A CLASS NUMBER RELATION IN FROBENIUS EXTENSIONS OF NUMBER FIELDS

COLIN D. WALTER

Let K / k be a normal extension of algebraic number fields whose Galois group G is a Frobenius group. Then K / k is said to be a Frobenius extension. Most of the structure of the unit group and of the ideal class group of K is determined by that of the subfields fixed by the Frobenius kernel N and by a complement F. Here this is investigated when G is a maximal or metacyclic Frobenius group. In particular, the results apply firstly to the normal closure of $k(\sqrt[p]{a}) / k$ where $a \in k$ and p is a rational prime, and, secondly, when G is a dihedral group of order $2 n$ for an odd integer n. A. Scholz, taking $n=p=3$, was the first to consider this problem.

The first section describes some basic properties of the group ring $\mathbb{Z}[G]$ and the second section, which could be omitted in a preliminary reading, just serves to calculate a certain index in $\mathbb{Z}[G]$. The result is Theorem 2.1. In $\S 3$ the aim is to study the unit index Q which appears in the class number relation and a bound is obtained for it in Theorem 3.6. Then, in Theorem 4.4, the class number relation itself is derived. All the extraneous factors therein divide a power of the order n of N. This is explained in Theorem 5.3 by an underlying isomorphism between the maximal subgroups of the ideal class groups whose orders are prime to n.

The overall plan used to discover the class number relation is to eliminate the group of Minkowski units from R. Brauer's relation [1] and to calculate the consequent index in $\mathbb{Z}[G]$ by using regulators. When these ideas were first exhibited in an abstract of [11] at the Oberwolfach meeting in August 1975 discriminants were used instead of regulators, with the disadvantage that the index in $\mathbb{Z}[G]$ could be determined only for totally real fields. This restriction applies to W. Jehne's subsequent paper [6] on Frobenius extensions of \mathbb{Q} with maximal type. The general case for maximal Frobenius groups had already occurred in [9], but reappears here together with the metacyclic case. Some more specific metacyclic extensions have been examined by F. Halter-Koch and N. Moser in [2,3,4, and 8], while T. Honda in [5] has found the appropriate isomorphism of ideal class groups for general metacyclic Frobenius groups.

The author gratefully acknowledges the receipt of a grant from Trinity College, Cambridge.
§1. Frobenius Groups. Let G be a group with order $|G|=n f$ where n and f are co-prime and such that $g \in G$ implies $g^{n}=1$ or $g^{f}=1$. Suppose also that

$$
N=\left\{g \in G \mid g^{n}=1\right\}
$$

is a proper normal subgroup of G. Then G is called a Frobenius group and N its kernel. Let $\tilde{S} \in \mathbb{Z}[G]$ denote the sum of the elements in a subset S of G. A complement of N is a subgroup F for which $\tilde{F} \tilde{N}=\tilde{G}$. There are precisely n such complements, which are conjugate under elements of N. They have order f and intersect pairwise in the identity, while N has order n. Hence

$$
\tilde{N}+\sum \tilde{F}=\tilde{G}+n \cdot \tilde{1}
$$

where the sum extends over all complements F. This implies

$$
1_{N}^{G}+f \cdot 1_{F}^{G}=1_{1}^{G}+f \cdot 1_{G}^{G},
$$

where 1_{H}^{G} denotes the character on G induced by the unit character on a subgroup H.
The centraliser of an element of $N-1$ is contained in N. Hence $N-1$ decomposes into orbits of length f under conjugation by elements of F and f divides $n-1$. Thus G is called maximal if $f=n-1$. In this situation N is an abelian group of prime exponent. Now suppose G is metacyclic. Then both N and F are cyclic with generators v and ϕ respectively, say, which satisfy a relation $v^{r} \phi=\phi v$. Here n must be odd. From this point, it is assumed that G is of one of these two types.
1.3 Definition. Let $\left\{v_{i} \in N \mid 0 \leq i \leq f-1\right\}$ be the set $N-1$ when G is maximal and the set with $v_{i}=v^{i}$ when G is metacyclic. For the fixed complement F_{0}, generated by ϕ when G is metacyclic, let \sum ' and Π 'denote sums and products over the f complements $v_{i} F_{0} v_{i}^{-1}$.

Most other sums and products extend over the full set of n complements. Finally, for a left (respectively right) G-module X and a subgroup H of G let $H X$ (respectively $X H$) be the subgroup of X fixed under the action of H. For example, $N K$ and $F K$ are the subfields of K fixed by N and F.
1.4 Lemma. Let Z be the intersection of $\mathbb{Z}[N]$ with the centre of $\mathbb{Z}[G]$. Then

$$
\mathbb{Z}[N]=\sum_{i} v_{i} Z
$$

and this sum is direct up to elements in $\mathbb{Z} \tilde{N}$.
Proof. Z is generated by 1 and the elements $z_{j}=\sum_{h_{\epsilon} F} h^{-1} g_{j} h$ where the g_{j} are representatives of the $(n-1) / f$ conjugacy classes in $N-1$. The equality comes from $1+\sum_{i} v_{i}=\tilde{N} \in \bigcap_{i} v_{i} Z$ in the maximal case. For the metacyclic case, the minimum polynomial $\prod_{h_{\epsilon} F}\left(x-h^{-1} v h\right)$ of v over Z shows that v^{f}, and therefore any power of v, lies in $\sum_{i} v_{i} Z$. The directness is apparent from $\operatorname{dim}_{\mathbb{Z}} Z=1+(n-1) / f$.
1.5 Theorem. For any $\mathbb{Z}[G]$-module X define $X^{\prime}=\sum F X$. Then X^{\prime} is the $\mathbb{Z}[G]$-module generated by any $F X$ and $X^{\prime}=\sum^{\prime} F X$. Also define $X_{0}=N X+X^{\prime}$. Then the sum $X_{0}=N X+\sum ' F X$ is direct up to elements whose nth multiple lies in $G X$. Moreover, $n X \subset X_{0}$.

