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Abstract

By an appropriate choice of the modulus used in RSA cryptography, it is possible

simplify the hardware for performing the required modular multiplication step, and

thereby increase the speed of encryption and decryption. Here we consider this when

P. L. Montgomery’s algorithm is used.

1. Introduction

In earlier work by the author and Eldridge [5,6], it was shown how certain moduli

M in RSA cryptography [1] enable simplification of the hardware for performing the

modular multiplication step, and this in turn leads to an increase in the speed of both

encryption and decryption. It is possible to make further improvements of the type

seen in [5], using Montgomery’s algorithm [3] for modular multiplication instead. Here

we extend [6] using such techniques, and so familiarity with the detailed discussion in

both might be helpful.

Modular multiplication is normally performed, as in ordinary multiplication, by

keeping a running total, initially zero, which is repeatedly shifted and added to the

product of the multiplicand by the next digit of the multiplier.  This is reduced modulo

M during each iteration in order to keep the partial product down to the size of M. The
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multiples of M subtracted on successive iterations are actually the digits of the integer

quotient of the product by M. This is Brickell’s approach [2].

The main bottle-neck in this computation is the calculation and broadcasting of the

quotient digits to every digit position for every iteration. This can be solved using a

number of techniques to simplify the hardware in order to reduce its critical path

length. The methods in [6] were sufficient for moduli up to about 1000 bits in length.

Here we perform operand scaling, or its equivalent, to extend the results to moduli of

any size. As a consequence, almost all of the hardware is fully utilised almost all of the

time, even for moduli of arbitrarily many digits. This means that no significant further

improvement is likely without resorting to entirely different algorithms.

2.  Montgomery’s Algorithm

In Montgomery’s algorithm for modular multiplication, the expected order of

processing is reversed, with the digits of the multiplier being considered in the opposite

order from usual, namely starting with the lowest digit. The shift is then downwards on

each iteration, and a multiple of M is added in order to make this shift possible without

a fractional part developing. This reversal of processing introduces an extra factor of 2i

where i is the number of iterations performed. In brief, to calculate (A×B) mod M up to

this factor, the repeated operation required is:

R  �   2−1R + aB + qM

where a is a digit of A,  and q is a digit of the  appropriately scaled  integer quotient

(A × B) div M.

Some pre- and post- processing is necessary to remove the factor 2i and extract the

true modular product (see [6]). However, one advantage of this method is that carries

propagate away from the digits of R which are used to determine the quotient digits q,

i.e. the multiples of the modulus to be added or subtracted. Furthermore, at the cost of

a few more iterations, the multiplicand B can be shifted away from these digits in order

to simplify the process of calculating quotient digits still further.
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3.  The Simplifications

As usual, a redundant representation of the numbers is employed to enable the

addition cycle to be performed with digit parallel operations. A and B, which are

normally results from previous modular multiplications, and the partial product R, are

assumed to be of this form. We choose the digit range {0,1,2,3} for them, but note

that, as A is consumed from the bottom up, it can be converted on the fly to non-

redundant form so that the digit a used to form aB is just a single bit. The modulus M

is known beforehand, and so can reasonably be assumed to be in the usual non-

redundant binary form.
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S S R R
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Figure 1    Bit Slice for Adder of depth 4.

As A and B are known initially, aB can be calculated as far in advance as necessary

to speed the computation, although space may be required to buffer partial calculations

before they are used. We will show below that q can be computed as long before it is

needed as necessary. Thus qM can also be computed in advance, which means that S =

aB + qM can be generated without delaying the main addition. Indeed, S can be given a

representation with a digit range of just {0,1,2}. Now the addition cycle has been

reduced to just

R  �  2−1R + S

in which both R and S have (different) redundant representations. This can be done as

in Figure 1 by an adder with a critical path length of only 4 gates, leading to a very
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short clock cycle. Moreover, if 3 bits are used for each digit of R, then the adder can

be shortened to a mere 3 gates, as in Figure 2 − just half the depth of Brickell’s adder

[2].
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Figure 2     Bit Slice for Adder of depth 3.

R
3

R R
3

Assume that the registers containing A, B, M and R all contain n digit positions.

The computing of  S = aB - qM  requires the broadcasting of digits q and a to each of

the n digit positions using a tree of multiplexers and then the digit-parallel addition.

This requires O(log n) time and O(n) area.  So the digits q and a need to be available

about t = O(log n) cycles, say, before the addition cycle in which the next value of R is

calculated from S = aB - qM. This is achieved by modifying B and M so that their

lowest t digits are always fixed, and known in advance.

First, we replace B by 2tB so that its lowest t digits are all zero. The registers must

thereby be increased in size by t digit positions over and above the number of digits in

M. So the number of iterations in the modular multiplication must also be increased by

t. This is only a marginal change in the space and time usage, and does not increase the

post-processing.

Secondly, as M is odd, we could replace M by a multiple M´ = mM with the

property  mM ≡ 1 (mod 2t). However, the result using the scaled modulus M´ will need

some further minor post-processing to reduce it modulo the original M. Alternatively,

the modulus can be chosen to satisfy M ≡ 1 (mod 2t) directly. The modulus used in the
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RSA crypto-system is a product  p1 p2 of two primes, each typically of around 100

decimal digits in length. These primes are obtained by considering a sequence of

numbers until one is found that, using an algorithm such as that of Solovay and

Strassen [4], is likely to be prime with a given, very high probability. Any suitable

choice for the first prime p1 will determine the congruence which p2 must satisfy,

namely   p2  ≡  p1
−1 (mod 2t). The same algorithm can then be used to search for an

appropriate value for the second prime.

A consequence of these simplifications is that the bottom t digits of R are

determined merely by shifting down the bottom t+1 digits of its previous value. Since

these digits do not change when S is added, they will be the digits q. Thus the digits q

are indeed produced when required.  Moreover, they can be obtained in non-redundant

binary form: since the lowest t digits of R are initially 0, they have non-redundant form

initially, and thereafter, the digit at position t+1 can be converted to non-redundant

form, with its carry moving upwards, so that the non-redundancy property of the

lowest digits is maintained.

4. Conclusion

To sum up, for any number n of binary digits in the modulus of the modular

multiplication, we have described how to generate the digits required for the modular

reduction steps without delaying the formation of the product. Thus modular

multiplication suited for RSA may be implemented in  n + O(log n) clock cycles using

P. L. Montgomery’s algorithm and a clock cycle determined by an adder with a critical

path length of only 3 gates. This adder has just half the depth of those used previously

in the literature, and so leads to significantly faster performance.
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