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Abstract. Hardware is described for implementing the fast modular
multiplication algorithm of P. L. Montgomery. Comparison with previ-
ous techniques shows that his method is up to twice as fast as the best
currently available, as well as being more suitable for alternative archi-
tectures. The gain in speed arises from the faster clock which results
from simpler combinational logic.
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0 Introduction.

The problem discussed here is that of providing hardware to perform modular
multiplication using the algorithm described by P.L. Montgomery [9], and further
developed by the first author [5] and Dussé and Kaliski [4]. Much more efficient
use of hardware is made here than for the standard algorithm of Brickell [1]
studied by the present authors in [16], although subsequent work by the second
author [15] provides similar improvements for that also. We establish that the
new method has a speed approximately twice as fast as previously existing ones.
Initially this requires a review of current techniques. Then we show how to
decrease the depth of combinational logic so that a faster clock speed can be
used. Thus, although the number of clock cycles is essentially the same as before,
overall time is roughly halved. The penalties of the simpler design are:

– the technique works only for moduli prime to the radix of the number rep-
resentations (e.g. only odd moduli for binary numbers),

– an extra modular multiplication is required to adjust each input and output,
– a certain constant dependent only on the modulus needs to be pre-computed

(r2nmodM in the notation used later), and
– area is increased by two extra registers.
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Thus, using the algorithm makes sense only if substantial intervening modular
arithmetic under a common modulus has to be done, as in the RSA algorithm [12]
where the first of these is always satisfied. Then the intervening adjustments are
not needed. However, the faster clock can be justified only by carefully comparing
new circuit diagrams against those of existing methods. We spend some time on
this, eventually deducing that the clock can have its speed doubled.

Our motivation for studying fast modular multiplication comes from cryp-
tography, where the RSA algorithm [12], and another by Diffie and Hellman [3],
make essential use of it. Both methods are already much used for the distribu-
tion of keys for less secure cryptographic methods. Improvements in technology
now make the RSA system likely to become the most widespread method for
guaranteeing security and for authentication purposes.

1 Existing Multipliers.

Existing state-of-the-art dedicated hardware for calculating (A×B)modM makes
use of several techniques for speeding up the calculation. Since it has not previ-
ously been done in the literature, we start by reviewing these. As in the paper
and pencil method, but starting with the most significant digit of A first, the
basic algorithm repeatedly adds to a running total R the product B∗ of the next
digit of the multiplicand A with the multiplier B and performs a shift up. At
the end the result R is reduced by a multiple of the modulus M to yield the
equivalent least positive residue, i.e. the remainder of A×B on division by M .
Apart from further miniaturization to allow faster clocking of the hardware, this
may be speeded up as follows:

I. Shift M up so that its most significant digit always has the same position
in the hardware. This allows moduli with different numbers of bits to be used
easily.
Appropriate adjusting shifts are made to A or B and the output. For con-
venience we assume in future that this has been done.

II. Interleave modular subtractions with the normal calculation of the product
by repeated shift and add. Now numbers stay roughly the size of the modulus
M rather than becoming as large as the product A×B. This saves register
space.

III. Look at only the most significant digits of M and the partial result R to
decide which multiple of M to subtract. This may result in a slightly inaccu-
rate result. However, with care it can be used in all intermediate calculations
provided that a final correction is made if necessary.

IV. Use a redundant representation for calculations. This means that numbers
may have digits from a range greater than that required, such as {0, 1, 2}
instead of only {0, 1} for binary representations. This avoids the unbounded
propagation of carries illustrated by the decimal addition of 1 and 999...9.
All the digit operations of an addition can now be done in parallel with
carries influencing only the digit sums in the next one or two places.
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V. Increase the base of the number representation. Grouping the bits of a binary
representation in pairs gives a representation in base 4 which is often used.
Although other bases are possible, usually a power of 2 is chosen to make
conversion to and from binary easy. Increasing the base reduces the number
of digits in the multiplicand A and so reduces the number of clock cycles in
the algorithm. However, the depth of hardware that has to be driven in a
single clock cycle is increased as well, so that a slower clock must be used.