Proof. For $g \in N$ use 1.4 to choose $\alpha_{i} \in Z$ for which $g=\sum_{i} v_{i} \alpha_{i}$. If $x \in F_{0} X$ then $g x=\sum_{i} v_{i} \alpha_{i} x \in \sum^{\prime} F X$. Thus $\sum^{\prime} F X$ is a $\mathbb{Z}[G]$-module and contains every $F X$.

From 1.1 we have $n X \subset \tilde{N} X+\sum \tilde{F} X \subset X_{0}$. Also that equation yields 1.6

$$
\mathbb{Q}[G]=N \mathbb{Q}[G]+\sum^{\prime} F \mathbb{Q}[G],
$$

by the first part. A comparison of dimensions shows that this sum is direct up to elements in $\mathbb{Q} \tilde{G}$. Let $1=e_{N}+\sum^{\prime} e_{F}$ be a corresponding decomposition of 1 with $n e_{N}=\tilde{N}$ and $n e_{F} \in F \mathbb{Z}[G]$, say. Let $H, H^{\prime} \in\left\{N, v_{i} F_{0} v_{i}^{-1}\right\}$ be distinct. Then $n e_{H} \tilde{H}^{\prime} \in \mathbb{Z} \tilde{G}$ by decomposing \tilde{H}^{\prime} under 1.6. If $x_{F} \in F X$ for $F \neq H$ one finds that

$$
n e_{H} x_{F}=n e_{H}\left(\tilde{N}-\sum_{j} \sum_{h_{\epsilon} F} h g_{j} h^{-1}\right) x_{F}=n e_{H} \tilde{N} x_{F}-\sum_{j} n e_{H} \tilde{F} g_{j} x_{F} \in G X .
$$

Similarly, when $x_{N} \in N X$ one obtains $n e_{F} x_{N} \in G X$ because $n e_{F}=\tilde{F} \alpha$ for some $\alpha \in \mathbb{Z}[N]$. Hence $n e_{H} x_{H^{\prime}} \in G X$ if $x_{H^{\prime}} \in H^{\prime} X$. Consequently

$$
n x_{H^{\prime}}=\sum_{H} n e_{H} x_{H^{\prime}} \equiv n e_{H^{\prime}} x_{H^{\prime}} \text { modulo } G X
$$

Suppose $\sum_{H} x_{H}=0$ with $x_{H} \in H X$. Then

$$
0=n e_{H^{\prime}} \sum_{H} x_{H} \equiv n e_{H^{\prime}} x_{H^{\prime}} \equiv n x_{H^{\prime}} \text { modulo } G X
$$

and $n x_{H^{\prime}} \in G X$. Thus the sum for X_{0} is direct as far as stated.
1.7 Lemma. Suppose G is metacyclic. Define $\beta_{i} \in \mathbb{Z}[G]$ by $(v-1)^{i} \beta_{i}=\widetilde{F}_{0}(v-1)^{i}$. Then there is a direct sum decomposition of left $\mathbb{Z}[G]$-modules

$$
\mathbb{Z}[G] / N \mathbb{Z}[G]=\oplus_{0 \leq i<f} \mathbb{Z}[N] \beta_{i} / N \mathbb{Z}[G] .
$$

Proof. Let β be the column vector $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{f_{-} 1}\right)^{T}$ and ϕ the column vector $\left(1, \phi, \phi^{2}, \ldots, \phi^{f-1}\right)^{T}$. Then $M \phi=\beta$ for the matrix $M=\left(m_{i j}\right)$ with $m_{i j}=\left(v^{r^{j}}-1\right)^{i} /(v-1)^{i}$. M is a Vandermonde matrix whose determinant is the unit $\prod_{i<j}\left(v^{r^{j}}-v^{r^{i}}\right) /(v-1)$ of $\mathbb{Z}[N] \mathbb{Z} \tilde{N}$. Hence M is invertible and 1 may be expressed as a linear combination of the β_{i} 's. The rest is now clear .
§2. An Index Theorem. Suppose C is a subgroup of order $c=1$ or 2 generated by $\gamma \in G$. For any subgroup H and $g \in G$ write $H g C=\tilde{H} g \tilde{C}$ or $\frac{1}{2} \tilde{H} g \widetilde{C}$ for the generators of $H \mathbb{Z}[G] C$ over \mathbb{Z}, and $|H g C|=|H||C|$ or $|H|$ respectively for their values under the unit character of G. Let $r_{2_{r}}(H)$ be the number of such generators with $2|H|$ elements, and set $r_{r}(H)=\operatorname{dim}_{\mathbb{Z}}(H \mathbb{Z}[G] C \mathbb{Z} \tilde{G})$.
2.1 Theorem. $\mathbb{Z}[G] C /\left(N \mathbb{Z}[G] C+\sum F \mathbb{Z}[G] C\right)$ has finite order $n^{f f_{r}(N) / 2}$ in the metacyclic case and $n^{\left(r_{r}(N)+(f-1)\left(r_{x}(F)-1\right)\right) / 2}$ in the maximal case. The exponent of the group is precisely n.

