
216

[MATHEMATIKA 24 (1977), 216-225]

A CLASS NUMBER RELATION IN FROBENIUS
EXTENSIONS OF NUMBER FIELDS

COLIN D. WALTER

Let K/k be a normal extension of algebraic number fields whose Galois group G is
a Frobenius group.  Then K/k is said to be a Frobenius extension.  Most of the
structure of the unit group and of the ideal class group of K is determined by that of
the subfields fixed by the Frobenius kernel N and by a complement F.  Here this is
investigated when G is a maximal or metacyclic Frobenius group.  In particular, the

results apply firstly to the normal closure of k(
p

a )/k where a ∈  k and p is a rational
prime, and, secondly, when G is a dihedral group of order 2n for an odd integer n.
A. Scholz, taking n = p = 3, was the first to consider this problem.

The first section describes some basic properties of the group ring ¦[G] and the
second section, which could be omitted in a preliminary reading, just serves to
calculate a certain index in ¦[G].  The result is Theorem 2.1.  In §3 the aim is to
study the unit index Q which appears in the class number relation and a bound is
obtained for it in Theorem 3.6.  Then, in Theorem 4.4, the class number relation itself
is derived.  All the extraneous factors therein divide a power of the order n of N.
This is explained in Theorem 5.3 by an underlying isomorphism between the maximal
subgroups of the ideal class groups whose orders are prime to n.

The overall plan used to discover the class number relation is to eliminate the
group of Minkowski units from R. Brauer’s relation [1] and to calculate the conse-
quent index in ¦[G] by using regulators.  When these ideas were first exhibited in an
abstract of [11] at the Oberwolfach meeting in August 1975 discriminants were used
instead of regulators, with the disadvantage that the index in ¦[G] could be
determined only for totally real fields.  This restriction applies to W. Jehne’s subse-
quent paper [6] on Frobenius extensions of « with maximal type.  The general case
for maximal Frobenius groups had already occurred in [9], but reappears here
together with the metacyclic case.  Some more specific metacyclic extensions have
been examined by F. Halter-Koch and N. Moser in [2,3,4, and 8], while T. Honda in
[5] has found the appropriate isomorphism of ideal class groups for general
metacyclic Frobenius groups.

The author gratefully acknowledges the receipt of a grant from Trinity College,
Cambridge. 

§1. Frobenius Groups.  Let G be a group with order |G| = nf where n and f are
co-prime and such that g ∈  G implies gn = l or g f = 1.  Suppose also that

N = {g ∈  G | gn = 1 }

is a proper normal subgroup of G.  Then G is called a Frobenius group and N its

kernel.  Let S
~

 ∈  ¦[G] denote the sum of the elements in a subset S of G.  A

complement of N is a subgroup F for which GNF
~~~ = .  There are precisely n such

complements, which are conjugate under elements of N.  They have order f and
intersect pairwise in the identity, while N has order n.  Hence

1.1    1
~

.
~~~

nGFN +=+ ∑ ,

____________________________________________________________________
where the sum extends over all complements F.  This implies
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1.2 G
F

G
N f 1.1 +    =   G

G
G f 1.11 + ,

where G
H1  denotes the character on G induced by the unit character on a subgroup H.

The centraliser of an element of N − 1 is contained in N.  Hence N − 1 decom-
poses into orbits of length f under conjugation by elements of F and f divides n−1.
Thus G is called maximal if  f = n −1.  In this situation N is an abelian group of prime
exponent.  Now suppose G is metacyclic.  Then both N and F are cyclic with
generators ν and φ respectively, say, which satisfy a relation ν rφ = φν.  Here n must
be odd.  From this point, it is assumed that G is of one of these two types.

1.3 DEFINITION.  Let { vi ∈  N | 0 ≤ i ≤ f−1} be the set N −1 when G is maximal
and the set with vi = vi when G is metacyclic.  For the fixed complement F0,
generated by φ when G is metacyclic, let ∑’ and ∏’ denote sums and products over
the f complements  viF0vi

−1.

