
Logarithmi
 Speed Modular Multipli
ation

Colin D. Walter

Department of Computation

UMIST

PO Box 88

Man
hester M60 1QD, UK

www.
o.umist.a
.uk

Abstra
t. A design for logarithmi
 speed modular multipli
ation is

given and a 
omparison made with the best implementations of exist-

ing, more standard algorithms by Bri
kell and Montgomery. A 40-fold

in
rease in speed is reported by using 
hip area at the limit of 
urrent

te
hnology.

Key words: Computer Arithmeti
, Modular Multipli
ation, RSA 
ryp-

tography.

1 Introdu
tion

Most modular multipli
ation algorithms in 
urrent use perform their arithmeti


on n-digit inputs in O(n logn) time and O(n) spa
e using what amounts to the

standard paper and pen
il method with a redundant representation of the num-

bers [1℄. Mu
h work has gone into improving the eÆ
ien
y of these algorithms

and good estimates of their speeds in terms of gate delays are now available [3℄,

[9℄.

Many 
ryptographi
 appli
ations, su
h as de
ryption of RSA [5℄, require high

speed modular arithmeti
 on large numbers. It is presumably well understood

that modular multipli
ation in parti
ular 
an be performed on inputs with O(n)

digits in O(log n) time at the pri
e of O(n

2

) spa
e. Here we give details for this

and quantify upper bounds on the time and spa
e more pre
isely in order to

see if a 
hange of algorithm 
an reasonably be made to trade spa
e for speed

and yet remain within feasible te
hnology. Pipelining the algorithm in
reases

the throughput to 1 modular multipli
ation per O(1) 
lo
k 
y
les, although the

laten
y is still O(log n).

In a previous work [10℄ the author showed how a systoli
 array 
ould be built

for modular multipli
ation with a throughput of one produ
t per 
lo
k 
y
le on

a very fast 
lo
k (O(1) time), also using O(n

2

) spa
e. However, it requires O(n)

time between the input and output of 
orresponding digits. Using pipelining as

noted above, the algorithm here would provide essentially the same performan
e



2

as the systoli
 array � the same throughput for the same 
ost in area - but the

mu
h lower laten
y of O(log(n)) time instead of O(n).

In a related work [6℄, Shand et al. des
ribe a programmable array implemen-

tation of Montgomery's algorithm [4℄. The details of their implementation are

not given, but the performan
e would appear to be similar to that of the systoli


array [10℄ if they have the ability to pipeline a number of modular multipli
a-

tions to use the hardware simultaneously. Thus the hardware here should again

provide a signi�
ant advantage. Their measure of time is an absolute one using a

parti
ular te
hnology and gives an O(n) time for laten
y, an order of magnitude

slower than what is des
ribed here.

Upper and lower bounds on the area/time eÆ
ien
y of multipli
ation are

given by Brent and Kung [1℄. By employing the dis
rete Fourier transform, they

are able to des
ribe a method that would provide modular multipli
ation using

O(n logn) area and O(

p

n logn) time. This is intermediate in terms of both

area and time between the method here and the standard methods of [2℄ and

[3℄. With its smaller produ
t of Area�T ime, as well as an absolute area that

suits 
urrent te
hnology, it is probably an over negle
ted alternative. It is worth

noting that minimum Area�T ime is believed to in
rease as time is redu
ed to

its asymptoti
 minimum, and the area here still appears to be the best for the

logarithmi
 time it takes [7℄.

It turns out that 
ryptographi
 appli
ations requiring around 500-bit num-

bers are well served by logarithmi
 methods as far as speed is 
on
erned, although

not so well spa
e-wise as far as 
urrent te
hnology is 
on
erned. Without e�ort, a

40-fold in
rease in speed is obtained here for a 500-fold in
rease in area, resulting

in the requirement for 5�10

6

XOR gates or equivalent for a H/W implementa-

tion. Su
h hardware is appropriate for heavy 
entralised RSA en
ryption and

de
ryption using the same key or keys 
ontinuously, and is just about feasible

nowadays using redundan
y in wafer-s
ale integration te
hniques.

2 The Algorithm

We split the 
omputation of (A�B) modM into six distin
t phases, namely the

various fun
tion appli
ations in rnd(fra
t((A�B)�(1=M))�M) where fra
t

dis
ards the integer part of a real number, and retains the non-negative fra
-

tional part, and rnd rounds a real to the nearest integer. Here fra
t is dis
ard-

ing (A�B) divM so that multipli
ation by M leaves (A�B) modM . Various

approximations are made, whi
h leave a small fra
tional part to be rounded o�.

In parti
ular, we assume that M

�1

is already known to just over 3m pla
es

after the point where m is the number of digits in M , A and B. Of 
ourse,

the �rst m (approximately) of these digits are zero. Then (A�B)�(1=M) has

an a

ura
y to over m pla
es after the point, so that multiplying its fra
tional

part by M will give a result that is a

urate to within

1

4

, say. Rounding to the

nearest integer will then give the 
orre
t answer. The pre
ise a

ura
y needed

in the 
al
ulations is not important for the dis
ussion here, but is easy to �nd.