The rest of the section is devoted to a proof of this. There are three possibilities for γ :

$$
\gamma=1, \quad \gamma \in N-1, \quad \text { or } \quad \gamma \notin N .
$$

Replacing γ by a conjugate does not change the order or the exponent of the quotient group. Thus if $\gamma \notin N$ it may be assumed that $\gamma \in F_{0}$. Because $F_{0} g C=\tilde{F}_{0} g \tilde{C}$ for $g \in N-1$ we have

$$
\text { 2.2 } \begin{array}{llllll}
r_{2}(F)=0, & n / 2, & \text { and } \quad(n-1) / 2 ; \\
r_{\gamma}(F) & =n-1, & (n-2) / 2, & \text { and } \quad(n-1) / 2 ; & \text { and } \\
r_{r}(N) & =f-1, & f-1, & \text { and } & (f-2) / 2,
\end{array}
$$

respectively in three cases.
From the proof of $1.5, n \tilde{C}$ decomposes in $N \mathbb{Z}[G] C+\sum F \mathbb{Z}[G] C$ with component $\tilde{N} \tilde{C}$ in $N \mathbb{Z}[G] C$. So the exponent is n for metacyclic groups. For G maximal 1.1 yields the explicit decomposition $n \tilde{C}=\tilde{N} \tilde{C}+\sum_{i} \tilde{F}_{0}\left(1-v_{i}\right) \tilde{C}$ and hence an exponent n.

The Metacyclic Case. For $\gamma=1$ the required index is

$$
\begin{aligned}
{\left[\mathbb{Z}[G] / N \mathbb{Z}[G]: \sum^{\prime} \mathbb{Z}[G] F / N \mathbb{Z}[G]\right] } & =\left[\sum_{i} \mathbb{Z}[G] \beta_{i} / N \mathbb{Z}[G]: \sum_{i} \mathbb{Z}[G] F_{0}(v-1)^{i} / N \mathbb{Z}[G]\right] \\
& =\prod_{i}\left[\mathbb{Z}[N] \beta_{i} / N \mathbb{Z}[G]:(v-1)^{i} \mathbb{Z}[N] \beta_{i} / N \mathbb{Z}[G]\right] \\
& =\prod_{i} n^{i}=n^{f(f-1) / 2}
\end{aligned}
$$

by 1.7. Otherwise the assumption $\gamma=\phi^{f / 2}$ holds. Let $A_{i}=\tilde{C} \mathbb{Z}[G] \beta_{i} / N \mathbb{Z}[G]$. Then β_{i} may be replaced by

$$
\beta_{i}^{\prime}=\left(\frac{v}{v+1}\right)^{\prime} \beta_{i}
$$

to give $\left(v^{j}+(-1)^{i} v^{-j}\right) \beta_{i}{ }^{\prime}$ with $1 \leq j \leq(n-1) / 2$ as a basis of A_{i} over $\mathbb{Z} . A_{i} \oplus v A_{i}$ is a $\mathbb{Z}[G]$-module because if $\alpha \in A_{i}$ then $v^{2} \alpha=-\alpha+v\left(v+v^{-1}\right) \alpha \in A_{i} \oplus v A_{i}$. When i is even,

$$
\beta_{i}^{\prime}=-\sum_{j}\left(v^{j}+v^{-j}\right) \beta_{i}{ }^{\prime} \in A_{i} \oplus v A_{i} \quad \text { so that } \quad A_{i} \oplus v A_{i}=\mathbb{Z}[G] \beta_{i} / N \mathbb{Z}[G] .
$$

When i is odd,

$$
\left(v-v^{-1}\right) \beta_{i}^{\prime} \in A_{i} \oplus v A_{i} \quad \text { so that } \quad A_{i} \oplus v A_{i}=(v-1) \mathbb{Z}[G] \beta_{i} / N \mathbb{Z}[G],
$$

and this has index n in $\mathbb{Z}[G] \beta_{i} / N \mathbb{Z}[G]$. Hence if

$$
B=\sum_{i} A_{i}=C \mathbb{Z}[G] / N \mathbb{Z}[G]
$$

then $B \oplus v B$ has index $n^{f / 2}$ in $\mathbb{Z}[G] / N \mathbb{Z}[G] . A_{0} \oplus v A_{0}=\mathbb{Z}[G] F_{0} / N \mathbb{Z}[G]$ shows that if $D=\sum C \mathbb{Z}[G] F / N \mathbb{Z}[G]$ then $D \oplus v D=\sum \mathbb{Z}[G] F / N \mathbb{Z}[G]$. Thus the required index $q=[B: D]$ is given by

$$
\begin{aligned}
n^{f f(-1) / 2} & =\left[Z[G] / N \mathbb{Z}[G]: \sum \mathbb{Z}[G] F / N \mathbb{Z}[G]\right] \\
& =n^{f / 2}[B \oplus \mathrm{v} B: D \oplus \mathrm{vD]} \\
& =n^{f / 2} q^{2} .
\end{aligned}
$$

