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PURE FIELDS OF DEGREE 9
WITH CLASSNUMBER PRIME TO 3

by Colin D. WALTER

In a well-known paper, Honda [5] found the precise rati@oaditions
on n 0 Z which determine WherQ(%) has class number divisible by 3.

More recently, Endé [3] has tackled this problem t@(%) using the same

techniques: a class number relation and the calculafian ambiguous class
number by norm residue symbols. His results are incompddthough most
of the residue symbols required to solve the problem aendiy him. Here
the main theorem (5.5) extends his work so that with anfew possible
exceptions the necessary and sufficient rational tondiare now known for

Q(%) to have class number prime to 3.

1. Class number relations.

Let Mo/Ky be a normal extension of number fields whose Gaglmap is
G =o,1|c"=1%Y=101=10"0

where ¢ is an odd prime and is an integer of ordef(¢-1) modulo®. R.
Brauer [2] has shown that a class number relationbeaobtained from any
relation between the characters of G induced fraruttit characters of its
subgroups. To find all such relationships it is necessarypecify the
conjugacy classes of subgroups.

A Sylow {-subgroup of any subgroup of G is contained in the normal
Sylow ¢-subgroup G= [6,7°'0 of G. The cyclic subgroups of , Gwith
order £ are B0« G and GT1“ YO for 0 <i <. The latter subgroups
are conjugate under powers of The £ elements of Gwhich are not of
order ¢ form the unique non-cyclic subgroup of G with ordét viz
6%, 10« G. Hence the subgroups of ordér lie in [@*% t“'0 and are
6k G and Gt 'Ofor 0<i<£ The latter subgroups are conjugate under
powers of 1. Because the image of a subgroup iNGGis cyclic, the
subgroup is generated from one of the abégroups together with an
element of order dividingl—1 which normalises thé-group. The only such

elements have the forno't® for 0 <d<{-I or 1 itself. Replacingo't®
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by a suitable power and a conjugate ensures that all subgaoceibtained
by adjoining ™ where d | ¢ -1) and taking all conjugates of the resulting

subgroups.
Sofor d | £ -1 the unique subgroup of ordéf(¢ -1)/d is @, 1°[k G;

the subgroups of orde®({ -1)/d are [@,1%« G, the £ -1 conjugates of
G1°'0Owhend=¢-1 andthe | of conjugates ofig*, 1°C] the subgroups

of order £(¢{ —-1)/d are the 1 or{ conjugates of@¢, 1“0 and the or £
conjugates of @°C) and the subgroups of ordet «(1)/d are the £ or £
conjugates of @*] Each conjugacy class is represented in the following
diagram asd varies over proper divisors df-1.:

o

The corresponding subfields can be named thus :

M2

Jod

Kag

Kod

and the subscript will be omitted whend = 1.
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The total number of classes ig 461 wheret is the number of divisors
of £ -1, and of theset2+ 3 are cyclic. This means there arg¢ 42
independent relations between the induced unit charagté®y from the
subgroup fixing Q. They can be expressed in the following way and are
easily verified :

(1.1) d'X(Kig) —d'X(Koa) =x(L1) —X(Lo)
(1.2) d'X(Kag) —d'X(K1g) =x(L2) —x(L1)
(1.3) dX(Ja) —dX(Jod) = X(M1) = X(Mo)
(1.4) dX(d) —dX(ha)  =X(M2) = X(My) .

Here d is defined bydd’ =4 -1 and d is a proper divisor of¢ — 1.
The remaining two independent relations are :

(1.5) €X(L2) —€x(L1)  =X(M2) —x(My)
(1.6) €=Nx(N) = ¢ x(Lo) = x(M1) = x(Mo) .

Each of these relations is of standard type for whiehdbrresponding
class number relation is known. The first four ard-afbenius type (see [8])
and the last two are of Kuroda type (see [9]), whilst egust(1.3) and (1.4)
add to give a further Frobenius type relation.

