kP for a
given positive integer k (the secret key) and a given
member P of some group E. As in m-ary
exponentiation, Liardet and Smart pre-compute the odd
multiples iP of P for integers i ∈ (–½m, ½m] where
m = 2R, and then employ the standard sliding windows
technique but with a window which has a random width
showing up to R bits. In other words, k is recoded to
obtain digits ki (0 ≤ i ≤ n) which are determined using a
randomly-chosen variable base mi which divides m.

The digits are chosen in the order k0, k1, ..., kn and the
digit representation knkn–1...k1k0 satisfies

k = ((...((kn)mn–1+kn–1)mn–2+...)m1+k1)m0+k0 (1)

The group element multiplication processes these digits
from most to least significant following the related
scheme defined by

kP = m0(m1(...mn–2(mn–1(knP)+kn–1P)+...)+k1P)+k0P (2)

2.1 Code for the Key Recoding

More explicitly, if minmod is the function which returns
a residue of minimal absolute value, the algorithm for
choosing the digits is this:

RANDOMISED SIGNED m-ARY WINDOW DECOMPOSITION
[7]:

i ← 0 ;

{ mi ← 2 ;
ki ← 0 ;

}
else
{ Randomly choose base mi ∈ {21,22,..., 2R} ;

ki ← k minmod mi ;
} ;
k ← (k–ki)/mi ;
i ← i+1 ;

} ;

Here, both 1 and 1 could be allowed as digits for base
1, but that involves the added complication of a random
bit to decide which to select, and also (to avoid non-
termination) restricting the choice to only 1 when k
reaches 1. Our attack would work also in these
circumstances with few changes.

2.2 Efficiency Considerations

There are still some parameters to be chosen in the
algorithm. Varying these affects efficiency, but there
are also security implications. As we see later, certain
choices will increase the difficulty of mounting the
attack, forcing, in particular, more samples to be
required.

The value for R has the greatest effect on efficiency. In
elliptic curve applications, subtraction may have the
same cost as addition. Then it will be unnecessary to
store the negative pre-computed multiples of the input
point. So only space for 2R–2 multiples is likely to be
required. Increasing R improves speed, but with

Colin D. Walter Breaking an Exponentiation Algorithm

diminishing returns for the space required for pre-
computed values.

No suggestions are made in [7] about how to choose the
mi randomly. A uniform distribution is not very
efficient, and indeed perhaps the least secure under this
attack. It is most efficient to make the maximum
possible use of the pre-computed values by choosing
the maximum base size 2R always. But, to maintain
generality for later, suppose mi = 2j is chosen with
probability pj when k is odd and p0 = 1 is the probability
of selecting base 2 when k is even.

Choosing pR = 1 means that mi = 2R whenever k is odd.
This yields the usual m-ary sliding window method
with fixed m = 2R. Taking R = 1 yields the usual binary
“square-and-multiply” algorithm. However, such
choices would remove any non-determinism from the
sequence of point operations.

Observe that biasing in the choice of mi does not
change the uniformity in the distribution of residues
k mod m

Randomisation prevents the obvious averaging of the
traces of many point multiplications which was used in
initial power analysis attacks on the binary “square-
and-multiply” algorithm. Here every point multiplic-
ation determines a different sequence of doublings and
additions. With matched code for additions and
doublings, averaging may hide the difference between
the two operations because they are no longer separated
in time, but in current implementations such averaging
will certainly reveal the start and end of the individual
point operations which make up the scalar
multiplication.

i inherited from k, assuming k is randomly
chosen. This means that every new key value k
generated during the recoding retains the same random
properties: in particular, residues modulo 2j will be
uniform for every key encountered.

3 The Attack

3.1 Introduction & Initial Hypotheses

The purpose of randomised exponentiation algorithms
is to frustrate side channel analysis by an attacker. In
particular, they are counter-measures against using
knowledge of the exponentiation process to extract the
secret key k. Several different levels of leakage are
possible, depending on the resources of the attacker. A
poor signal-to-noise ratio (SNR) means that many
samples have to be taken, and averaging the side
channel leakage is one way of improving the SNR. So
a critical parameter is whether or not the attacker’s
equipment is good enough for him to extract sufficient
meaningful data from the side channel trace of a single
scalar multiplication. If it is, then the standard key
blinding described earlier suddenly fails to provide the
data hiding protection afforded by averaging away local
data dependencies. Improved equipment and laboratory
techniques mean that this barrier might soon be
breached without excessive expenditure [10, 11].