Most other sums and products extend over the full set of n complements.  Finally,
for a left (respectively right) G-module X and a subgroup H of G let HX (respectively
XH) be the subgroup of X fixed under the action of H.  For example, NK and FK are
the subfields of K fixed by N and F.

1.4 LEMMA .  Let Z be the intersection of ¦[N] with the centre of  ¦[G].  Then

¦[N]  =  ∑
i

iZv

and this sum is direct up to elements in ¦N
~

.

Proof.  Z is generated by 1 and the elements zj = ∑h∈ F h−1gjh where the gj are
representatives of the (n − 1)/f conjugacy classes in  N − 1.  The equality comes from

1 + ∑i vi = N
~

 ∈  I iviZ  in the maximal case.  For the metacyclic case, the minimum
polynomial  ∏h∈ F (x − h−1vh)  of v over Z shows that v f, and therefore any power of v,
lies in  ∑i viZ.  The directness is apparent from  dim¦ Z  =  1 + (n−1)/f.

1.5 THEOREM.  For any ¦[G]-module X define X’ = ∑FX.  Then X’ is the

¦[G]-module generated by any FX and X’ = ∑’FX.  Also define X0 = NX + X’.

Then the sum  X0 = NX + ∑’FX  is direct up to elements whose nth multiple lies in
GX.  Moreover, nX ⊂  X0.

Proof.  For g ∈  N use 1.4 to choose α i ∈  Z for which g = ∑i viα i.  If x ∈  F0X
then gx = ∑i viα ix ∈  ∑’ FX.  Thus ∑’ FX is a ¦[G]-module and contains every FX.

From 1.1 we have  nX ⊂  XN
~

 + ∑ XF
~

 ⊂   X0.  Also that equation yields

1.6 «[G]  =  N«[G] + ∑’ F«[G],

by the first part. A comparison of dimensions shows that this sum is direct up to

elements in «G
~

.  Let 1 = eN + ∑’ eF be a corresponding decomposition of 1 with

neN = N
~

 and neF ∈  F¦[G], say.  Let H, H’ ∈  {N, viF0vi
−1}  be distinct.  Then

neH ’
~
H  ∈  ¦G

~
 by decomposing ’

~
H  under 1.6.  If  xF ∈  FX for F ≠ H one finds that

neHxF  =  neH ( N
~ − ∑j ∑h∈ F hgjh

−1) xF  =  neH N
~

xF − ∑j neH F
~

gjxF  ∈   GX.
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Similarly, when xN ∈  NX one obtains neFxN ∈  GX because neF = αF
~

 for some
α ∈  ¦[N].  Hence neHxH’ ∈  GX if xH’ ∈  H’X.  Consequently

nxH’  =  ∑H neH xH’  ≡  neH’ xH’ modulo GX.

Suppose ∑H xH = 0 with xH ∈  HX.  Then

0  =  neH’ ∑H xH  ≡  neH’ xH’  ≡  nxH’ modulo GX

and nxH’ ∈  GX.  Thus the sum for X0 is direct as far as stated.

1.7 LEMMA .  Suppose G is metacyclic.  Define  βi ∈  ¦[G]  by (ν−l) iβi = 0
~
F (ν−l) i.

Then there is a direct sum decomposition of left ¦[G]-modules

¦[G]/N¦[G]  =  ⊕ 0 ≤ i < f  ¦[N]βi/N¦[G].

Proof.  Let  β  be the column vector  (β0, β1, ..., βf−1)
T  and  φ  the column vector

(1,φ,φ2, ..., φf−1)T.  Then Mφ = β for the matrix M = (mij) with mij = (ν r j − l)
i / (ν − l)

i
.

M is a Vandermonde matrix whose determinant is the unit  ∏i<j(ν r j
−ν r i

)/(ν − l)  of

¦[N]/¦N
~

.  Hence M is invertible and  1  may be expressed as a linear combination of
the βi’s.  The rest is now clear .