Supposen 0 Z is such that K= Q(‘li/ﬁ) has degree? over Q. Then

. 12 22 . .
the normal extension MKy = Q( In, \/i)/Q has G as its Galois group
and its subfields fod=1 are:

M, = Q(ef/H ,KE/I )

AN

L2=Q(lf/ﬁ,%)

M.=odn V1)
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Let hg be the class number and, Whe unit group of a field2. If

|(k1/k2) = (Ukl/Ukz)tor

for an extension ki/k, and & : k) = £ then Iki/ky)) # 1 implies
ki = kz(%) for somee [ Uy, (see [9] § 4). There is no such extensiorQof
andso I(KQ) =1 If K= Kl(%) for ed Uk, then {/e = a’ for some

o 0Ky and i prime to £. Hence n = (J_rNKl,QO()‘, which is absurd. So

I((K2/K1) = 1 also. This simplifies the relations given 8], [theorem 4.4,
which correspond to the equations (1.1) and (1.2) :

hl—l kbl_l ~(%-5)/4

(1.7) — 3 - Qu for Qu=[Uy,: Uy, [1k,Uk,].
h'—o K1
h|_2 hKll_l —(¢-1)%4 - (=3)2

(1.8) R E QL for Q =[U,: U, [1k,Uk,.

h,, b,

where the products extend over the conjugates pfakd Kk over Q and
K1 respectively.

Bounds are given in [8] theorem 3.6 for the indices &d Q. In the
two cases the given indices | divide #ly) and I(L/L,) respectively. If

Ly = LO(%) for ed U, thenn= o’ for somea O Ly andi prime to L.
Hence n“* = (&N o0)* which is not possible. Thus HlLo) = 1. Also,

if Lo= Ll(%) for ed U, then&/n =€a’ for somea O L; and i prime

to . Hence n‘! = (J_rNLl,QO()‘ which again is not possible. Therefore
I(Lo/L1) = 1. These remarks and [8] yield that :

(1.9) Q divides (¢
(1.10) Q divides ¢4DE2)2,

The first of these bounds has already been obtainéthibry for £ =5 in

[7]. The second sharpens and generalises that given by &f@pLiemma 3.
Formula (1.8) for{ = 3 is due to Endéop. cit. Lemma 2).

2. Primeideals.

Take £ =3 in Section 1 .The aim is to establish whighgive rise to a

field K; = Q(%) whose class number is prime to 3. Every subextengion o

M,/Q is composed of extensions containing a totally ramifiechgrieither a
divisor of (3) or a divisor of n). Hence the class number of any field
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divides that of its extensions in ;M(see [6]). In particularhk, divides hg,
and so it is necessary that' I]. For the rest of this article the assumption is
therefore made than is such that 3 does not divide the class number of

Q(%). If n=non® where ny and n; are cube free then ;K& Q(%)

and Honda [5] has described precisely the allowable integgrsWithout
loss of generality, it is assumed that is one of the following :

(2.1i) np=3
(2.1i)) no=p where p=-1 mod 9.
(2.2)) no=3p where p=2or5mod9and i=0, lor 2.

(2.2i)) no=p'g where i=1or2 and
p, g=2or 5 mod 9 satisfy np=+1 mod 9.

Herep andq denote distinct rational primes.

In (2.1) there is just one prime ramified in/& and ¢ = 31 is a norm
in Li/Lo. However, in (2.2) there are two primes ramified i/@Q< but ¢ is
no longer a norm in L, It will be convenient to assume that, Kis
contained inR under an embedding of ;Mnto C which is fixed from now
on; and K will be the conjugate contained in,.KWith this conventiont®
represents complex conjugacy on, Mnd T induces complex conjugacy on
Lo.

Becausehg, h, and hx, are all prime to 3 the class number relation
(1.7) and the bound (1.9) show tHhat, is prime to 3 and that |@ 3. From
(1.8) the 3-componentk’y of hg satisfy

(2.3) hhk,? = Q37
with Q@ dividing 3 by (1.10). Thus :
(2.4) LEMMA. — If 3*|hy, then 3 |h,.

The main technique used to discard unsuitablés the calculation of the
ambiguous class numbet/” of L,/L;. From (2.4) and [6] one has :

(2.5) LEMMA. — i) If 3°|.o7 then 3 |h, .
i) If 3 |.o~ and Lo/K2 containsjust one ramified prime then 3 [hg, .
iii) If 3/« then 3/h., and 3/hx, .