The categories of leakage which could be considered
include the following:

i) individual point operations can be observed on
power, EM or other side channel traces;

ii) point doublings and point additions can be
distinguished from each other;

iii) re-use of operands can be observed; and
iv) operand addresses can be deduced.

Point (i) may hold simply because program instructions
and data need to be fetched at the start of each point
operation, and these cause different effects on the side
channels than field operations. Point (ii) may then hold
as a result of different patterns of field operations for
point additions than for point multiplications.
Properties (iii) and (iv) might hold as a result of being
able to deduce Hamming weights of data and address
words travelling along the bus.

The attack described here requires the SNR to be good
enough to extract some useful data from single
multiplications on the curve. Specifically, initially we
assume that

• Adds and doublings can always be identified
correctly and distinguished from each other using
traces obtained from side channel leakage for a
single point multiplication, and

• A number of traces are available corresponding to
the same secret key value applied to different
scalar multiplications.

Both of these hypotheses will be relaxed later to some
extent, providing a more realistic scenario.

3.2 Overview of the Attack & Notation

The outline of the attack is as follows. For simplicity,
by the first hypothesis,

• Every trace can be viewed as a word over the
alphabet {A,D}.

Every occurrence of an A (add) in the trace splits the
word into a prefix and a suffix which correspond to two
integers kp and ks that are precisely defined in terms of k

Proceedings of Cardis 02 (San José, CA, Nov 20-22, 2002), USENIX Assoc., Berkeley, CA, 2002, pp 59–68

and the position of A in the trace. All traces determine
the same values to within ±1. By looking at the
patterns to the left of a given A, one obtains the residue
of kp modulo a small power of 2, and hence a few bits
of k. Repeating this for the position of each A enables
all the bits of k to be recovered.

This lemma is obvious from the definition of the digit
sequence given by equation (1) except, perhaps, for the
last part. That part follows easily by induction. Digit ki
is chosen with |ki| ≤ ½mi ≤ mi–1. This property for
i = 0 starts the induction. Then the induction step is

|ks
(i+1)| = |kim(i)+ks

(i)| < |(ki+1)m(i)| ≤ mim(i) = m(i+1).

Definition. The position of a specific instance of
character A or D in a trace word is the number of Ds
which are to the right of the selected character.

We will continue to use the notation m(i) for
and k

∏ −
=
1
0

i
j jm

p
(i) and ks

(i) for the key values associated respect-
ively with the prefix knkn–1...ki and the suffix ki–1...k1k0
of the digit sequence. The next lemma uses the equality
and bound of Lemma 1 to identify two possible values
for ks

(i), corresponding to it being a positive or negative
residue of k modulo m(i):

We will exploit a close relationship between positions
in which A appears in traces and bits which are 1 in the
corresponding position of the binary representation of k.

 In order to be able to give examples, we fix the
character order of words over {A,D} to correspond to a
left-to-right processing order. Thus, the digit sequence
12021 404, with most significant bit on the left, is
processed from most to least significant bit, i.e. from
left to right, and so would result in the word
DADDDADD. There are As in positions 2 and 5, and
Ds in positions 0 to 5. In fact, every A is paired with a
preceding D with the same position, and so one could
view the DA combination as a single character. Then
the position would correspond directly to a character
index, counting from 0 at the right hand end, as in a
binary representation.

Lemma 2. With the previous notation, either
i) ks

(i) = k mod m(i) and kp
(i) = k div m(i), or

ii) ks
(i) = (k mod m(i))–m(i) and kp

(i) = (k div m(i))+1
where mod returns the least non-negative residue, and
div is integer division given by rounding down the real
quotient.

This shows that, whatever choices are made for the base
elements, a given digit suffix can determine only one of
two possible values when the product of the
corresponding base elements is fixed. We would like at
least the occurrence of the one which will make the
corresponding prefix odd because it leads to an addition
(A) which can be used to identify a corresponding point
in the trace.

The initial DA corresponds to the digit 12 and might be
omitted if efficient initialisation takes place instead.
Assuming this is the case, we will delete any initial Ds
but leave the initial A as an unambiguous reminder that
there is an initial digit to take into account. Thus words
always commence with A. In the above example,
ADDDADD will be the word corresponding to the
given digit sequence.

Lemma 3. For all powers 2j ≤ k, there is a choice of
base elements mi' and an integer i such that 2j = m(i).
On average, for at least 1–2–R of all values of j, there
are choices which make kp

(i) odd, and, for at least half
of all values of j, there are choices which make kp

(i)
even.