The Maximal Case. When G is maximal the techniques of [11] are suitable for the order calculation. Define a pairing on $\mathbb{Z}[G] \times \mathbb{Z}[G]$ by $(x, y)=|G|^{-1} 1_{1}^{G}\left(x y^{*}\right)$ where * is the involution induced by $g \mapsto g^{-1}$ for $g \in G$. If X is a subgroup of $\mathbb{Z}[G]$ with basis $\left\{x_{i}\right\}$ let

$$
R(X)=\left|\operatorname{det}\left(\left(x_{i}, x_{j}\right)\right)\right|
$$

be the regulator of X. This is independent of the choice of basis.

$$
\text { 2.3 LEMMA. If } X=\sum F \mathbb{Z}[G] C \text { then } R(X)=f n^{(f-1)\left(r_{y}(F)-1\right)} 2^{f r_{2} \gamma^{(F)}} .
$$

Proof. Let $g, g^{\prime} \in N-1$ be fixed. Then $g h g^{\prime} h^{\prime}=1$ implies $h^{\prime}=h^{-1}$ for $h, h^{\prime} \in F$. But $g h g^{\prime} h^{-1}=1$ has only one solution $h \in F$. Hence $g \widetilde{F} g, \tilde{F}$ contains the identity once. If $g \in N-1$ and $g^{\prime}=1$, or $g^{\prime} \in N-1$ and $g=1$, then 1 does not appear in $g \widetilde{F} g^{\prime} \tilde{F}$, but it occurs f times for $g=g^{\prime}=1$.

Choose $S \subseteq N-1$ so that $\{F s C \mid s \in S$ or $s=1\}$ is a basis of $F \mathbb{Z}[G] C$. If $t, t^{\prime} \in N-1$ and $s, s^{\prime} \in S$ then $\left(t^{\prime} F s^{\prime} C, t F s C\right)$ is c times the multiplicity of l in $t^{-1} t^{\prime} \tilde{F} s^{\prime} \tilde{C} s^{-1} \tilde{F}$. Since $s^{\prime} \gamma s^{-1} \notin F$ for $c=2$ the value of the pairing is given by:

	$t=t^{\prime}$	$t \neq t^{\prime}$
$s=s^{\prime}$	$c f$	$c^{2}-c$
$s \neq s^{\prime}$	0	c^{2}

Also $(\tilde{G}, \tilde{G})=n f$ and $(\tilde{G}, t \tilde{F} s \tilde{C})=c f$. Take $\{\tilde{G}, t F s C \mid t \in N-1, s \in S\}$ for a basis of X. The corresponding matrix for $R(X)$ includes $|S| \times|S|$ blocks, one for each pair $\quad t, t^{\prime} \in N-1$. Observe that $|S|=r_{\gamma}(F)$ and let J, J_{r}, and J_{c} be the $r_{\gamma}(F) \times r_{\gamma}(F)$, $1 \times r_{\gamma}(F)$, and $r_{\gamma}(F) \times 1$ matrices consisting entirely of unit entries. Then the regulator may be calculated as follows :

$$
\begin{aligned}
& R(X)=\left|\begin{array}{ccccc}
n f & c f J_{r} & c f J_{r} & \ldots & c f J_{r} \\
c f J_{c} & c f I & c^{2} J-c I & \ldots & c^{2} J-c I \\
c f J_{c} & c^{2} J-c I & c f I & \cdots & c^{2} J-c I \\
\vdots & \vdots & \vdots & & \vdots \\
c f J_{c} & c^{2} J-c I & c^{2} J-c I & \cdots & c f I
\end{array}\right| \\
& =\left|\begin{array}{ccccc}
n f & 0 & 0 & \cdots & c f J_{r} \\
c f J_{c} & c n I-c^{2} J & 0 & \cdots & c^{2} J-c I \\
c f J_{c} & 0 & c n I-c^{2} J & \cdots & c^{2} J-c I \\
\vdots & \vdots & \vdots & & \vdots \\
c f J_{c} & c^{2} J-c n I & c^{2} J-c n I & \cdots & c f I
\end{array}\right| \\
& =\left|c n I-c^{2} J\right|^{n-2}\left|\begin{array}{cc}
n f & c f J_{r} \\
c f^{2} J_{c} & c I+c^{2}(n-2) J
\end{array}\right| \\
& =\left\{(c n)^{r_{\gamma}(F)-1}\left(c n-c^{2} r_{\gamma}(F)\right)\right\}^{f-1} f\left|\begin{array}{cc}
n & c J_{r} \\
c J_{c} & c I
\end{array}\right| \\
& =f n^{(f-1)\left(r_{\gamma}(F)-1\right)}\left(n-c r_{\gamma}(F)\right)^{f} c^{f f_{\gamma}(F)} \\
& =f n^{f(f-1)\left(r_{r}(F)-1\right)} 2^{f f_{2} x^{(F)}}, \quad \text { by } 2.2 \text {. }
\end{aligned}
$$