The 3-component of the ambiguous class number will be dermnt o/’
and its value is well-known to be

(2.6) ot = 3
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becauseh., is prime to 3. Hered is the number of prime ideals of; L
which are ramified in 4 and

(2.7) 3 = [U,: U, n Nyl

So the boundt < 3 immediately places a restriction @hfor which 3/hg, ,
Viz

(2.8) d<t+2<5.
The factorization of prime ideals in; Land L is as follows :

If p|no with p#3 then p) =9 in L, sincep=-1mod 3. Letr be
the number of such primes. Then< 2 by (2.1) and (2.2) and is the
number of their divisors ramified in,AL ;.

If p4/ np with p=1mod 3 and ﬁ%a: 1 then ) has six prime

divisors in L. These are all ramified in,Lif p|n and this would contradict
(2.8). So no such primes divide

If p4no with p=1mod 3 andﬁ%oa;t 1 then ) =pp’ in L. Let a

be the number of such primes dividing so that 2 is the number of their
prime divisors ramified in L.

If p/ no with p=-1 mod 3 then ) = pp"p"z in L. Let b be the
number of such primes dividing so that B is the number of their prime
divisors ramified in b/L; .

Finally (3) = (I"I"z)2 or € in L according asng =+1 mod 9 or not. If
no # £1 mod 9 then (3) has one ramified prime divisor wiLL If n=+1
mod 27 thenny =1 mod 9 and (3) has two ramified prime divisors in
Lo/Ly, viz I° and I°° if [ is the divisor satisfying* =1. If n# +1 mod 27
but np=+1 mod 9 then (3) has three ramified prime divisorsLyfl ;.
Let c be the number of divisors of (3) ramified in/LL.

Then (2.8) becomes

(2.9) d=r+2a+3b+c<t+2< 5.

3. Theunitsof Lj.

Let e be a fundamental unit of 1Kso chosen thag, > 0. Then-¢, ey,
and e’ generate Y[]Uk, Since Q=3 there is a unite, 0 U, such
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that U, = 0-¢, e, & Dand
(3.2) & = (e
for some integeramod 3. It is easy to deduce that
(3.2) e21+0+02 =
and further manipulation (see [1] corollary 15.4.1) showas th

(3.3) e]_ - ezl—O' - e21+'[ ]

(3.4) LEMMA. — The number a in (3.1)satisfies a= 0 mod 3 if, and
onlyif, ¢ isnotanormin Li/Lo, i.e. ng isof type(2.2).

Proof. — From(3.2) { isanormin /Lo if a# 0 mod 3. However, if
a=0mod 3, thed is not the norm of a unit becausg**°* = 1 for a =,
e, ande,. If C is not the norm of a unit but is yet a norm from then K
has a weakly ambiguous ideal class of order 3 by [T0nke 1.11. This
contradicts the class number of, Keing prime to 3. Thus & is a norm in
Li/Lo then it is the norm of a unit.

(3.5) LEMMA. — Let m be a cube-free product of rational primes which
are totally ramified in K; and suppose m is not the product of a power of
no and the cube of a rational number. Then there is an integer a O K;
satisfying

1+0+02

(3.6) me=a® and m=a
and such that €,=a'" isaunit for which U, = -, &, €2 [

Proof. — Supposem = |‘|piai is the prime decomposition ofn. Then
(p) = for a prime divisory; of () in Ki. Since K has class number
prime to 3 the idealp; is principal, sayy; = (a;). Put a = |‘|0(ia‘. Then
a’m™ = ™ which is a unit of K So o’m? = +e” for some
integer b. Without loss of generality the sign is positive abd +1 because
¥m O Ky Clearly ) = $°% = @*°*°%) so that m= a** % by the
earlier choice of sign. Now

bo . 1-0y1- 1+0+02  -30 _
O'GO' (0] 0'0'00'_1

(e = &
shows thate,®a’™ 0 L. Thus o™ = €, = +&,°C° = +&,°,°¢° for some

integer ¢, so that3(, ey, €20F 3, ey, e[ F Uy,.

Notice that such integerm exist if and only if ny is of type (2.2). The
lemma itself generalises to pure cubic fields with ctagsber divisible by 3
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under the extra hypothesis thamn) ( must be the cube of a principal ideal of
Ki.