Proof. The existence of the choice of basis elements is
clear: taking mi' = 2 for all i' allows one to satisfy the
equality for m(i) with i = j. For that choice, ki is the
usual index i bit of k, and takes either parity with equal
probability. It is the lowest bit of kp

(i), and so kp
(i) is the

desired parity with probability ½.

3.3 Properties of Key Digits

We now look at the sequence of digits generated by the
Liardet-Smart algorithm. The notation used here is the
same as for a fixed base, and many standard properties
have analogues.

Other choices of base elements exist, and they may
result in kp

(i) being odd even when the bit of interest in k
is even. This increases the average number of cases for
which oddness occurs. Instead of choosing mj–1 = 2, we
try choosing mj–i' = 2i' for any i' with 1 ≤ i' ≤ R. The
ability to select them depends on a corresponding bit of
kp

(j–R) being 1 (otherwise base 2 must be chosen). These
bits are independent and so the alternative bases can be
chosen with probability ½. Each will give odd parity to
the next kp if chosen. Hence the prefix key

Lemma 1. Suppose knkn–1...k1k0 is a digit represent-
ation of k generated by the Liardet-Smart algorithm,
with sequence mn, mn–1, ..., m1, m0 of bases. For some i,
let kp

(i) denote the integer corresponding to the prefix
knkn–1...ki and let ks

(i) denote the integer corresponding
to the suffix ki–1...k1k0. Then k = kp

(i)m(i)+ks
(i) where

m(i) = ∏ and |k−
=
1
0

i
j jm s

(i)| < m(i).

Colin D. Walter Breaking an Exponentiation Algorithm

corresponding to 2j can be made odd with probability at
least 1–2–R. ■

Of course, this argument just gives a lower bound on
how many js will give rise to two key prefix and two
suffix values. It doesn’t guarantee that when both
values are possible they will both appear with non-
negligible frequencies. The actual relative frequencies
appear to depend on the lowest R bits of the kp
corresponding to m(i') = 2j–R. However, in the next
section, a lower bound on the ratio will be produced as
necessary for each choice of these bits.

3.4 Recovering One Digit of k

In this section we show how to recover the least
significant digit k0 and associated base m0 in one
representation of k and how to identify the subset of
traces which correspond to the associated prefix key kp
such that k = kpm0+k0. Exactly the same process yields
other digits of k independently. Those digits can then
be assembled together to give k in the manner described
in the next section.

If Tr is the full set of all sample traces, then we denote
by Tri the set of traces obtained by taking each member
of Tr and deleting the suffix to the right of, but not
including, the D of position i. Thus Tr0 = Tr. Tri is
partitioned into two complementary subsets: Tri

A which
consists of those traces which terminate with A, and
Tri

D which consists of those traces which terminate with
D. We need to identify one of these subsets for each
digit choice so that its neighbour to the left can be
selected correctly. Tri

A always represents the odd
choice for kp

(i), but some traces in Tri
D may contain only

some of the operations for the rightmost prefix digit,
and so not represent any kp

(i) properly.

The derivation here does make specific use of the fact
that in this implementation 1 is not allowed as a digit
for base 2. Similar arguments apply when 1 is allowed,
but there is a duality which leaves a complicating
ambiguity between the two values of ±ks throughout the
reconstruction process. This is only resolved when the
complete value of k is reconstructed and under the
assumption that the true sign of k is known.

Lemma 4. Select any trace for key k. Then k is exactly
divisible by 2i where i is the uniquely defined integer
such that ADi is a suffix of the trace.

Proof. Clearly, if k is divisible by 2i then base 2 must
be chosen for the lowest i digits, which are then all
zeros. This leads to a character sequence Di of i
consecutive Ds as a suffix in every trace. If k is not

divisible by 2i+1 then, whatever the next choice of base,
the digit will be non-zero and hence cause A to be
appended to the sequence, yielding the suffix ADi. ■

This result enables these i occurrences of D to be
identified with i least significant digits 0, each of base
2. Moreover, all traces confirm this conclusion. So,
removing the digits one at a time,

Lemma 5. If every trace in Tr has final character D
then we may take k0 = 0, m0 = 2 and the traces of Tr1 all
represent the associated kp.

If k is odd, no digit has been deduced yet, and further
work must be done.

Lemma 6. Suppose k ≡ 1 mod 2i where i ≤ R. Then
k ≡ 2i+1 mod 2i+1 if Tr contains a trace with suffix
ADiA. If k ≡ 2i+1 mod 2i+1 then the probability that Tr
contains no trace with suffix ADiA is (1– pi')|Tr| where
pi' = p1+p2+...+pi.