IEE Ele
troni
s Letters, vol. 30, No 17, 1994, pp. 1397-1398 3

The only requirement is that suÆ
ient a

ura
y is employed to perform exa
t

rounding by inspe
ting a small 
onstant number of fra
tional digits.

A

urate appli
ation of fra
t takes time. A 
hange of 1 in the value of A�B


hanges (A�B)�(1=M) by about 1 in the position m pla
es after the point.

Hen
e fra
t may need to examine just more than the �rst m pla
es after the

point for 
omplete a

ura
y. By examining only one or two su
h pla
es, fra
t

may be out by �1, so that the end result di�ers byM from (A�B) modM . The

output is then in the range 0 to 2M rather than 0 toM . This is a typi
al penalty

of saving time, but is not a problem in RSA 
ryptography where a large number

of 
onse
utive modular multipli
ations are performed. In su
h 
ases, the 
orre
t

range 0 to M need only be a
hieved after the last operation. We will assume

this approximation to fra
t is used.

3 The Notation

Using a redundant number system enables addition to be done with bounded


arry propagation. We assume A and B and all intermediate results have su
h

forms, but not M or 1=M , whi
h we will suppose to be in binary form. We will

also assume that ea
h multipli
ation is done sequentially on the same hardware.

The prohibitive 
ost of the extra hardware does not seem to warrant the small

extra speed a
hievable by trying to do more at on
e.

Let b be the base of our redundant representation. We may assume A < 2M

and B < 2M . Then m = dlog

b

2Me is the maximum number of (redundant)

digits in A or B, and n = dlog

2

Me the number of bits in the modulus M .

The largest multipli
ation involved here is that by 1=M . So we need hardware

to perform a 2mdigit�2n bit multipli
ation. The produ
t A�B of m digit re-

dundant numbers 
an be split fairly easily to use this hardware if the degree of

redundan
y is not unreasonable.

4 The Largest Multipli
ation

The 2mdigit�2n bit multipli
ation generates 4mn digits, with up to 2n of these

representing the same power of b. Here

1

8

th

of them will be dis
arded when fra
t

is applied be
ause they over
ow into the integer part. Also, almost half of them

represent su
h low powers of b that they 
an only in
uen
e the rounding pro
ess

through 
arry propagation: those with indi
es below about�m�log

b

m will make

a total di�eren
e of less than

1

2

to the �nal out
ome and so 
an be ignored. Thus

we 
an assume that only about 2mn digits need adding together. These 
an be

redu
ed to 2 redundantly represented numbers using a tree stru
ture of 3-to-2

redundant number adders built from 3-to-2 bit adders (Figure 1). This tree has

a maximum depth of about log

3=2

n 3-to-2 bit adders and involves an area of

one 3-to-2 bit adder for every bit removed in transforming the input digits into

output digits. This is essentially Walla
e's 
onstru
tion [8℄.

In fa
t, the 3-to-2 adders 
an be more 
losely pa
ked than 
ounting a depth of

3 gates ea
h as illustrated s
hemati
ally in Figure 2. Some inputs are not needed



4

�

^

�

^

_

1

1

2

2 2

(a) Full Adder for Bits (b) Full Adder for Numbers

Fig. 1. 3-to-2 Adder

�

�

(a) 4-to-2 Adder

� � � � � � � � � �

� � � � �

� � � � �

� � � � � �

� �

� � � �

� �

� �

� �

� �

�

�

�

(b) 15-to-2 Adder with depth of 12 gates

Fig. 2. Pa
king of Adders

immediately and some outputs are generated early. Hen
e adders like the 15-to-

2 adder in the �gure 
an be 
onstru
ted with depths of 
lose to log

6=5

n=2 for

an n-to-2 adder. In RSA 
ryptography we 
an expe
t n to be a little in ex
ess

of 512 and so about 32 gates depth will suÆ
e to redu
e the 2n summands of

the multipli
ation to 2 redundant numbers. A further 2 or at most 3 gates will

redu
e this to a single redundant number (e.g. 
onsider using 2 binary registers

to hold a redundant number).

Now let us 
onsider the initialisation time to 
reate the summands for adding.

Ea
h input bit needs to be distributed to 2n di�erent positions for ANDing with

a bit from the other multipli
and. This 
an be done by a tree of multiplexers of

depth no worse than, say, log

4

2n, whi
h is about 5 in our 
ase. However, only

one digit position has as many as 2n digits to sum, so that digits 
an be routed

preferentially there in order to 
ut the overall depth. Adding the time of 2 gates



IEE Ele
troni
s Letters, vol. 30, No 17, 1994, pp. 1397-1398 5

for setup and hold times of registers, plus one or two gates to enable the hardware

to be used for the various multipli
ations leads to a grand total of about 40 gates

along a 
riti
al path. With 3 multipli
ations being done to perform the modular

multipli
- ation, we obtain 120 gates delays altogether over the three 
lo
k 
y
les

needed.