4. Norm residue symbols.

In most cases the value ofin (2.7) can be found exactly using the norm
residue symbols which Endo has calculated for a basig.gf The symbols

are powers of¢, which satisfies{”* = and {° =Z. Hence

an T30 _ KAl _ k3n]
Ty 0w D0

and

o 3nH _ e dnd
Ty 0y -

1+o+02

So for primesp which decompose a)(=p in L; the convention is
that p is the divisor fixed byt, i.e. ' =p , and p° = p°~. Endod [3] proves
the following lemmas using the properties of the normduesisymbol as
described by Hasse in [ 4] and the relations in section 3.

(4.2) LEMMA. — If p|no, pZ3 and (p) =p° in Ly then

mgzl = p=-1mod9.

L] L]
>

In case (2.2) M

=1if p=-1mod 9;and

3
Mﬁzlcp/fm if p$ -1 mod?9.
H
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(4.3) LEMMA. = If pAno,p|n, p=1 mod S,E%Oai 1 and (p) = pp°

in Ly then

£Anf - HAhE
v g He
B ¥nH _ Finf
v g He» b
| ncase (2.2) %ZT%E = E’@E =1
(4.4) LEMMA. — If pAng, p|n, p=-1mod 3,and (p):pp"p"z in Ly
then
j;%/‘i P(‘/_H HZ{H and
v HHv H gy o
%@é—l = p=-1mod 9.
) -1
b In B 3nH_ ¥
33’ E 1ande H Epazg’ and
adnf_
H»7
if, and only if, ny isof type(2.2)or p=-1 mod 9.
F2¥nf . Fe ) Hesz

1

p H He H 5y’ &
if, and only if, ny isof type(2.2)or p=-1 mod 9.

(4.5) LEMMA. — If np=+1 mod 9, n= 3N with 3/n, and (3) =
(II"I"Z)2 in Ly wherel is fixed by T then

j(:\))/_i P(‘/_H P(‘/_H,and

it § Hi H Hee* H
wizlan’silmodﬂ.

1t H

MH:]_ and %’%H:%’%H—l.
1 f Ho H He® H
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Incase(2.2) [ OEPZ ‘/_E EQI;/_E

Proof. — The result for{ is as given by End6, and the first claim abgut
is immediate from (4.1). Foe; in case (2.2) End6 has shown that

2Pf32\/_H ,{
|OHUH[EmE

Now T[] E%E M ELE 1 and so€, can be changed by powers

of { and e, to give

,Z ¢ (1
H o' H [ [
where, by the proof of (3.5), the sign is minus the undefsign in (3.6).
Also from (3.6) with the same ambiguity of sign,

.30 _ B ¥ fadnf
H1o §H Hr HHe® H

¥ i’
H17 H He?

72 +2
¢ nH Bnednf _ e !
ot B H o { Coec

Finally, (3) is not totally ramified in Kasnp =1 mod 9 and so 3 is
not a factor ofm. Thus, m is a product of divisors oy, and, by (2.2),
m=+1 mod 9 if, and only if,m is a cube times a power af,. However,
such anm does not satisfy the hypotheses of (3.5), and therefose +1
mod 9. Hence

CITOCTR,

Em’—ZH _ Z(mz—l)/:% £ 1
L L[

(4.6) LEMMA. — If ng# +1 mod 9,n=3n" with 34n’, and (3) =1 in
L, then
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In case (2.2),

, 3
gzLiJﬁgzl '=+1 mod 9 where m=3m’ with 3/n .

(4.7) LEMMA. - In case (2.2)with np = +1 mod 9 the only units of L;
which are norms are the cubes.

Proof. — Supposee = {'e/e) is a norm. Then

m,Bnd - 3]
B 8 B B

by (4.5). Hencek=0 mod 3 by (4.5). So
|
_ TR _ fdnf]
Jt Heed Hi0f
by (4.5). Hencej =0 mod 3 by (4.5). So
_ e[ _ Fr.dnf
d» H Hv 4

for a prime divisor p of p| n.. Hence i = 0 mod 3 by (4.2) as
p#+lmod9.

(4.8) LEMMA. — Incase (2.2)with ng # +1 mod 9 suppose n has no
prime factor p=1 mod 3with ﬁ%a = 1. Let €, correspondto m= 3. If

€, isanormthenthe unitsof L; which are norms are cubes times powers of
e; and €,. If €, isnotanorm,theunitsof L; which are norms are cubes
times powers of e;. In particular, the former case holds, i.e. €, isanorm,
when n hasno factor p=-1 mod 3.

