Logarithmic Speed Modular Multiplication

Colin D. Walter

Department of Computation
UMIST
PO Box 88
Manchester M60 1QD, UK

WWW.co.umist.ac.uk

Abstract. A design for logarithmic speed modular multiplication is
given and a comparison made with the best implementations of exist-
ing, more standard algorithms by Brickell and Montgomery. A 40-fold
increase in speed is reported by using chip area at the limit of current
technology.

Key words: Computer Arithmetic, Modular Multiplication, RSA cryp-
tography.

1 Introduction

Most modular multiplication algorithms in current use perform their arithmetic
on n-digit inputs in O(nlogn) time and O(n) space using what amounts to the
standard paper and pencil method with a redundant representation of the num-
bers [1]. Much work has gone into improving the efficiency of these algorithms
and good estimates of their speeds in terms of gate delays are now available [3],
[9].

Many cryptographic applications, such as decryption of RSA [5], require high
speed modular arithmetic on large numbers. It is presumably well understood
that modular multiplication in particular can be performed on inputs with O(n)
digits in O(logn) time at the price of O(n?) space. Here we give details for this
and quantify upper bounds on the time and space more precisely in order to
see if a change of algorithm can reasonably be made to trade space for speed
and yet remain within feasible technology. Pipelining the algorithm increases
the throughput to 1 modular multiplication per O(1) clock cycles, although the
latency is still O(logn).

In a previous work [10] the author showed how a systolic array could be built
for modular multiplication with a throughput of one product per clock cycle on
a very fast clock (O(1) time), also using O(n?) space. However, it requires O(n)
time between the input and output of corresponding digits. Using pipelining as
noted above, the algorithm here would provide essentially the same performance



as the systolic array — the same throughput for the same cost in area - but the
much lower latency of O(log(n)) time instead of O(n).

In a related work [6], Shand et al. describe a programmable array implemen-
tation of Montgomery’s algorithm [4]. The details of their implementation are
not given, but the performance would appear to be similar to that of the systolic
array [10] if they have the ability to pipeline a number of modular multiplica-
tions to use the hardware simultaneously. Thus the hardware here should again
provide a significant advantage. Their measure of time is an absolute one using a
particular technology and gives an O(n) time for latency, an order of magnitude
slower than what is described here.

Upper and lower bounds on the area/time efficiency of multiplication are
given by Brent and Kung [1]. By employing the discrete Fourier transform, they
are able to describe a method that would provide modular multiplication using
O(nlogn) area and O(y/nlogn) time. This is intermediate in terms of both
area and time between the method here and the standard methods of [2] and
[3]. With its smaller product of AreaxTime, as well as an absolute area that
suits current technology, it is probably an over neglected alternative. It is worth
noting that minimum AreaxTime is believed to increase as time is reduced to
its asymptotic minimum, and the area here still appears to be the best for the
logarithmic time it takes [7].

It turns out that cryptographic applications requiring around 500-bit num-
bers are well served by logarithmic methods as far as speed is concerned, although
not so well space-wise as far as current technology is concerned. Without effort, a
40-fold increase in speed is obtained here for a 500-fold increase in area, resulting
in the requirement for 5x10% XOR gates or equivalent for a H/W implementa-
tion. Such hardware is appropriate for heavy centralised RSA encryption and
decryption using the same key or keys continuously, and is just about feasible
nowadays using redundancy in wafer-scale integration techniques.

2 The Algorithm

We split the computation of (Ax B) mod M into six distinct phases, namely the
various function applications in rnd(fract((AxB)x(1/M))xM) where fract
discards the integer part of a real number, and retains the non-negative frac-
tional part, and rnd rounds a real to the nearest integer. Here fract is discard-
ing (AxB) div M so that multiplication by M leaves (AxB) mod M. Various
approximations are made, which leave a small fractional part to be rounded off.
In particular, we assume that M ™! is already known to just over 3m places
after the point where m is the number of digits in M, A and B. Of course,
the first m (approximately) of these digits are zero. Then (AxB)x(1/M) has
an accuracy to over m places after the point, so that multiplying its fractional
part by M will give a result that is accurate to within %, say. Rounding to the
nearest integer will then give the correct answer. The precise accuracy needed
in the calculations is not important for the discussion here, but is easy to find.