Let $\rho: \mathbb{Z}[G] C \rightarrow L_{\gamma}=\mathbb{Z}[G] C / \mathbb{Z} \tilde{G}$ be the natural map and define a pairing on $L_{\gamma} \times L_{\gamma}$ by $(\rho x, \rho y)=|G|^{-1}\left(1_{1}^{G}-1\right)\left(x y^{*}\right)$ for $x, y \in \mathbb{Z}[G] C$ and the involution *: $g \in G \mapsto g^{-1}$. Suppose X is a subgroup of L_{γ}. Take $\left\{x_{j}\right\}$ in $\mathbb{Z}[G] C$ such that $\left\{\rho x_{j}\right\}$ is a basis of X. Then $\left\{\tilde{G}, x_{j}\right\}$ is a basis of $\rho^{-1} X$. So

$$
R\left(\rho^{-1} X\right)=\left.\left|\begin{array}{cc}
\left(x_{i}, x_{j}\right) & \left(x_{i}, \tilde{G}\right) \\
\left(\tilde{G}, x_{j}\right) & (\tilde{G}, \tilde{G})
\end{array}\right|\right|_{, j}
$$

But $(\rho x, \rho y)=(x, y)-|G|^{-1}(x, \tilde{G})(\tilde{G}, y)$ for $x, y \in \mathbb{Z}[G] C$. Hence row operations give $R\left(\rho^{-1} X\right)=|G| R(X)$ for the obvious definition of $R(X)$. Now 2.3 yields
2.4 LEMMA. $R\left(\sum F L_{\gamma}\right)=n^{(f-1) r_{\gamma}(F)-f} 2^{f r_{2} \gamma^{(F)}}$.

If $x, y \in \mathbb{Z}[G] C$ satisfy $\rho x \in N L_{\gamma}$ and $\rho y \in \sum F L_{\gamma}$ then $(\rho x, \rho y)=0$. Also the sum $N L_{\gamma}+\sum^{\prime} F L_{\gamma}$ is direct by 1.5 . Thus,

$$
\text { 2.5 LEMMA. } R\left(N L_{\gamma}+\sum F L_{\gamma}\right)=R\left(N L_{\gamma}\right) R\left(\sum F L_{\gamma}\right) .
$$

From [11], 3.5 and 3.3, the following facts may be recalled :
$2.6 \quad R\left(H L_{\gamma}\right)=|G|^{-1}|H|^{r_{\gamma}(H)+1} 2^{r_{2}(H)}$ for a subgroup H;
2.7 $R(Y)=[X: Y]^{2} R(X)$ for subgroups X, Y of L_{γ} for which $[X: Y]$ is defined.

Combining equations 2.4-2.7 for $X=L_{\gamma}$ and $Y=N L_{\gamma}+\sum F L_{\gamma}$ gives the order of

$$
\mathbb{Z}[G] C /\left(N \mathbb{Z}[G] C+\sum F \mathbb{Z}[G] C\right)
$$

as

$$
[X: Y]=\left\{R\left(N L_{\gamma}\right) R\left(\sum F L_{\gamma}\right) / R\left(L_{\gamma}\right)\right\}^{\frac{1}{2}}=\left\{n^{r_{\gamma}(N)+(f-1)\left(r_{\gamma}(F)-1\right)}\right\}^{\frac{1}{2}} .
$$

The power of 2 is eliminated by observing that $r_{2_{\gamma}}(H)=1_{H}^{G}(1-\gamma) / 2$ and evaluating 1.2 at $(1-\gamma) / 2$.
§3. The Unit Group. Suppose the normal extension K / k of number fields has the Frobenius group G as its Galois group. Let U and W be the groups of units and roots of unity in K.
3.1 Lemma. $W=N W$ and $F W=G W$.

Proof. Let $H=\operatorname{Gal}(K / k(W))$. Then H is normal in G and G / H is abelian. The former property implies $H \subset N$ or $N \subseteq H$. However, if $H \subset N$ then G / H is Frobenius and therefore not abelian. Thus $N \subseteq H$ and $W=N W$. Now set $H^{\prime}=\operatorname{Gal}(K / k(F W))$. Then, similarly, $N \subseteq H^{\prime}$. But $F \subseteq H^{\prime}$ also. Therefore $H^{\prime}=G$ and $F W=G W$.

The unit group U will be written additively when the notation makes this more convenient. In particular, for a subgroup H of G let $\mathbb{Q} H U$ be the subgroup of units with some non-trivial multiple (i.e. power) fixed by H. Define

$$
I(H)=[H U \cap \mathbb{Q} G U: G U+H W] .
$$

It was shown in $[\mathbf{1 1}, \S 4]$ that $I(H)$ divides $[G: H]$.
3.3 LEMMA. $\mathbb{Q} G U=N \mathbb{Q} G U+F \mathbb{Q} G U$ and the sum is direct up to elements in $G U$. Hence $I(1)=I(N) I(F)$.