Proof. — It is readily seen thag is a norm and that when has no factor

p=-1mod 3 thene, is also a norm. Sinc q Hvﬁ 1 in(4.6) it is clear

that no linear combination of, and { can be a norm except possibly cubes
times powers of'’,.

(4.9) LEMMA. - Incase(2.1)if ¢ isnotanormin L,/L; then the only
unitsof L; which are norms are the cubes.
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Proof. — From (3.1) and (3.4);° = {*'&°"?. Hence { not a norm O

€2 not anormOd ({'e)°*? not a norm O e, not a norm, for any

integeri.

3
Choose a primep in L; for which EL‘:/HE # 1. By (4.1) certainly

p' zp. Let e='ele’ be a general unit of 1L Then

o o o R Budnf
Ty PP PP w P HeHHEY

by (3.1) and (3.3), and

Fodng . R AE fdnf - R fadnf
Ty D THw HEw BB HAr T

by (4.1). These expressions are distinct and so theytanth be equal to 1
if k#0 mod3. ThuscanormO € %anormd k=0mod 30 e a
norm 0 i=j=0 mod 3 by the initial remarks. Therefoeeis a cube if it is
a norm.

(4.10) LEMMA. — Incase(2.1)if ¢ isanormin Ly/L; but e isnota
norm, then the only units of L; which are norms are cubes times a power of

C.

3
Proof. — Choose a primep in L; for which EL‘:/HE # 1. Then for

e={'e/e) the proof of (4.9) yieldsk= 0 mod 3 if e is a norm. Sol'e/ is
a norm in that case and consequergly is a norm becausé is. Thusj =0
mod 3 also, which proves the statement.

5. Theclass number of Ko.

Recall from 82 the definitions of, a, b, and ¢ as the numbers of certain
primes which ramify in k/L;. The value ofc (= 1, 2 or 3) places certain
congruence conditions om and ny which restrict the values ofr. In
particular,

(5.1) If c=1thenrz2;
(5.2) If c21then rz0;

becauseny, has to be of type (2.1) or (2.2).
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(5.3) THEOREM. — If K, has class number prime to 3 then n has no
prime factor p=1 mod 3.

Proof. — The case ofn divisible by p=1 mod 3 with ﬁ%a =1 has

already been excluded in 8% (2.8) since such a prime has six ramified
divisorsin L;. Otherwise suppose& > 0. The possible values aof, a, b,

and c satisfying r < 2 and (2.9) are listed below with the reason why
3 |hk,. Ineach caséd =0 for otherwise @+ 3b+c=>2.1+3.1+1 would
contradict (2.9). Whenc = 1 the extension JAK, has a unique ramified
prime and so (2.5ii) can be applied.

a ¢ r Type ofng d t d-t-1 Reason
1 1 0 (2.1i) 3| <1| =1 C,e norms by (4.3) and (4.6);
(2.5ii)
1 2 0 none (5.2)
1 3 0 none (5.2)
1 1 1 (2.2i) 41 <2 |21 e; norm by (4.8); (2.5ii)
1 2 1 (2.1ii) 5| 2| =22 |C norm by (4.2), (4.3), and (4.5);
(2.5i)
1 2 none (5.1)
1 0 (2.1i) 5/ <3| 21 (2.5ii)

(5.4) THEOREM. — If K, has class number primeto 3 and n hasa
prime factor p =-1 mod 3 which does not divide no then, without loss of
generality, n=3p® or 9p> where p=2or 5 mod 9. For such n theclass
number hg, isprimeto 3.

Proof. — As observed in the previous proo§ = 0 if b # 0. So the
possible values of, b, and c satisfyingr <2 and (2.9) are the following:

b ¢ r Type ofng d |t |dt1 Reason

1 1 0 (2.1i) 4| * * see below
1 2 0 none (5.2)
1 1 1 (2.2i) 5/<3] 21 (2.5ii)

The outstanding case df=1,c=1,r =0 corresponds tm of the form
3p® or P° with p=-1mod 3. Ifp# -1 mod 9 thenl is not a norm by

(4.4) or (4.6). Hence = 3 by (4.9) andd-t-1=0. Thus 3 |k, by (2.5iii).
On the other hand, ifp = -1 mod 9 then{ is a norm by (4.4) and (4.6).
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Hencet<2 andd-t-1>1. Thus 3hk, by (2.5ii).