Proof. If k ≡ 1 mod 2i+1 then a base of m0 = 2i+1 or
larger will lead to suffix Di+1A. However, a smaller
base m0 = 2j will lead to suffix DjA with digit k0 = 1 and
the forced selection of base 2 at least i+1–j times. This
again leads to suffix Di+1A.

Now suppose k ≡ 2i+1 mod 2i+1. A base of m0 = 2i+1 or
larger again leads to suffix Di+1A. However, the choice
of base m0 = 2i means lowest digit k0 = 1 and next digit
determined by k div 2i, which is odd. Hence the suffix
is ADiA for that choice. Similarly, a base m0 = 2j with
j < i, will lead to suffix DjA, digit k0 = 1 and kp ≡ 2i–j
mod 2i–j+1. So this choice is followed by the forced
selection of base 2 exactly i–j times with associated
digit 0. The subsequent digit is then odd, resulting in
the overall suffix ADiA.

Thus, suffix ADiA guarantees k ≡ 2i+1 mod 2i+1 and it
occurs precisely when the least significant base choice
is 2j with j ≤ i. These choices occur for a given trace
with probability pi' = p1+p2+...+pi. Hence suffix ADiA
will not happen for any trace in Tr with probability
(1–pi')|Tr|. ■

Lemma 7. Suppose k ≡ 1 mod 2i. If Tr contains a
trace with suffix ADiA then k ≡ 2i+1 mod 2i+1, we may
take k0 = 1 and m0 = 2i, and the traces of Tri

A all
represent the associated kp.

This lemma deals with the recognisable instances of
k ≡ 2i+1 mod 2i+1. When base 2j is chosen for any j ≤ i,
the suffix is ADiA for these cases. As this occurs in pi'
of cases, so we expect Tri

A to contain approximately
pi'|Tr| elements.

Proceedings of Cardis 02 (San José, CA, Nov 20-22, 2002), USENIX Assoc., Berkeley, CA, 2002, pp 59–68

We will assume k ≡ 1 mod 2i+1 if there is no suffix
ADiA but we know k ≡ 1 mod 2i. By Lemma 6, this
introduces a small probability of error which can be
decreased by taking a larger sample if necessary, or by
further analysis, such as through a more exhaustive
analysis of suffixes and their expected frequencies than
there is space for here. Note, however, that if pi' = 0
then this choice of m0 will not resolve which residue
mod 2i+1 is correct. Hence an increase in security might
be obtained by having p1 = p2 = ... = pi = 0 where i is as
large as possible.

Theorem 1. Assume each base 2i is selected with
probability pi for odd key values, and digit 1 is only
used for bases greater than 2. Let pi' = p1+p2+...+pi and

'ip = 1–pi'. Suppose k is a random odd integer that
has generated trace set Tr and j (1 ≤ j ≤ R+1) is such
that Tr contains no trace with suffix ADiA for any i < j.
Then k ≡ 1 mod 2j with probability ∏ . −

=
−+1

1
1||)'1(j

i
Tr

ip

Proof. We prove this by induction on j. For j = 1 the
statement claims nothing, and so holds. For the
induction step, assume the statement holds for some
j ≤ R. Suppose also that Tr contains no trace with
suffix ADiA for any i ≤ j. By the induction hypothesis,
k ≡ 1 mod 2j with probability ∏ −

=
−+1

1
1||)'1(j

i
Tr

ip .

Theorem 3. With the same assumptions and notation
as in Theorem 1, suppose every trace in Tr has suffix
DR+1A. Then, with probability ∏ =

−+R
i

Tr
ip1

1||)'1(,
k ≡ 1 mod 2R+1 and we may pick m0 = 2R. For this
choice k0 = 1, kp is the common key for TrR

D, kp is even,
and TrR

D = TrR has the same cardinality as Tr.

Since k is random, the two possibilities for k mod 2j+1
are equally likely. So, by Lemma 6, no occurrence of
suffix ADjA means k ≡ 1 mod 2j+1 with probability

1||)'1(−+ Tr
jp . This factor just needs multiplying into

the product to obtain the claim for j+1 in place of j. ■

Theorem 2. With assumptions and notation as in
Theorem 1, suppose k is odd and j is minimal such that
1 ≤ j ≤ R+1 and Tr contains a trace with suffix ADjA.
Then k ≡ 2j+1 mod 2j+1 with probability

∏ −
=

−+1
1

1||)'1(j
i

Tr
ip .