§2.  An Index Theorem.  Suppose C is a subgroup of order c = 1 or 2 generated

by γ ∈  G.  For any subgroup H and g ∈  G write HgC = CgH
~~

 or 1 CgH
~~

 for the

generators of H¦[G]C over ¦, and |HgC| = |H||C| or |H| respectively for their values
under the unit character of G.  Let r2γ(H) be the number of such generators with 2|H|

elements, and set rγ(H) = dim¦(H¦[G]C/¦G
~

).

2.1 THEOREM.  ¦[G]C/(N¦[G]C + ∑ F¦[G]C)  has finite order n frγ(N)/2 in the

metacyclic case and n(rγ(N)+(f−1)(rγ(F)−1))/2 in the maximal case.  The exponent of the

group is precisely n.

The rest of the section is devoted to a proof of this.  There are three possibilities
for γ:

γ = 1, γ ∈  N −1, or γ ∉  N.

Replacing γ by a conjugate does not change the order or the exponent of the quotient

group.  Thus if γ ∉  N it may be assumed that γ ∈  F0.  Because F0gC = CgF
~~

0  for

g ∈  N − 1  we have

2.2 r2γ(F) =  0,  n/2,  and  (n −1)/2;

rγ(F) =  n −1, (n −2)/2,  and  (n −1)/2; and

rγ(N) =  f −1, f −1,  and (f − 2)/2,

respectively in three cases.

From the proof of 1.5, Cn
~

 decomposes in N¦[G]C + ∑ F¦[G]C with component

CN
~~

 in N¦[G]C.  So the exponent is n for metacyclic groups.  For G maximal 1.1

yields the explicit decomposition Cn
~

= CN
~~

+ ∑i CF i
~

)1(
~
0 ν−  and hence an exponent n.
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The Metacyclic Case.  For γ = 1 the required index is

[¦[G]/N¦[G] : ∑’ ¦[G]F/N¦[G]] = [  ∑i ¦[G]βi/N¦[G] : ∑i ¦[G]F0(ν−1)i/N¦[G] ]

  = ∏i [  ¦[N]βi/N¦[G] : (ν−l) i¦[N]βi/N¦[G] ]

  = ∏i n
i     =     n f(f−1)/2

by 1.7.  Otherwise the assumption γ = φf/2 holds.  Let Ai = C
~¦[G]βi/N¦[G].  Then βi

may be replaced by

βi’  =  ( )i
1+ν

ν βi

to give (ν j + (−1)iν−j)βi’ with 1 ≤ j ≤ (n−1)/2 as a basis of Ai over ¦.  Ai ⊕  vAi is a
¦[G]-module because if α ∈  Ai then ν2α = −α + ν(ν + ν−1)α ∈  Ai ⊕  νAi.  When i is
even,

βi’ = −∑j (ν j + ν−j) βi’ ∈  Ai ⊕  vAi       so that      Ai ⊕  νAi = ¦[G]βi/N¦[G].

When i is odd,

(ν − ν−1)βi’ ∈  Ai ⊕  νAi       so that        Ai ⊕  νAi = (ν −1)¦[G]βi/N¦[G],

and this has index n in ¦[G]βi/N¦[G].  Hence if

B  =  ∑i Ai  =  C¦[G]/N¦[G]

then B ⊕  vB has index n f/2 in ¦[G]/N¦[G].  A0 ⊕  νA0 = ¦[G]F0/N¦[G] shows that if

D = ∑ C¦[G]F/N¦[G] then D ⊕  νD = ∑ ¦[G]F/N¦[G].  Thus the required index
q = [B : D] is given by

   n f(f−1)/2 = [Z[G]/N¦[G] : ∑ ¦[G]F/N¦[G]]

= n f/2 [B ⊕  νB : D ⊕  νD]

= n f/2q2 .

The Maximal Case.  When G is maximal the techniques of [11] are suitable for

the order calculation.  Define a pairing on ¦[G] × ¦[G] by (x, y) = |G|−1 G
11 (xy*)

where * is the involution induced by g õ g−1 for g ∈  G.  If X is a subgroup of ¦[G]
with basis {xi}  let

R(X) = |det((xi, xj))|

be the regulator of X.  This is independent of the choice of basis.