From (5.3) and (5.4) the onlyn containing prime divisors other than
those of 8 and for whichhk, is prime to 3 are those described in (5.4).

Otherwisea =b =0 and there are the following possibilities :

c r Typeofn, | d | t |d-t-1 Reason

1 0 (2.1i) 11 0 0 Only one prime is ramified.
So every unit is a norm
by the product formula.

1 1 (2.2i) 21 1 0 €, is a norm by (4.2)
and ( 4.6) form=3; (4.8)

1 2 none (5.1)

2 0 none (5.2)

2 1 (2.1ii) 3|<2| 2 { is a norm by (4.5)

2 2 (2.2ii) 413 0 4.7)

3 0 none (5.2)

3 1 (2. 1ii) 4 ,

3 2 (2.2ii) 5/ 3/ 1 @.7)

This table gives three cases for which/ 1%} three cases which are
impossible, and three cases which are undecided. Wher8 and r = 1,
then n= 3*p where p=-1 mod 9 and eithei # 0 mod 3 orp # -1 mod
27. If p# -1 mod 27 then{ is not a norm by (4.5) and sb= 3 by (4.9).
So d-t-1=0 and 3 |h, by (2.5iii). The following theorem has now been
proved :

(5.5) MAIN THEOREM. — i) The class number of Q(n) isprimeto 3
when n isone of the following :

n=3,

n=3p where p=2 or 5mod 9and i isanyinteger,

n=3p3 where p=2 or 5mod9and i=1 or 2,

n=3p where p=8 or 17 mod 27and i isany integer,

n=pg where p,q=2 or 5mod 9and j satisies n=+ 1 mod 27 .

Ineach case p and q denote distinct primes.

i) 1t may be possible that the class number of Q(%) isprimeto 3
when n isone of thefollowing :
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n=3p where p=-1mod 27and i isanyinteger ,

n=3pg where p,q=2 or 5mod 9, satisfies pg=+1 mod 9
and i satisfies n# +£1 mod 27.

Here p and g denote distinct primes again.

i) If Q(%) is not given by taking one of the above values of n then

the class number of Q(%) isdivisible by 3.

Remark. — The case ofn = 3 is well-known and Endd proves the result

for n=3p® or P°* wherep=2 or 5mod 9.

(1]
(2]

(3]
[4]
5]
[6]
[7]
(8]
9]

BIBLIOGRAPHY

P. BARRUCAND and H. @HN, Remarks on principal factors in a relative cubic
field, J. Number Theory, 3 (1971), 226-239.

R. BRAUER, Beziehungen zwischen Klassenzahlen von Teilkérpern eines
galoisschen Koérperdjath. Nachr., 4 (1951), 158-174.

A. ENDO, On the divisibility of the class number Qf(%) by 3, Mem. Fac.
Sci., Kyushu Univ., A, 30 (1976), 299-311.

H. HASSE Bericht Uber neuere Untersuchungen und Probleme aus daniel he
der algebraischen Zahlkérper, Il, Physica Verlag, Wirzbvieyi, 1970.

T. HONDA, Pure cubic fields whose class numbers are multipieree, J.
Number Theory, 3 (1971), 7-12.

K. IWASAWA, A note on class numbers of algebraic number figdds, Math.
Sem. Univ. Hamburg, 20 (1956), 257-258.

C. J. RRRY, Class number relations in pure quintic fieldSymposia
Mathematica, 15 (1975), 475-485.

C. D. WALTER, A class number relation in Frobenius extensions of m@umb
fields, Mathematika, 24 (1977), 216-225.

C. D. WALTER, Kuroda's class number relatioActa Arithmetica, 35 (1979),
41-51.

[10] C. D. WALTER, The ambiguous class group and the genus group of certain non-

normal extensiondvlathematika, 26 (1979), 113-124.

Manuscrit recu le °1 octobre 1979.
Colin D. WALTER,

Department of Mathematics
University College
Belfield
Dublin 4 (Ireland).