If j ≤ R we may take k0 = 1 and m0 = 2j and then the set
of traces for the associated kp is Trj

A.

Proof. Theorem 1 shows that, for the given definition
of j, k ≡ 1 mod 2j with probability ∏ −

=
−+1

1
1||)'1(j

i
Tr

ip .
If k ≡ 1 mod 2j+1 then, as in the proof of Lemma 6, all
traces must terminate with suffix Dj+1A, which is not the
case. Hence k ≡ 2j+1 mod 2j+1 with the stated
probability.

For the base m0 = 2j, k ≡ 1 mod m0 and so the associated
digit is k0 = 1. However, kp = k div 2j is odd, which
forces the next digit to be non-zero. Hence A is the

next operation leftwards after the suffix DjA which
corresponds to m0. Thus, the relevant traces for the
next digit are those of Trj

A. ■

The values of k for which no least significant digit has
yet been assigned are those satisfying k ≡ 1 mod 2R+1.
Picking maximal base m0 = 2R gives k0 = 1 and makes
kp even. The associated set of prefix traces should be
TrR

D. A possible difficulty with this definition is that
for some traces removing the suffix DRA may split
subsequences which correspond to one digit. However,
every choice of base 2i corresponds to a suffix DiA
where i ≤ R, and must be followed by a number of
instances of base 2 with digit 0 which makes the total
modular division by at least 2R+1. Hence the suffix DRA
corresponds to the operations for a whole number of
digits. Therefore TrR

D does indeed contain traces which
represent only operations for sequences of complete
digits, and so those traces all represent the same key
value.

3.5 Combining Digits to Recover k

For every position j at which there is an occurrence of A
in some trace of Tr, the procedures of the previous sub-
section can be applied to Trj

A to obtain a base and digit
at that point. These digits are used when determining a
digit sequence for k. Starting at j = 0, the digits are
selected iteratively. As well as a digit and base, each
trace set Trj

A gives rise to another trace set defined at
some position j' > j. We will show that:

• For this definition of j', the next digit is determined
by whichever is appropriate of Trj'

A or (Trj
A)R

D.

Here we need to check on the definition of the trace
subsets. If applied iteratively, the procedures above
would actually determine smaller and smaller subsets:
each time we apparently take a subset of the traces from
the previous step. However, because only two key
values (one odd, one even) are associated with any
position, every prefix which represents the operations
of a complete number of digits must correspond to the
odd key if it terminates with A and the even key if it
terminates with D. Of course, every trace prefix
terminating with A must consist of the operations for a
whole number of digits since A cannot appear in the
middle of the sequence of operations for a single digit.

Colin D. Walter Breaking an Exponentiation Algorithm

So every trace in Trj'
A is generated from a key value

which is common to them all. Hence, the full set Trj'
A

can be used to determine the next digit, not just the
subset of Trj

A determined by the procedures above.

In the case of the prefix trace set Trj+R

D, it is not clear
which traces are generated by a complete key. In some
cases, the final D may not be the final operation of the
digit sequence from which it was derived. Hence, the
subset (Trj

A)R
D must be used, not Trj+R

D. However, the
construction observed that every such trace had suffix
DR+1A. So (Trj

A)R
D has the same cardinality as Trj

A.
Hence the trace subsets bulletted above are indeed the
correct ones to use for the key digits, and they do not
progressively decrease in size.

The process of digit determination only begins to fail
once a leading instance of A is encountered: Theorem 2
guarantees progress up to that point. Traces are not all
the same length. Some will use a large base for the
most significant digit. Their initial Ds are deleted,
giving them fewer instances of D overall, making their
traces shorter. These traces are simply discarded when
fully processed. The procedures above still apply to the
subset. Again, following Theorem 2, further digits can
still be defined until the trace set becomes empty.
However, once the first (i.e. shortest) traces run out, the
remaining key is representable by a single digit, so it is
bounded in absolute value by 2R–1–1. Each increment
of the position in the trace set reduces the representable
key by a factor of 2. Eventually, assuming there are
enough traces, the initial A of the longest trace has a
digit bounded by 1, and so must be 1. Hence k is
completely determined. “Enough” traces would be
present if, for example, base 2 were chosen for the most
significant digit. Insufficient traces just increases the
number of possible values of k which may need testing
by a small factor (under 2R–1).

3.6 The Probability of Error

We have been careful to obtain the probability of error
in each digit in order i) to see if it is feasible to recover
the key and ii) to see how the probabilities pi might be
adjusted in the algorithm definition to provide
improved security.