2.3 LEMMA .  If X = ∑ F¦[G]C then R(X) = fn
(f−1)(rγ(F)−1)

2 fr2γ(F)
.

Proof.  Let g, g’ ∈  N − 1 be fixed.  Then ghg’h’ = 1 implies h’ = h−1 for h, h’ ∈  F.

But ghg’h−1 = 1 has only one solution h ∈  F.  Hence FgFg
~

’
~

 contains the identity

once.  If  g ∈  N − 1 and g’ = 1,  or  g’ ∈  N − 1 and g = 1,  then  1  does not appear in

FgFg
~

’
~

, but it occurs f times for g = g’ = 1.
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Choose S ⊆  N − 1 so that {FsC | s ∈  S or s = 1} is a basis of F¦[G]C.  If
t, t’ ∈  N − 1 and s, s’ ∈  S then (t’Fs’C, tFsC) is c times the multiplicity of l in

FsCsFtt
~~

’
~

’ 11 −− .  Since s’γs−1 ∉  F for c = 2 the value of the pairing is given by:

t = t’ t ≠ t’
s = s’ cf c2 − c
s ≠ s’ 0 c2

Also (G
~

, G
~

) = nf and (G
~

, CsFt
~~

) = cf.  Take {G
~

, tFsC | t ∈  N−1, s ∈  S} for a
basis of X.  The corresponding matrix for R(X) includes |S| × |S| blocks, one for each
pair     t, t’ ∈  N − 1.   Observe that |S| = rγ(F) and let J, Jr, and Jc be the rγ(F) × rγ(F),
1 × rγ(F), and rγ(F) × 1 matrices consisting entirely of unit entries.  Then the regulator
may be calculated as follows :

nf cfJr cfJr ... cfJr

cfJc cfI c2J − cI ... c2J − cI

R(X)  = cfJc c2J − cI cfI ... c2J − cI

M M M M

cfJc c2J − cI c2J − cI ... cfI

nf 0 0 ... cfJr

cfJc cnI − c2J 0 ... c2J − cI

= cfJc 0 cnI − c2J ... c2J − cI

M M M M

cfJc c2J − cnI c2J − cnI ... cfI

=   |cnI − c2J|n−2
nf

cf 2Jc

cfJr

cI + c2(n − 2)J

=   {( cn)rγ(F)−1(cn − c2rγ(F))} f−1f
n

cJc

cJr

cI

  =   fn
(f−1)(rγ(F)−1)(n −crγ(F)) fc

 frγ(F)

  =   fn
(f−1)(rγ(F)−1)

2
 fr2γ(F) 

, by 2.2.

Let  ρ : ¦[G]C → Lγ = ¦[G]C/¦G
~

  be the natural map and define a pairing on

Lγ × Lγ  by  (ρx, ρy) = |G|−1( G
11 −1)(xy*)   for x, y ∈  ¦[G]C  and the involution

* : g ∈  G õ g−1.  Suppose X is a subgroup of Lγ.  Take {xj}  in ¦[G]C such that {ρxj}

is a basis of X.  Then {G
~

, xj}  is a basis of ρ−1X.  So

R(ρ−1X)  =
(xi, xj)

(G
~

, xj)

(xi, G
~

)

(G
~

, G
~

) i, j   .

But  (ρx, ρy) = (x, y) − |G|−1(x,G
~

)(G
~

, y)  for  x, y ∈  ¦[G]C.   Hence row operations
give  R(ρ−1X) = |G|R(X)  for the obvious definition of R(X).  Now 2.3 yields
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2.4 LEMMA .  R(∑ FLγ) = n
(f−1)rγ(F)−f

2
 fr2γ(F)

.