VI. Shift up the multiplicand A and the modulus M by several places. Now
addition of the digit multiple B∗ of the multiplier does not affect the topmost
bits used to decide the multiple M∗ of M which must be subtracted. The
number of iterations in the process must be increased by the number of
shifts, but the circuitry for determining the multiple is much simplified so
that the clock speed can be increased. Finally, the result is shifted back
down. In brief, ((AS×B)mod (SM)) div S is calculated, where the factor S
corresponds to the shift.

VII. Each iteration requires the addition or subtraction of digit multiples B∗

and M∗ of B and M respectively. The pre-calculation of some or all of the
linear combinations B∗±M∗ may be an advantage. However, increased speed
from reduced combinational logic, which selects instead of multiplies, must
be weighed against the increased area of further registers.

VIII. If the modulus M has a known decomposition as a product of pairwise
coprime numbers Mj then the arithmetic can be done independently modulo
each factor Mj and the Chinese Remainder Theorem used to reconstruct the
correct residue modulo M .

IX. Decide which multiple of M to subtract early enough for the adder not to
be kept waiting for it. This may require partly calculating it in a previous
clock cycle. But it can be achieved, for example, by scaling the modulus M
so that the topmost bits of the modulus are known and the combinational
logic for technique III is simplified. The penalty for scaling is that several
final subtractions of the original modulus may be necessary to obtain the
least non-negative residue.

X. If the multiplicand A is not already in non-redundant form, convert it to
make the formation of B∗ easier. In the basic algorithm above this must be
done “on-the-fly” to produce the digits in the order they are consumed, i.e.
most significant first.

The techniques I-IV and VI are all used by Brickell [1]; V is found in [14]
and [7] and VII in, for example, [7] and [10]. The look-up table, which might be
used in VII, is more usually associated with III, as in [13]. But, because of the
potentially enormous size of such tables, this is appropriate only for software
or hardware which does sequential digit operations with digits of, perhaps, 32
bits rather than the 512 or so parallel bit operations we are considering. IX is
used in [15] whereas X is achieved as in [6] at the expense of a large worst case
delay, but small average delay, between the generation of A and its use as an
input. Brickell [2] provides a survey of currently available RSA chips. This, and
our search of more recent work, leads us to believe that the techniques listed
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above are, at present, exhaustive. Thus Brickell’s description [1] remains the
basis of the best hardware to date, and so provides the standard against which
to compare Montgomery’s method.

For completeness we have included VIII, which is described in [11]. It shows
how to combine rather than perform modular multiplications. We are concerned
instead with what happens inside a single modular multiplication.

One of our main tasks is to find analogous techniques which apply to Mont-
gomery’s modular multiplication algorithm [9]. Several apply equally well and
need no further comment, except that they can be safely ignored in order to
simplify the comparison between the algorithms. Among these are V, VII and
VIII. Moreover, using Brickell’s adder provides I-IV and VI immediately. This
leaves just IX and X. They have become explicit through the work here, leading
the second author to apply the scaling described above (see [15]) to achieve IX
for the standard algorithm [1] of Brickell.

2 Montgomery’s Algorithm and Notation.

To describe the new algorithm clearly, we remind the reader of some notation
used in modular arithmetic. The remainders on division by an integer m form
what is called the ring of residues modulo m. This means we have addition
and multiplication with similar properties to the integers. In particular, the
remainders or residues of the integers 0 and 1 are additive and multiplicative
identities respectively, i.e. α + 0 = α = 0 + α and α × 1 = α = 1 × α for
all residues α. When α is non-zero, m − α is the additive inverse of α since
α + (m − α) = 0 in this arithmetic. Also, if α has no factors in common with
m, it has a multiplicative inverse, i.e. there is a remainder modulo m, say β,
with the property α × β = 1. For example, 3 is its own multiplicative inverse
modulo 8 because 3 × 3 ≡ 1mod 8. We write −α and α−1 respectively for the
additive and multiplicative inverses of α. In the algorithm below, the modulus
under which multiplicative inversion is required is small, and so the process is
simple (see [4]).