The procedures of §3.4 define the probabilities in terms
of the size of the trace set being employed at that time.
Generally, it is equal to the cardinality of a set of the
form Trj

A. This is equal to |Tr| times the number of DAs
in position j divided by the number of DAs or Ds in that
position. This can be approximated by |Tr| times the
overall probability pA of DA divided by the overall
probability pD of DA or D. Since the choice of base

m = 2i produces i–1 occurrences of D followed by one
of DA when i > 0, |Trj

A| ≈ π |Tr| where
π =

D

A
p
p =

R

R
Rpppp

ppp
++++

+++
...2

...
210

21

For a uniform distribution this works out at π = 3
2
+R

where typically we might expect R = 3; and for 2R-ary
sliding windows it works out at π = 1

1
+R .

In fact, the formula under-estimates the average size of
Trj

A. Some positions do not have any occurrences of A,
and we do not use the associated trace subsets. This
increases the average for those positions which do have
occurrences of A.

Next, the distribution of base choices in the
reconstructed key differs from that generated by the re-
coding process. Suppose k is odd for the set of traces at
some point during the reconstruction. In Theorem 2,
the distribution of odd residues k mod 2R+1 is uniform.
So, neglecting the assumed small numbers of
incorrectly assigned cases resulting from some of the
possible suffixes not occurring, base 2j will be selected
for the reconstructed key with probability 2–j for
0 < j ≤ R and produce an odd next key. Further, base 2R
will turn up in the remaining 2–R cases of odd keys but
produce an even next key. In half of all cases, an even
key will lead to an even key. Consequently, out of
every 2R+2 digit choices in the reconstruction, on
average 2R will be odd and 2 will be even.

By Theorems 2 and 3, the probability of the
reconstructed key being correct is a product of factors
of the form 1||)'1 −+

A
jTr

ip(. These factors can be

approximated by 1)−||'1(+ Tr
ip π . Since choosing base

2j leads to j such factors, there is essentially one such
factor for every bit of k. The exceptions are where an
even key causes base 2 and digit 0. Then there is no
doubt about the correctness of the digit 0. This last case
occurs for 2(2R+2)–1log2k bits of the initial key k.
Otherwise, for odd keys, the relative frequency of
different bases means that the factor 1||)'1(−+ Tr

ip π will
appear on average for 2R–i(2R+2)–1log2k bits if
0 < i < R and for 2(2R+2)–1log2k bits if i = R.

Because pR' = p1+p2+...+pR = 1, the factor for i = R is 1,
and so can be ignored. Hence,

Lemma 8. The key k can be recovered with a
probability approximately

∏ −
=

− −
+1

1
2||)'1(R

i
nTr

i
i

p π
where n = (1+21–R)–1log2k and π is as defined above.

Proceedings of Cardis 02 (San José, CA, Nov 20-22, 2002), USENIX Assoc., Berkeley, CA, 2002, pp 59–68

The property 'ip ≤ 1–p1 provides a lower bound for this
product. Consequently,

Lemma 9. For a uniform distribution of base, the key k
can be recovered with a probability at least

(1+)(1
R

R− π|Tr|)–n

where n = (1–21–R)(1+21–R)–1log2k and π = 3
2
+R .

For specific choices, it is possible to evaluate the
product in Lemma 8 exactly. A typical choice would
be to have a key with 192 bits, R = 3 (which requires
storing two pre-computed multiples, namely P and 3P),
and a uniform choice of base, i.e. p1 = p2 = p3 = ⅓.
Then π = ⅓ and the product in Lemma 8 is just under
2–31 for |Tr| = 9. So, if a key can be reconstructed and
checked for correctness in unit time,

Theorem 4. If doubles and adds can be distinguished
on individual traces, and traces are captured from 9
applications of the same unblinded 192-bit key, then the
Liardet-Smart algorithm with uniform selection of base
≤ 23 can be broken with a computational effort of about
O(231). With twice as many traces, the computational
effort falls to under O(210).

Of course, the full force of all the patterns available and
their relative frequencies has not yet been applied.
Hence the danger is probably substantially under-
estimated. Once a possible key has been recovered,
there is considerable unused data in the traces that has
not yet been used and can be investigated for checking
purposes. In the uniform case, about 3

1
+
+

R
R of the data is

so far unused – that in the complementary sets Trj
D.