If x, y ∈  ¦[G]C satisfy ρx ∈  NLγ and ρy ∈  ∑ FLγ then (ρx, ρy) = 0.  Also the sum

NLγ + ∑’ FLγ is direct by 1.5.  Thus,

2.5 LEMMA .  R(NLγ + ∑ FLγ)  =  R(NLγ) R(∑ FLγ).

From [11], 3.5 and 3.3, the following facts may be recalled :

2.6 R(HLγ)  =  |G|−1|H|
rγ(H)+1

2
r2γ(H) 

 for a subgroup H;

2.7 R(Y)  =  [X : Y]2R(X)  for subgroups X, Y of Lγ for which [X : Y] is defined.

Combining equations 2.4−2.7 for X = Lγ and Y = NLγ + ∑ FLγ gives the order of

¦[G]C / (N¦[G]C + ∑ F¦[G]C)
as

[X : Y]  =  { R(NLγ) R(∑ FLγ)/R(Lγ)}
1  =  { n

rγ(N)+(f−1)(rγ(F)−1)} 1.

The power of 2 is eliminated by observing that  r2γ(H) = G
H1 (1 − γ)/2  and evaluating

1.2 at  (1 − γ)/2.

§3.  The Unit Group.  Suppose the normal extension K/k of number fields has the
Frobenius group G as its Galois group.  Let U and W be the groups of units and roots
of unity in K. 

3.1 LEMMA .  W = NW  and  FW = GW.

Proof.  Let H = Gal(K/k(W)).  Then H is normal in G and G/H is abelian.  The
former property implies H ⊂  N or N ⊆  H.  However, if H ⊂  N then G/H is Frobenius

and therefore not abelian.  Thus N ⊆  H and W = NW.  Now set H’ = Gal(K/k(FW)).
Then, similarly, N ⊆  H’.  But F ⊆  H’ also.  Therefore H’ = G and FW = GW.

The unit group U will be written additively when the notation makes this more
convenient.  In particular, for a subgroup H of G let «HU be the subgroup of units
with some non-trivial multiple (i.e. power) fixed by H.  Define

3.2 I(H)  =  [HU ∩ «GU : GU + HW].

It was shown in [11, §4] that I(H) divides [G : H].

3.3 LEMMA .  «GU = N«GU + F«GU  and the sum is direct up to elements in
GU.  Hence I(1) = I(N)I(F).

Proof.  The three groups modulo  GU + W  have orders I(1), I(N), and I(F)
which divide nf,  f, and n respectively.  The sum is therefore direct because  (n, f ) =
1. Choose a, b ∈  ¦ such that an + bf ≡ 1 mod nf.  Take ε ∈  «GU and write [ε] for
its class modulo GU + W.  Since G acts trivially on «GU/(GU + W) it follows that

[ε] = [(an + bf )ε] = [ N
~

aε] + [ F
~

bε] ∈  (N«GU + F«GU)/(GU + W).
Application of 1.5 shows that  Q = [U : U0]  is finite and divides a power of n.

Theorem 4.1 of [11] proves that  [«FU : FU + W]  divides f, which is prime to n, and
FU + W ⊂  U0.  Therefore

3.4 «FU  ⊂   U0 .
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Now the directness of 1.5 for U together with 3.3 yield 

3.5 LEMMA .  «FU  =  FU + N«GU. 

3.6 THEOREM.  Let r(H) be the rank of HU/HW.  Then Q = [U : U0] divides
In(f−1)(r(F)−r(G)) for I = [«NU : «NU ∩ U0] and I in turn divides n.

Proof.  For any ¦[G]-module X the quotient X/«HX is torsion-free.  Take x ∈  X

with image in H(X/«HX).  Then (|H| − H
~

)x ∈  «HX and so x ∈  «HX.  Thus
«H(X/«HX) = 0.  In particular, V = U/«NU has «GV ⊂  «NV = 0.  Hence

V0 = ∑’ FV and 1.5 shows this sum is direct.  If ε ∈  U has image in «FV then

F
~ ε −fε ∈  «NU.  So [FV : (FU + «NU)/«NU] divides a power of f and the same is

true of [V0 : (U0 + «NU)/«NU].  However, the latter index divides Q and thus a
power of n.  Therefore V0 = (U0 + «NU)/«NU and Q = [U : U0] = [V : V0]I.  From
1.5 the exponent of V/V0 divides n.  Also «FV = FV and the rank of V0/FV is
( f − 1)(r(F) − r(G)).   Thus the index  [V : V0] = [V/FV : V0/FV]  divides
n( f − 1)(r(F) − r(G)).  Finally I divides n by Theorem 4.1 of [11].