IEE Electronics Letters, vol. 30, No 17, 1994, pp. 1397-1398 3

The only requirement is that sufficient accuracy is employed to perform exact
rounding by inspecting a small constant number of fractional digits.

Accurate application of fract takes time. A change of 1 in the value of AxB
changes (AxB)x(1/M) by about 1 in the position m places after the point.
Hence fract may need to examine just more than the first m places after the
point for complete accuracy. By examining only one or two such places, fract
may be out by £1, so that the end result differs by M from (Ax B) mod M. The
output is then in the range 0 to 2M rather than 0 to M. This is a typical penalty
of saving time, but is not a problem in RSA cryptography where a large number
of consecutive modular multiplications are performed. In such cases, the correct
range 0 to M need only be achieved after the last operation. We will assume
this approximation to fract is used.

3 The Notation

Using a redundant number system enables addition to be done with bounded
carry propagation. We assume A and B and all intermediate results have such
forms, but not M or 1/M, which we will suppose to be in binary form. We will
also assume that each multiplication is done sequentially on the same hardware.
The prohibitive cost of the extra hardware does not seem to warrant the small
extra speed achievable by trying to do more at once.

Let b be the base of our redundant representation. We may assume A < 2M
and B < 2M. Then m = [log, 2M] is the maximum number of (redundant)
digits in A or B, and n = [log, M| the number of bits in the modulus M.
The largest multiplication involved here is that by 1/M. So we need hardware
to perform a 2m digitx2n bit multiplication. The product AxB of m digit re-
dundant numbers can be split fairly easily to use this hardware if the degree of
redundancy is not unreasonable.

4 The Largest Multiplication

The 2m digit x2n bit multiplication generates 4mn digits, with up to 2n of these
representing the same power of b. Here %th of them will be discarded when fract
is applied because they overflow into the integer part. Also, almost half of them
represent such low powers of b that they can only influence the rounding process
through carry propagation: those with indices below about —m—log, m will make
a total difference of less than % to the final outcome and so can be ignored. Thus
we can assume that only about 2mn digits need adding together. These can be
reduced to 2 redundantly represented numbers using a tree structure of 3-to-2
redundant number adders built from 3-to-2 bit adders (Figure 1). This tree has
a maximum depth of about logz,, n 3-to-2 bit adders and involves an area of
one 3-to-2 bit adder for every bit removed in transforming the input digits into
output digits. This is essentially Wallace’s construction [8].

In fact, the 3-to-2 adders can be more closely packed than counting a depth of
3 gates each as illustrated schematically in Figure 2. Some inputs are not needed



L
-

(a) Full Adder for Bits (b) Full Adder for Numbers

Fig. 1. 3-to-2 Adder

= 5

(a) 4-to-2 Adder (b) 15-to-2 Adder with depth of 12 gates

Fig. 2. Packing of Adders

immediately and some outputs are generated early. Hence adders like the 15-to-
2 adder in the figure can be constructed with depths of close to logg 5 n/2 for
an n-to-2 adder. In RSA cryptography we can expect n to be a little in excess
of 512 and so about 32 gates depth will suffice to reduce the 2n summands of
the multiplication to 2 redundant numbers. A further 2 or at most 3 gates will
reduce this to a single redundant number (e.g. consider using 2 binary registers
to hold a redundant number).

Now let us consider the initialisation time to create the summands for adding.
Each input bit needs to be distributed to 2n different positions for ANDing with
a bit from the other multiplicand. This can be done by a tree of multiplexers of
depth no worse than, say, log, 2n, which is about 5 in our case. However, only
one digit position has as many as 2n digits to sum, so that digits can be routed
preferentially there in order to cut the overall depth. Adding the time of 2 gates



IEE Electronics Letters, vol. 30, No 17, 1994, pp. 1397-1398 5

for setup and hold times of registers, plus one or two gates to enable the hardware
to be used for the various multiplications leads to a grand total of about 40 gates
along a critical path. With 3 multiplications being done to perform the modular
multiplic- ation, we obtain 120 gates delays altogether over the three clock cycles
needed.