Suppose the base (or radix), r, for the representation of numbers is prime
to M , i.e. r and M have no factors in common. This enables us to obtain a
multiplicative inverse modulo r for r −M0 in the code below, where M0 is the
lowest digit of M . Let the multiplicand A have n digits, denoted Ai (0 ≤ i < n),

so that A =
∑n−1

i=0 Air
i. We use similar notation for the other variables: the

multiplier B, the modulus M , the residue R and the integer quotient Q. Then,
using Pascal-like notation, the main part of Montgomery’s algorithm [9] for
computing the value R of (A×B)modM is this:

R := 0 ;
For i := 0 to n− 1 do
Begin

Qi :=
(

(R0 +AiB0)(r −M0)−1
)
mod r ;

R := (R + AiB + QiM) div r
End



Eldridge & Walter 5

where R0 is the lowest digit of R, etc. Unfortunately this does not yet yield
quite the right answer for (A×B)modM − some post-processing is necessary.
We know that Qi = (R + AiB)(−M)−1mod r because only the lowest digit of
each argument contributes to the calculation modulo r. Substituting this value
for Qi shows that R+AiB+QiM is exactly divisible by r, and so no significant
digits are lost in the division. Hence, as a result of the repeated divisions, the
outputs R and Q actually satisfy rnR = AB + QM . So a final extra modular
multiplication by rn is needed. In effect, the algorithm introduces an unwanted
factor of r−nmodM into the product AB by calculating R satisfying R ≡
ABr−n (modM). It is also easy to deduce from rnR = AB + QM that R <
M +B if A has digits bounded by r− 1, since then both A and Q are less than
rn. Indeed, this property is clearly a loop invariant. Further iterations, for which
Ai = 0, would soon provide R < 2M , say (see [5]), although not necessarily
the least non-negative residue. So an extra final subtraction of M may still be
necessary.

The concluding multiplication by rnmodM could be done using the same
algorithm again by taking the output R and r2nmodM as the new multiplicands,
the latter having been calculated previously once and for all by some other
means. However, when further modular arithmetic is involved, it is better to
start by using the algorithm to pre-multiply all inputs, using r2nmodM as
the other input. This yields, for example, rnA modM and rnB modM from
A and B. Then all the required modular arithmetic (including additions and
subtractions) can be performed without further intermediate scaling since every
input and output contains an extra factor of rnmodM . Lastly, a final such
modular multiplication with 1 as the other argument will remove this extra
factor from each output.

In the RSA algorithm, modular exponentiation is required. This is done by
repeated multiplication under the same modulus. Invariably both encryption and
decryption involve exponents with more than two bits, and at least one of the
exponents must have many bits. Since the number of modular multiplications
depends on the number of bits in the exponent, the two additional corrective
modular multiplications, which the method entails, normally make little differ-
ence to the overall time. So doubling the clock speed would truly yield a faster
algorithm − one that is effectively twice the speed for all exponents except those
with just one or two bits. Thus the methods here, which enable this to be done,
can certainly be used efficiently at one end at least of the encoding/decoding
process, and usually at both.

In comparison with the usual algorithm described in Section 1, Montgomery’s
algorithm:

– reverses the order of treating the digits of the multiplicand A,
– performs a shift down instead of up on each iteration, and
– does an addition rather than a subtraction.

These changes allow several simplifications in the combinational logic, and have
corresponding changes in the techniques listed in Section 1. However, recall that
M needed to be prime to r, so that M is odd if r is a power of 2. The algorithm
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is thereby a little less general than Brickell’s, but still equally applicable for
RSA cryptography where the modulus, being a product of two large primes, is
necessarily prime to the relatively small radix r.

In this paper we consider hardware for performing in one clock cycle, the
iterative step in the code above. There are two operations to be performed: one
is the addition of digit multiples combined with a shift, done by what we will call
the adder; and the other is the determination of the multiple q′ (= Qi+1) of M
needed in the next (the i+ 1st) iteration. For convenience, and to establish the
notation used in the circuit diagrams, we write the repeated addition operation
as

R′ := (R+B∗ +M∗)/r .

So the superscript ′ will be used to distinguish inputs for the next iteration from
those of the current one. The asterisk is used to denote digit multiples. Thus
B∗ and M∗ are multiples of B and M respectively, the former by a digit of A,
and the latter to make R + B∗ + M∗ into a multiple of r. In fact, M∗ = qM
for q = Qi. The output, R′, from the current cycle is fed into circuitry for
computing in the same clock cycle the next digit multiple q′ of M , ready for use
in the next cycle. So the ends of clock cycles occur in the middle of the software
loop described above.