5 Comparison with Standard Implementations

The standard algorithms when pushed to their limits, require a 
onstant depth

of 9 or 10 gates per 
lo
k 
y
le (see [9℄ and [3℄), with marginally over n 
lo
k


y
les per modular multipli
ation. For n = 512 or so, this means the method

above provides a forty-fold in
rease in speed, whi
h almost doubles every time n

is doubled. Indeed, repeating the 
al
ulations shows a speed advantage for word

lengths right down to n = 8, at whi
h point a non-redundant representation

would be employed to do the whole multipli
ation in a single 
lo
k ti
k.

What is the 
ost? The area of the standard algorithm is linear, as is the

time. However, the logarithmi
 time for the new algorithm requires 0(n

2

) area.

Spe
i�
ally, about 20n gates for the standard algorithms (more for the fastest

implementations), and 20n

2

here if two binary numbers provide the redundan
y,

with linear 
hanges to both for other representations. Overall, the logarithmi


method is therefore n times more expensive in area, requiring some 5�10

6

gates

for typi
al 
hoi
es of n � 5�10

2

. This is just about possible with 
urrent te
h-

nology.

We have negle
ted the e�e
t of long wire lengths. Along the 
riti
al path

this will typi
ally be 
omparable with the edge length of the area of the 
hip

being utilised in both algorithms be
ause information needs to be transported

right a
ross the 
hip. For the 
lassi
al algorithms, this will be of length O(

p

n),

and so adds O(n

p

n) time to the multipli
ation, whereas for the s
heme here

the length is O(n), whi
h adds just O(n) to the total time. Thus wire length

eventually dominates the time in both algorithms, but is always mu
h greater

for the standard algorithms.

Finally, we note that some of the hardware stands idle at the end of ea
h

multipli
ation 
y
le. It is only the middle digits in the output whi
h required

the full depth of the hardware for their 
al
ulations. The end digits 
an be

produ
ed with almost zero depth. However, on average a typi
al digit requires

the summation of half the number of inputs that the middle digits have. The

tree stru
ture of the addition means that, although only half the hardware is

need for this, its depth is just one gate less than for a middle digit, so that it

takes almost the same time as the worst 
ase. Hen
e, overall the hardware is

running at almost full 
apa
ity. The only improvement in use 
ould be through

pipelining, as mentioned earlier.



6

6 Con
lusion

It is now possible to 
onsider logarithmi
 time (Walla
e tree) VLSI implementa-

tions for modular multipli
ation. This stret
hes 
urrent te
hnology to the limit,

but provides nearly two orders of magnitude in
rease in speed when inputs have

500 or so bits, as typi
ally in RSA 
ryptography.

Referen
es

[1℄ R.P. Brent & H.T. Kung, The Area-Time Complexity of Binary Multipli
ation,

J.ACM, vol. 28, 1981, pp 521-534.

[2℄ E. F. Bri
kell, A Fast Modular Multipli
ation Algorithm with Appli
ation to Two

Key Cryptography, Advan
es in Cryptology - CRYPTO '82, ed. Chaum et al.,

Plenum, 1983, pp. 51-60.

[3℄ S.E. Eldridge & C.D. Walter, Hardware Implementation of Montgomery's Modular

Multipli
ation Algorithm, IEEE Trans. Computers, vol. 42, 1993, pp. 693-699.

[4℄ P.L. Montgomery, Modular Multipli
ation without Trial Division, Mathemati
s of

Computation, vol. 44, 1985, pp. 519-521.

[5℄ R. L. Rivest, A. Shamir & L. Adleman, A Method for obtaining Digital Signatures

and Publi
-Key Cryptosystems, Comm. ACM, vol. 21, 1978, pp. 120-126.

[6℄ M. Shand, P. Bertin & J. Vuillemin, Hardware speedups in long integer multipli
a-

tion, ACM SigAr
h, vol. 19 no. 1, Mar
h 1991, pp 106-113.

[7℄ B. Sugla & D.A. Carlson, Extreme Area-Time Tradeo�s in VLSI, IEEE Trans.

Comput., vol. 39, 1990, pp 251-257.

[8℄ C.S. Walla
e, A suggestion for a fast multiplier, IEEE Trans. Ele
. Comput., vol.

EC-13, 1964, pp 14-17.

[9℄ C.D. Walter, Faster Modular Multipli
ation by Operand S
aling, Advan
es in Cryp-

tology - CRYPTO '91, Le
ture Notes in Computer S
ien
e, vol. 576, Springer-

Verlag, 1992, pp. 313-323.

[10℄ C.D. Walter, Systoli
 Modular Multipli
ation, IEEE Trans Computers, vol. 42,

1993, pp 376-8.