Proof. The three groups modulo $G U+W$ have orders $I(1), I(N)$, and $I(F)$ which divide $n f, f$, and n respectively. The sum is therefore direct because $(n, f)=$ 1. Choose $a, b \in \mathbb{Z}$ such that $a n+b f \equiv 1 \bmod n f$. Take $\varepsilon \in \mathbb{Q} G U$ and write $[\varepsilon]$ for its class modulo $G U+W$. Since G acts trivially on $\mathbb{Q} G U /(G U+W)$ it follows that $[\varepsilon]=[(a n+b f) \varepsilon]=[\tilde{N} a \varepsilon]+[\tilde{F} b \varepsilon] \in(N Q G U+F Q G U) /(G U+W)$.

Application of 1.5 shows that $Q=\left[U: U_{0}\right]$ is finite and divides a power of n. Theorem 4.1 of $[\mathbf{1 1}]$ proves that $[\mathbb{Q} F U: F U+W]$ divides f, which is prime to n, and $F U+W \subset U_{0}$. Therefore

Now the directness of 1.5 for U together with 3.3 yield
3.5 LEMMA. $\mathbb{Q} F U=F U+N \mathbb{Q} G U$.
3.6 Theorem. Let $r(H)$ be the rank of HU/HW. Then $Q=\left[U: U_{0}\right]$ divides In ${ }^{(f-1)(r(F)-r(G))}$ for $I=\left[\mathbb{Q} N U: \mathbb{Q} N U \cap U_{0}\right]$ and I in turn divides n.

Proof. For any $\mathbb{Z}[G]$-module X the quotient $X / \mathbb{Q} H X$ is torsion-free. Take $x \in X$ with image in $H(X / \mathbb{Q} H X)$. Then $(|H|-\tilde{H}) x \in \mathbb{Q} H X$ and so $x \in \mathbb{Q} H X$. Thus $\mathbb{Q} H(X / \mathbb{Q} H X)=0$. In particular, $V=U / \mathbb{Q} N U$ has $\mathbb{Q} G V \subset \mathbb{Q} N V=0$. Hence $V_{0}=\sum^{\prime} F V$ and 1.5 shows this sum is direct. If $\varepsilon \in U$ has image in $\mathbb{Q} F V$ then $\tilde{F} \varepsilon-f \varepsilon \in \mathbb{Q} N U$. So $[F V:(F U+\mathbb{Q} N U) / \mathbb{Q} N U]$ divides a power of f and the same is true of $\left[V_{0}:\left(U_{0}+\mathbb{Q} N U\right) / \mathbb{Q N U}\right]$. However, the latter index divides Q and thus a power of n. Therefore $V_{0}=\left(U_{0}+\mathbb{Q} N U\right) / \mathbb{Q} N U$ and $Q=\left[U: U_{0}\right]=\left[V: V_{0}\right] I$. From 1.5 the exponent of V / V_{0} divides n. Also $\mathbb{Q} F V=F V$ and the rank of $V_{0} / F V$ is $(f-1)(r(F)-r(G))$. Thus the index $\quad\left[V: V_{0}\right]=\left[V / F V: V_{0} / F V\right]$ divides $n^{(f-1)(r(F)-r(G))}$. Finally I divides n by Theorem 4.1 of [11].
3.7 LEMMA. The norms $N_{K / F K} U=\tilde{F} U$ satisfy $F U=\tilde{F} U+G U$.

Proof. Let S be a set of representatives for the conjugacy classes of $N-1$ under F. If $\varepsilon \in F U$ then

$$
\varepsilon=\left(\tilde{N}-\sum_{h \in F} \sum_{g \in S} h g h^{-1}\right) \varepsilon=\tilde{N} \varepsilon-\tilde{F} \tilde{S} \varepsilon \in G U+\tilde{F} U
$$

$\S 4$. The Class Number Relation. Let $\left\{C_{i}\right\}$ be the set of decomposition groups in G for one prime divisor in K of each of the $r=r(G)+1$ infinite primes in k. They are defined up to conjugacy which depends on the chosen embedding of K into \mathbf{C}. Suppose L and L_{i} satisfy the exact sequences of $\mathbb{Z}[G]$-modules

$$
0 \rightarrow \mathbb{Z} \rightarrow \stackrel{r}{\oplus} \underset{i=1}{\oplus} \mathbb{Z}[G] C_{i} \rightarrow L \rightarrow 0
$$

where $n \in \mathbb{Z} \mapsto n \oplus_{i} \tilde{G}$; and

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}[G] C_{i} \rightarrow L_{i} \rightarrow 0
$$

where $n \in \mathbb{Z} \mapsto n \tilde{G}$. In both cases let G act trivially on \mathbb{Z}. Both sequences are exact when fixed under the action of a subgroup H. Let $L_{0}=N L+\sum F L ; L_{i 0}=$ $N L_{i}+\sum F L_{i} ; Q^{*}=\left[L: L_{0}\right] ;$ and $Q_{i}^{*}=\left[L_{i}: L_{i 0}\right]$. Then Q^{*} and Q_{i}^{*} are finite by Theorem 1.5. Moreover,

$$
\begin{aligned}
L / L_{0} & \cong\left\{\oplus_{i} \mathbb{Z}[G] C_{i}\right\} /\left\{\oplus_{i}\left(N \mathbb{Z}[G] C_{i}+\sum F \mathbb{Z}[G] C_{i}\right)\right\} \\
& \cong \oplus_{i}\left\{\left(\mathbb{Z}[G] C_{i}\right) /\left(N \mathbb{Z}[G] C_{i}+\sum F \mathbb{Z}[G] C_{i}\right)\right\} \cong \oplus_{i} L_{i} / L_{i 0} .
\end{aligned}
$$