Technique VI above is to modify B so that the choice of q is independent of
it. Previously, A and M were shifted up relative to B. Here, the corresponding
solution is to shift B up to make its lowest two digits zero. This is a relative
shift in the opposite direction, achieved in the reorganised code below simply by
writing r2B in place of B in the previous code. In detail, the main body of the
algorithm becomes:

R := 0 ; Q0 := 0 ;
For i := 0 to n+ 1 do
Begin

R := (Air
2B + R + QiM) div r ;

Qi+1 :=
(
R0(r −M0)−1

)
mod r

End

The output here satisfies rn+2R ≡ Ar2B (modM), which is as before. Generally
R is now bounded by M + r2B, but is reduced again to at most M +B by the
final two extra iterations for which the digits of A are zero. As can be seen from
the previous code, shifting B up by at least one place makes the calculation of
Qi+1 independent of the Ai+1B term. However, shifting B up two places as here
makes the new R0 and hence Qi+1 independent also of the AiB term during
each loop iteration.

So now the choice of q′ for the input M∗′ in the next iteration depends only
on the lowest two digits of the current M∗ and of the partial product R. The cost
of this simplification is just 2 iterations more than the number of digits in the
modulus compared with at least 5 in a straightforward application of Brickell’s
method (see [16]) or 3 if scaling the modulus is done (see [15]). Hence there is
essentially no increase in the number of clock cycles for the new algorithm.
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3 Circuits for Brickell’s Multiplier.

We assume a particular hardware technology in the circuits illustrated in the
figures, but the techniques and results obtained are applicable in general. The
speed of the hardware clock is determined by the longest paths in the circuit
driven during a single clock cycle. Our aim is to ensure that such paths lie in the
adder. Since the adder forms almost all the hardware and it consists of many
repeated units, if the aim were achieved then the hardware would be running at
full capacity, with no further speed-up possible.

Even when the enhancements of Section 1 are included, previous designs
based on Brickell’s method have required a depth of circuitry roughly double
that of the adder in order to calculate the multiple q′ of the modulus to subtract
next (see Figure 2). This forces the clock to have only half the speed at which
the adder could operate. We show that with Montgomery’s algorithm q′ can be
found sufficiently before the completion of the addition cycle to run the adder
at full speed.

∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕
∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕

∧ ⊕ ∧ ⊕ ∧ ⊕
∨ ∨ ∨

Rt=1 Rt−1=2
M
∗
t−1=1

Rt−1=1 Rt−2=2
M
∗
t−2=1

Rt−2=1 Rt−3=2
M
∗
t−3=1

Rt−3=1

Overflow of q2t R′t=1 R′t−1=2 R′t−1=1 R′t−2=2 R′t−2=1

Fig. 1. Upper End of Existing Delay Carry Adder

Suppose the radix is 2, the digit range is {0, 1, 2} for A, B, R and Q, and
t and 0 are the indices of the most and least significant bits in any registers.
Assume also that M has an irredundant form, i.e. digits 0 or 1. Figure 1 gives
part of the circuit at the top end of the adder in chips which use Brickell’s
method, as corrected in [16]. Here t must be at least 5 more than the number of
bits in B and M . Figure 2 extends this to give circuitry for the calculation of
q′. For the main body of the adder, there are three inputs (to the top of these
figures), namely M∗ (or rather a shifted complement M̄∗), R and B∗, and one
main output R′, which is the new value of R, (from the bottom of the figures).
The most significant digits of B∗ are zero because of the initial shift up of A
and M . So there is no contribution from them over the digit range illustrated in
these figures. The exclusive or, xor, is denoted ⊕. Labels on inputs and outputs
such as “Rt−1 = 2” mean 1 when the condition is true, and 0 otherwise.

The top four bits of output marked as overflow are discarded. This is because
the subtraction of the multiple M∗ is performed by adding a shifted complement
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M̄∗. So we must discard an overflow of q2t if M∗ = qM is being subtracted.
This overflow tells us what q is.