This contains information about digits whose bases
were not aligned with those of the reconstructed
representation of k. Choosing a different base from that
of the reconstruction process described above will
provide confirmation about the correctness of each bit
of k. Indeed, each trace has to be consistent with some
choice of bases, and the rightmost inconsistency in a
trace will usually be very close to the rightmost bit in
error. There is insufficient space here to improve the
probabilities which are a consequence of this approach,
but the computational feasibility of the attack is already
assured.

If the attacker is unable to distinguish clearly between
adds and doubles, then the unused data vastly increases
his ability to make corrections. Moreover, as each digit
is obtained through a purely local extraction of data
from traces, it is easy to automate an exhaustive process
to check for the overall best digit solutions using all
traces, and hence prioritise the order for considering the
most likely values for k. However, for the data that has

been used, any indistinctness between A and D is
unimportant. In this attack, it is only necessary to
establish whether or not an A has appeared at each
position. The relative frequency of As means that the
certainty of this can be determined with high degree
just by increasing the number of traces sufficiently.

4 Counter-Measures

Our formulae for bounding the accuracy repeatedly
used the probabilities of smaller bases much more than
larger bases, and the accuracy improves when these
probabilities are increased at the expense of the
probabilities of larger bases. This is consistent with the
greater ambiguity afforded by digits of larger bases.
Thus we recommend not using a uniform choice for the
base, but employing a strong bias towards large bases,
such as was illustrated in §2.2. In the extreme,
the standard, non-randomised, m-ary exponentiation
technique is obtained, and this is not susceptible to the
attack.

The cost of key masking is not entirely trivial in the
context of ECC. Adding a 32-bit random multiple of
the group order to the key increases the point
multiplication cost by some 17% for 192-bit keys,
although it is a much smaller fraction of the total
encryption cost. Adding a smaller random multiple is
probably ineffective if it results in a number of
repetitions of the same key value within the lifetime of
the key. The highly repetitive nature of the traces
resulting from the same prefix keys turning up again
and again means that a duplicated key could be
assumed if, and only if, traces matched closely enough.

The “double-and-add-always” method of computation
provides a good measure of protection, but is
expensive. The attacker then has to determine whether
or not the result of the addition is used before he can
mount the attack. This is much more difficult than
distinguishing the two operations. Hence traces will be
susceptible to much more frequent errors, and a much
greater number of traces will have to be recovered.

There are alternative randomised algorithms for which
this type of attack does not apply, and others that
display similar weaknesses. That of Oswald and
Aigner [9] can be attacked in a similar way. MIST
[15, 17] does not exhibit the same repetition of key
values during key processing, and so may be a safer
choice. A new algorithm by Itoh et al. [18] may also be
worthy of consideration.

Colin D. Walter Breaking an Exponentiation Algorithm

5 Conclusion

It might have been hoped that the Liardet-Smart
algorithm would avoid the cost of any additional
counter-measures such as key blinding when the same
secret key is repeatedly re-used, but this now appears
not to be so. Specifically, the key needs to be masked,
or the pattern of adds and doubles has to be well hidden
for individual point multiplications.

Of course, there are many circumstances in which the
algorithm is clearly of value, such as ECDSA, for
which a different random key is used every time. Then,
for suitable parameter choices, the space of keys
generating a given pattern of adds and doubles is
infeasibly large, and so cannot be attacked successfully
without additional data.

References

[1] C. H. Gebotys & R. J. Gebotys, Secure Elliptic

Curve Implementations: An Analysis of Resistance
to Power Attacks in a DSP Processor,
Cryptographic Hardware and Embedded Systems –
CHES 2002, B. Kaliski, Ç. Koç & C. Paar
(editors), Lecture Notes in Computer Science,
2523, Springer-Verlag, 2002, to appear.

[2] J. C. Ha & S. J. Moon, Randomized Signed-Scalar

Multiplication of ECC to Resist Power Attacks,
Cryptographic Hardware and Embedded Systems –
CHES 2002, B. Kaliski, Ç. Koç & C. Paar
(editors), Lecture Notes in Computer Science,
2523, Springer-Verlag, 2002, to appear.

[3] K. Itoh, J. Yajima, M. Takenaka & N. Torii, DPA

Countermeasures by Improving the Window
Method, Cryptographic Hardware and Embedded
Systems – CHES 2002, B. Kaliski, Ç. Koç & C.
Paar (editors), Lecture Notes in Computer Science,
2523, Springer-Verlag, 2002, to appear.

[4] D. E. Knuth, The Art of Computer Programming,

vol. 2, “Seminumerical Algorithms”, 2nd Edition,
Addison-Wesley, 1981, 441–466.