3.7 LEMMA .  The norms NK/FK U = UF
~

 satisfy  FU = UF
~

+ GU.

Proof.  Let S be a set of representatives for the conjugacy classes of N − 1 under
F.  If ε ∈  FU then

ε  =  









− ∑ ∑

∈ ∈

−

Fh Sg
hghN 1~ ε  =  N

~ ε − SF
~~ ε  ∈   GU + UF

~
.

§4.  The Class Number Relation.   Let {Ci}  be the set of decomposition groups in
G for one prime divisor in K of each of the r = r(G) + 1 infinite primes in k.  They are
defined up to conjugacy which depends on the chosen embedding of K into C.
Suppose L and Li satisfy the exact sequences of ¦[G]-modules

0  →  ¦  →  
r

i 1=
⊕ ¦[G]Ci  →  L  →  0,

where n ∈  ¦ õ n ⊕ i G
~

; and

0  →  ¦  →  ¦[G]Ci →  Li  →  0,

where n ∈  ¦ õ nG
~

.  In both cases let G act trivially on ¦.  Both sequences are

exact when fixed under the action of a subgroup H.  Let  L0 = NL + ∑ FL;  Li0 =

NLi + ∑ FLi;  Q* = [L : L0];  and  Qi*  = [Li: Li0].   Then Q* and Qi*  are finite by
Theorem 1.5.  Moreover ,

L /L0 ≅   { ⊕ i ¦[G]Ci}/{ ⊕ i (N¦[G]Ci + ∑ F¦[G]Ci)}  

≅   ⊕ i{(¦[G]Ci)/(N¦[G]Ci + ∑  F¦[G]Ci)}   ≅    ⊕ i Li/Li0.

Consequently,

4.1 Q*  =  ∏
=

r

i
iQ

1
* .
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The index Qi*  is just the order of the group in Theorem 2.1 with C = Ci.  If

ri(H) = dim HLi  then  ∑i (ri(H)+1) = dim HL + 1 = r(H) + 1 is the number of infinite
primes in HK.  Thus r(H) is the rank of the unit group HU/HW.  Combining 2.1 with
4.1 yields:

4.2 LEMMA . Q*  =  n f(r(N) − r(G))/2    in the metacyclic case and 

Q*  =  n(r(N) − r(G)+(f −1)(r(F) − 2r(G) −1))/2   in the maximal case.

Let a bar denote the canonical map U → U/W and choose a submodule M of U
which is ¦[G]-isomorphic to L.  Recall the definitions of I(H) and Q in 3.2 and 3.6.

4.3 LEMMA . 

f

f

FMFUNMNU

GMGUMU

]:][:[

]:][:[
   =   

1)(* −fFIQ

Q
.

Proof.  Begin by observing that («GU ∩ HU)/W = HUG  so that I(H) =

[ HUG : GU ].  Also UG = «GU/W = («GU ∩ U0)/W = 0GU  by 3.3.  For con-

venience, let V = UG .  Then

Q* [ U : M] / [ GU  : GM] I(1) Q

= [ 0U : M0][GM : V]  =  [ 0U /V : (M0 + V)/V]

= [( NU  + V)/V : (NM + V)/V]  ∏’ [( FU  + V)/V : (FM + V)/V] 

= [ NU : NM + NUG ][ FU : FM + FUG ]  f

= [ NU : NM][ FU : FM]  f / [ NUG : NM ∩ NUG ][ FUG  : FM ∩ FUG ]  f

= [ NU : NM][ FU : FM]  f / I(N)I(F) f [ GU : GM]  f+1 .

Now apply 3.3.