5 Comparison with Standard Implementations

The standard algorithms when pushed to their limits, require a constant depth
of 9 or 10 gates per clock cycle (see [9] and [3]), with marginally over n clock
cycles per modular multiplication. For n = 512 or so, this means the method
above provides a forty-fold increase in speed, which almost doubles every time n
is doubled. Indeed, repeating the calculations shows a speed advantage for word
lengths right down to n = 8, at which point a non-redundant representation
would be employed to do the whole multiplication in a single clock tick.

What is the cost? The area of the standard algorithm is linear, as is the
time. However, the logarithmic time for the new algorithm requires 0(n?) area.
Specifically, about 20n gates for the standard algorithms (more for the fastest
implementations), and 20n? here if two binary numbers provide the redundancy,
with linear changes to both for other representations. Overall, the logarithmic
method is therefore n times more expensive in area, requiring some 5x10° gates
for typical choices of n ~ 5x102. This is just about possible with current tech-
nology.

We have neglected the effect of long wire lengths. Along the critical path
this will typically be comparable with the edge length of the area of the chip
being utilised in both algorithms because information needs to be transported
right across the chip. For the classical algorithms, this will be of length O(y/n),
and so adds O(ny/n) time to the multiplication, whereas for the scheme here
the length is O(n), which adds just O(n) to the total time. Thus wire length
eventually dominates the time in both algorithms, but is always much greater
for the standard algorithms.

Finally, we note that some of the hardware stands idle at the end of each
multiplication cycle. It is only the middle digits in the output which required
the full depth of the hardware for their calculations. The end digits can be
produced with almost zero depth. However, on average a typical digit requires
the summation of half the number of inputs that the middle digits have. The
tree structure of the addition means that, although only half the hardware is
need for this, its depth is just one gate less than for a middle digit, so that it
takes almost the same time as the worst case. Hence, overall the hardware is
running at almost full capacity. The only improvement in use could be through
pipelining, as mentioned earlier.



6

6

Conclusion

It is now possible to consider logarithmic time (Wallace tree) VLSI implementa-
tions for modular multiplication. This stretches current technology to the limit,
but provides nearly two orders of magnitude increase in speed when inputs have
500 or so bits, as typically in RSA cryptography.

References

[1]
2]

(3]
[4]

[6]
[7]
(8]
[9]

R.P. Brent & H.T. Kung, The Area-Time Complexity of Binary Multiplication,
J.ACM, vol. 28, 1981, pp 521-534.

E. F. Brickell, A Fast Modular Multiplication Algorithm with Application to Two
Key Cryptography, Advances in Cryptology - CRYPTO ’82, ed. Chaum et al.,
Plenum, 1983, pp. 51-60.

S.E. Eldridge & C.D. Walter, Hardware Implementation of Montgomery’s Modular
Multiplication Algorithm, IEEE Trans. Computers, vol. 42, 1993, pp. 693-699.
P.L. Montgomery, Modular Multiplication without Trial Division, Mathematics of
Computation, vol. 44, 1985, pp. 519-521.

R. L. Rivest, A. Shamir & L. Adleman, A Method for obtaining Digital Signatures
and Public-Key Cryptosystems, Comm. ACM, vol. 21, 1978, pp. 120-126.

M. Shand, P. Bertin & J. Vuillemin, Hardware speedups in long integer multiplica-
tion, ACM SigArch, vol. 19 no. 1, March 1991, pp 106-113.

B. Sugla & D.A. Carlson, Eztreme Area-Time Tradeoffs in VLSI, IEEE Trans.
Comput., vol. 39, 1990, pp 251-257.

C.S. Wallace, A suggestion for a fast multiplier, IEEE Trans. Elec. Comput., vol.
EC-13, 1964, pp 14-17.

C.D. Walter, Faster Modular Multiplication by Operand Scaling, Advances in Cryp-
tology - CRYPTO ’91, Lecture Notes in Computer Science, vol. 576, Springer-
Verlag, 1992, pp. 313-323.

[10] C.D. Walter, Systolic Modular Multiplication, IEEE Trans Computers, vol. 42,

1993, pp 376-8.