[5] P. Kocher, Timing Attack on Implementations of

Diffie-Hellman, RSA, DSS, and other systems,
Advances in Cryptology – CRYPTO ’96, N. Koblitz
(editor), Lecture Notes in Computer Science, 1109,
Springer-Verlag, 1996, 104–113.

[6] P. Kocher, J. Jaffe & B. Jun, Differential Power

Analysis, Advances in Cryptology – CRYPTO ’99,

M. Wiener (editor), Lecture Notes in Computer
Science, 1666, Springer-Verlag, 1999, 388–397.

[7] P.-Y. Liardet & N. P. Smart, Preventing SPA/DPA

in ECC Systems using the Jacobi Form,
Cryptographic Hardware and Embedded Systems –
CHES 2001, Ç. Koç, D. Naccache & C. Paar
(editors), Lecture Notes in Computer Science,
2162, Springer-Verlag, 2001, 391–401.

[8] T. S. Messerges, E. A. Dabbish & R. H. Sloan,

Power Analysis Attacks of Modular Exponentiation
in Smartcards, Cryptographic Hardware and
Embedded Systems (Proc CHES 99), C. Paar & Ç.
Koç (editors), Lecture Notes in Computer Science,
1717, Springer-Verlag, 1999, 144–157.

[9] E. Oswald & M. Aigner, Randomized Addition-

Subtraction Chains as a Countermeasure against
Power Attacks, Cryptographic Hardware and
Embedded Systems – CHES 2001, Ç. Koç, D.
Naccache & C. Paar (editors), Lecture Notes in
Computer Science, 2162, Springer-Verlag, 2001,
39–50.

[10] J.-J. Quisquater & D. Samyde, ElectroMagnetic

Analysis (EMA): Measures and Counter-Measures
for Smart Cards, Smart Card Programming and
Security (E-smart 2001), Lecture Notes in
Computer Science, 2140, Springer-Verlag, 2001,
200–210.

[11] J.-J. Quisquater & D. Samyde, Eddy current for

Magnetic Analysis with Active Sensor, Smart Card
Programming and Security (E-smart 2002), Lecture
Notes in Computer Science, Springer-Verlag,
2002, to appear.

[12] M. Joye & J.-J. Quisquater, Hessian Elliptic

Curves and Side Channel Attacks, Cryptographic
Hardware and Embedded Systems – CHES 2001,
Ç. Koç, D. Naccache & C. Paar (editors), Lecture
Notes in Computer Science, 2162, Springer-
Verlag, 2001, 402–410.

[13] C. D. Walter & S. Thompson, Distinguishing

Exponent Digits by Observing Modular
Subtractions, Topics in Cryptology – CT-RSA
2001, D. Naccache (editor), Lecture Notes in
Computer Science, 2020, Springer-Verlag, 2001,
192–207.

[14] C. D. Walter, Sliding Windows succumbs to Big

Mac Attack, Cryptographic Hardware and
Embedded Systems – CHES 2001, Ç. Koç, D.
Naccache & C. Paar (editors), Lecture Notes in

Proceedings of Cardis 02 (San José, CA, Nov 20-22, 2002), USENIX Assoc., Berkeley, CA, 2002, pp 59–68

Computer Science, 2162, Springer-Verlag, 2001,
286–299.

[15] C. D. Walter, Improvements in, and relating to,

Cryptographic Methods and Apparatus, UK Patent
Application 0126317.7, Comodo Research
Laboratory, 2001.

[16] C. D. Walter, Precise Bounds for Montgomery

Modular Multiplication and Some Potentially
Insecure RSA Moduli, Proceedings of CT-RSA
2002, Lecture Notes in Computer Science, 2271,
Springer-Verlag, 2002, 30–39.

[17] C. D. Walter, MIST: An Efficient, Randomized
Exponentiation Algorithm for Resisting Power
Analysis, Proceedings of CT-RSA 2002, Lecture
Notes in Computer Science, 2271, Springer-
Verlag, 2002, 53–66.

[18] K. Itoh, J. Yajima, M. Takenaka & N. Torii, DPA

Countermeasures by Improving the Window
Method, Cryptographic Hardware and Embedded
Systems – CHES 2002, B. Kaliski, Ç. Koç & C.
Paar (editors), Lecture Notes in Computer Science,
2523, Springer-Verlag, 2002, to appear.

This paper appeared in:
Proceedings of CARDIS ’02, pages 59-68,
©2002 The USENIX Association
ISBN 1-931971-04-8