4.4 THEOREM.  Suppose the normal extension K/k of number fields has a
maximal or metacyclic Frobenius group G as its Galois group.  Let h(H) be the
class number and r(H) the rank of the unit group HU of the subfield fixed by a
subgroup H of G.  If the kernel N and a complement F have orders n and f
respectively then

f

f

FhNh

Ghh

)()(

)()1(
  =   QI(F)1−f n−A ,

where

Q  =  [U : NU ∏FU]  with ∏ over the complements F;

I(F),  defined in 3.2,  is the order of  (FU / GU)tor  and divides n;

A  =  1{ r(N) − r(G) + (f −1)(r(F) − 2r(G) + 1)}  in the maximal case; and 

A  =  ( f − 1) + 1 f (r(N) − r(G))  in the metacyclic case.

The quotient group U/U0 defining Q has exponent dividing n and it has order

bounded by 3.6.  The product U0 = NU ∏’FU defined in 1.3 is direct up to units
whose nth powers lie in k.
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Proof.  The form of Brauer’s class number relation [1] which is required here
is given in [10, Theorem 4.1].  This shows that

f

f

FhNh

Ghh

)()(

)()1(
  =  

ff

ff

FMFUnNMNUNWf

GMGUGWMUWnf

]:[]:[||

]:[||]:[||
  =  

1

1

)(* −

−

f

f

FIQ

Qn

by 3.1 and 4.3.  Now 4.2 yields the stated relation.

§5.  The Class Groups.  Let C(H) be the part of the ideal class group of HK
formed from the classes whose orders are prime to n.

5.1 THEOREM.  For any Frobenius group the following sequence is exact under
the maps induced by extension of ideals.

0  →  C(G)  →  C(F)  →  FC(1)/GC(1)  →  0.

Proof.  The sequence is exact at C(G) because C(G) has order prime to the
degree n of FK/GK.  The two central maps compose to give the zero map.  Suppose
:   is a class of C(F) which maps into GC(1).  It is necessary to show that if Q is an
ideal such that Qn ∈  :   then the class of the norm NFK/GK Q in C(G) maps to :  .  This
will establish the exactness at C(F).  Let us consider all ideals to be extended to K
and write the group of such ideals additively.  Then (g−1)Q is principal for g ∈  G
because the image of :   in C(1) is fixed by G.  Suppose (g−1)Q = (αg).  If h ∈  F then

(αg)  =  (g − 1)Q  =  (g − 1)hQ� =  h(h−1gh − 1)Q  =  h(αh−1gh ).

Thus it may be assumed that hαh−1gh = αg and α1 = 1.  Let S be a set of

representatives for the conjugacy classes of N − 1 under F.  Then

( N
~ − n) Q� =  ∑

∈ Ng
g )(α � =  










∑ ∑
∈ ∈

−

Sg Fh
gh α1   =  










∑
∈ Sg

gFα~

which is the extension of a principal ideal of FK.  Finally, to prove the surjectivity, let
:  ’ be a class of FC(1)/GC(1) and Q an ideal whose image is in :  ’.  With S as
above,

Q� =  









− ∑ ∑

∈ ∈

−

Fh Sg
hghN 1~ Q  ~  ( N

~
 − SF

~~
) Q

where ~ is equality up to a principal ideal.  Thus the ideal  − SF
~~ Q� in C(F) has image

in : ’ because N
~ Q is in a class of GC(1).  Hence the map is surjective and this

completes the proof.  Theorem 1.5 yields :

5.2  LEMMA .  Let X be a ¦[G]-module such that the order of X/GX is finite and
prime to n.  Then there is a direct sum decomposition 

X/GX  =  NX/GX  +  ∑’ FX/GX.

5.3  THEOREM.  The maximal subgroups C(H) of the ideal class groups of the
HK with orders prime to n satisfy

C(1)/C(N)  ≅   
f

i 1=
⊕ C(F)(i)/C(G) ,
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where C(F)(i) ≅  C(F) and the embeddings C(N) ⊂ → C(l) and C(G) ⊂ → C(F)(i) are
induced by extension of ideals.

Proof.  Replace C(N) by NC(1) and C(F)(i)/C(G) by FC(1)/GC(1) using 5.1.
Now apply 5.2. 
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