Consequently,

$$
Q^{*}=\prod_{i=1}^{r} Q_{i} *
$$ The index $Q_{i}{ }^{*}$ is just the order of the group in Theorem 2.1 with $C=C_{i}$. If $r_{i}(H)=\operatorname{dim} H L_{i}$ then $\sum_{i}\left(r_{i}(H)+1\right)=\operatorname{dim} H L+1=r(H)+1$ is the number of infinite primes in $H K$. Thus $r(H)$ is the rank of the unit group $H U / H W$. Combining 2.1 with 4.1 yields:

4.2 LEMMA. $\quad Q^{*}=n^{f(r(N)-r(G) / / 2} \quad$ in the metacyclic case and

$$
Q^{*}=n^{(r(N)-r(G)+(f-1) r(F)-2 r(G)-1)) / 2} \text { in the maximal case. }
$$

Let a bar denote the canonical map $U \rightarrow U / W$ and choose a submodule M of \bar{U} which is $\mathbb{Z}[G]$-isomorphic to L. Recall the definitions of $I(H)$ and Q in 3.2 and 3.6.
4.3 LEMMA.

$$
\frac{[\bar{U}: M][\overline{G U}: G M]^{f}}{[\overline{N U}: N M][\overline{F U}: F M]^{f}}=\frac{Q}{Q^{*} I(F)^{f-1}}
$$

Proof. Begin by observing that $(\mathbb{Q} G U \cap H U) / W=\overline{G H}$ so that $I(H)=$ $[G \overline{H U}: \overline{G U}]$. Also $G \bar{U}=\mathbb{Q} G U / W=\left(\mathbb{Q} G U \cap U_{0}\right) / W=\overline{G U_{0}}$ by 3.3. For convenience, let $V=G \bar{U}$. Then

$$
\begin{aligned}
Q^{*}[\bar{U} & : M] /[\overline{G U}: G M] I(1) Q \\
& =\left[\overline{U_{0}}: M_{0}\right][G M: V]=\left[\overline{U_{0}} / V:\left(M_{0}+V\right) / V\right] \\
& =[(\overline{N U}+V) / V:(N M+V) / V] \prod^{\prime}[(\overline{F U}+V) / V:(F M+V) / V] \\
& =[\overline{N U}: N M+G \overline{N U}][\overline{F U}: F M+G \overline{F U}]^{f} \\
& =[\overline{N U}: N M][\overline{F U}: F M]^{f} /[G \overline{N U}: N M \cap G \overline{N U}][G \overline{F U}: F M \cap G \overline{F U}]^{f} \\
& =[\overline{N U}: N M][\overline{F U}: F M]^{f} / I(N) I(F)^{f}[\overline{G U}: G M]^{f+1} .
\end{aligned}
$$

Now apply 3.3.
4.4 Theorem. Suppose the normal extension K / k of number fields has a maximal or metacyclic Frobenius group G as its Galois group. Let $h(H)$ be the class number and $r(H)$ the rank of the unit group $H U$ of the subfield fixed by a subgroup H of G. If the kernel N and a complement F have orders n and f respectively then

$$
\frac{h(1) h(G)^{f}}{h(N) h(F)^{f}}=Q I(F)^{1-f} n^{-A}
$$

where
$Q=[U: N U \Pi F U]$ with Π over the complements F;
$I(F)$, defined in 3.2, is the order of $(F U / G U)_{\text {tor }}$ and divides n;
$A=\frac{1}{2}\{r(N)-r(G)+(f-1)(r(F)-2 r(G)+1)\}$ in the maximal case; and
$A=(f-1)+\frac{1}{2} f(r(N)-r(G))$ in the metacyclic case.
The quotient group U / U_{0} defining Q has exponent dividing n and it has order bounded by 3.6. The product $U_{0}=N U$ П'FU defined in 1.3 is direct up to units whose nth powers lie in k.

Proof. The form of Brauer's class number relation [1] which is required here is given in [10, Theorem 4.1]. This shows that

$$
\frac{h(1) h(G)^{f}}{h(N) h(F)^{f}}=\frac{n f|W|[\bar{U}: M]|G W|^{f}[\overline{G U}: G M]^{f}}{f|N W|[\overline{N U}: N M] n^{f}[\overline{F U}: F M]^{f}}=\frac{n^{1-f} Q}{Q^{*} I(F)^{f-1}}
$$

by 3.1 and 4.3 . Now 4.2 yields the stated relation.
§5. The Class Groups. Let $C(H)$ be the part of the ideal class group of $H K$ formed from the classes whose orders are prime to n.
5.1 Theorem. For any Frobenius group the following sequence is exact under the maps induced by extension of ideals.

$$
0 \rightarrow C(G) \rightarrow C(F) \rightarrow F C(1) / G C(1) \rightarrow 0
$$

Proof. The sequence is exact at $C(G)$ because $C(G)$ has order prime to the degree n of $F K / G K$. The two central maps compose to give the zero map. Suppose \mathscr{E} is a class of $C(F)$ which maps into $G C(1)$. It is necessary to show that if \boldsymbol{a} is an ideal such that $\mathbf{a}^{n} \in \mathscr{E}$ then the class of the norm $N_{F K / G K} \boldsymbol{u}$ in $C(G)$ maps to \mathscr{E}. This will establish the exactness at $C(F)$. Let us consider all ideals to be extended to K and write the group of such ideals additively. Then $(g-1) \boldsymbol{m}$ is principal for $g \in G$ because the image of \mathscr{E} in $C(1)$ is fixed by G. Suppose $(g-1) \mathfrak{m}=\left(\alpha_{g}\right)$. If $h \in F$ then

$$
\left(\alpha_{g}\right)=(g-1) \mathbf{a}=(g-1) h \mathbf{u}=h\left(h^{-1} g h-1\right) \mathbf{a}=h\left(\alpha_{h-1}{ }_{g h}\right) .
$$

Thus it may be assumed that $h \alpha_{h^{-1} g_{g}}=\alpha_{g}$ and $\alpha_{1}=1$. Let S be a set of representatives for the conjugacy classes of $N-1$ under F. Then

$$
(\tilde{N}-n) \mathbf{n}=\sum_{g \in N}\left(\alpha_{g}\right)=\left(\sum_{g \in S} \sum_{h \in F} h^{-1} \alpha_{g}\right)=\left(\sum_{g \in S} \tilde{F} \alpha_{g}\right)
$$

which is the extension of a principal ideal of $F K$. Finally, to prove the surjectivity, let \mathscr{E}^{\prime} ' be a class of $F C(1) / G C(1)$ and \mathfrak{a} an ideal whose image is in \mathscr{E}^{\prime}. With S as above,

$$
\mathbf{a}=\left(\tilde{N}-\sum_{h \in F} \sum_{g \in S} h g h^{-1}\right) \mathbf{a} \sim(\tilde{N}-\tilde{F} \tilde{S}) \mathbf{a}
$$

where \sim is equality up to a principal ideal. Thus the ideal $-\tilde{F} \tilde{S} \mathbf{n}$ in $C(F)$ has image in \mathscr{E}, because $\tilde{N} \boldsymbol{\pi}$ is in a class of $G C(1)$. Hence the map is surjective and this completes the proof. Theorem 1.5 yields :
5.2 LEMMA. Let X be a $\mathbb{Z}[G]$-module such that the order of $X / G X$ is finite and prime to n. Then there is a direct sum decomposition

$$
X / G X=N X / G X+\sum^{\prime} F X / G X .
$$

5.3 Theorem. The maximal subgroups $C(H)$ of the ideal class groups of the $H K$ with orders prime to n satisfy

$$
C(1) / C(N) \cong \stackrel{f}{\oplus} C(F)^{(i)} / C(G)
$$

A CLASS NUMBER RELATION IN FROBENIUS EXTENSIONS OF NUMBER FIELDS

where $C(F)^{(i)} \cong C(F)$ and the embeddings $C(N) \hookrightarrow C(\mathrm{l})$ and $C(G) \hookrightarrow C(F)^{(i)}$ are induced by extension of ideals.

Proof. Replace $C(N)$ by $N C(1)$ and $C(F)^{(i)} / C(G)$ by $F C(1) / G C(1)$ using 5.1. Now apply 5.2.

References

1. R. Brauer. "Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoisschen Körpers", Math. Nachr., 4 (1951), 158-174.
2. F. Halter-Koch. "Einheiten und Divisorenklassen in Galois'schen algebraischen Zahlkörpern mit Diedergruppe der Ordnung $2 l$ fur eine ungerade Primzahl l ', Acta Arithmetica, 33 (1977), 353-364.
3. F. Halter-Koch. "Die Struktur der Einheitengruppe fur eine Klasse metazyklischer Erweiterungen algebraischer Zahlkörper", to appear in J. f. reine u. angew. Math.
4. F. Halter-Koch and N. Moser. "Sur le nombre de classes de certaines extensions metacycliques sur \mathbb{Q} ou sur un corps quadratique imaginaire", J. Math. Soc. Japan.
5. T. Honda. "On the absolute ideal class groups of relatively meta-cyclic number fields of a certain type", Nagoya Math. J. 17 (1960), 171-179.
6. W. Jehne. "Über die Einheiten- und Divisorenklassengruppe von reellen Frobeniuskörpern von Maximaltyp", Math. Zeit., 152 (1977), 223-252.
7. S. Kuroda. "Über die Klassenzahlen algebraischer Zahlkörper", Nagoya Math. J., 1 (1950), 1-10
8. N. Moser. "Unités et nombre de classes d'une extension galoisienne diédrale de \mathbb{Q} ", Univ. Sci. Med. Grenoble, 1973-4.
9. C. Walter. Class number relations in algebraic number fields (Thesis, Cambridge Univ., April, 1976).
10. C. Walter. "Brauer's class number relation", Acta Arithmetica, 35, 1979, pp. 33-40.
11. C. Walter. "Kuroda's class number relation", Acta Arithmetica, 35, 1979, pp. 41-51.

Department of Mathematics, University College, Belfield,
Dublin 4, Ireland.

12A50: ALGEBRAIC NUMBER THEORY: Algebraic number theory, global fields; Class number.

Received on the 7th of March, 1977.