The topmost digits of the output R′ are fed directly into circuitry to find the
next quotient digit q′. This mainly comprises parallel copies, for each non-zero
digit multiple of M , of that part of the hardware in Figure 1 which generates the
overflow bits. These are combined to make the correct choice, having as inputs
respectively the topmost digits of the possible values of M∗′. The result, given
in Figure 2, has simplifications arising from particular properties of the input
such as lack of lower (or higher) input bits.

∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕
∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕

∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕
∨ ∨ ∨ ∨ ∨ ∨ ∨

Input R and M
∗

(shifted)

Input M (shifted)

Overflow of q2t

Input 2M (shifted)

Output R′

∨ ∨ ∨
∧ ⊕ ∧ ⊕ ∧

∧ ⊕ ∧ ⊕ ∧
∧ ⊕ ∧

∨ ∧
∨ ¬

∧

∨ ∨
∧ ⊕ ∧

⊕ ∧ ⊕ ∧
⊕ ∧
⊕

M∗′ = 2MM∗′ = M
(q′ = 2)(q′ = 1)

The
check
for
next
over-
flow
of
2.2t

The
check
for
next
over-
flow
of
1.2t

Fig. 2. Delay Carry Adder with Test for Next Multiple of M

These two parallel copies of the top of the adder add 7 more gates to the
maximum depth of circuitry involved, giving 11 gates along the longest path
from input to output. As most of these gates are of the same kind, namely xor,
we will not find it necessary to distinguish between the time delays caused by
individual distinct gate types. These gate counts therefore closely approximate
the time required for signals to propagate through the circuit. (Some hardware
technologies allow the anding of several inputs together. Such gates would de-
crease the path length, making 11 gates a little pessimistic. However, a similar
decrease would then be possible in the adder also.)
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This total of 11 should be compared with a maximum adder depth of 6 gates
evident from the circuit given by Brickell [1], which forms the basis of Figure
3. The figure of 11 seems to be optimal as the same depth was obtained by a
hardware design tool at UMIST. The digit multiples cannot be computed earlier
because they take more time to compute than the adder output, and so the
adder is always waiting for them. Thus it is in general impossible to benefit from
technique IX of Section 1.

4 Circuits for Montgomery’s Multiplier and
Comparative Speed.

Taking Montgomery’s algorithm now, we use the same adder as before in order
to make a fair comparison. So this is again the case of binary representations
with inputs A and B having digits in {0, 1, 2}. For convenience, we assume that
B has already been shifted up two places so that its lowest two digits are 0.
Figure 3 gives the circuit analogous to Figure 2 for generating the quotient digit
q′, and makes use of B1 = B0 = 0.

∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕

∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕∨ ∨ ∨

∧ ⊕ ∧ ⊕∨ ∨ ∨ ∨

⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕

∨ ∨ ∧ ⊕

∧ ⊕ ∧ ⊕

Coeffs of 24 | Coeffs of 23 | Coeffs of 22 | 21 | 20

R4 = 2
R4 = 1

M∗4 = 1
B∗4=1

B∗3 = 2
R3 = 2

R3 = 1
M∗3 = 1

B∗3=1

B∗2 = 2
R2 = 2

R2 = 1
M∗2 = 1

B∗2=1

R1 = 1
M∗1 = 1

R0 = 1

(M∗0 = 1)

R′4=1 R′3=2 R′3=1 R′2=2 R′2=1 R′1=1 R′0=1

(q′=1)

Fig. 3. Lower End of New Adder with B shifted 2 Places

Further simplifications arise in the diagram because, since R + B∗ + M∗

and B are multiples of r, the input digits R0 and M∗0 must be equal. (Indeed
this entails q = R0 = M∗0 , since M0 = 1.) Hence inputs R0 and M∗0 can be
combined on one line as an input to the 21 bit slice, instead of appearing as
two inputs to the 20 bit slice. As the lowest output comes from the 21 bit slice,
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the required shift down is possible. Lastly, neither R0 nor R1 is ever 2 because
R = 0 initially, and the circuit shows that subsequently generated values of R
retain this property.

The output q′ (= R′0) determines the multiple of M to be input during
the next cycle. It is obtained more quickly than the general digit of R′, whose
computation is therefore the limiting factor on the clock speed. For the usual
adder, which is used for both methods, those general digits are obtained after the
input has passed through an attainable maximum of 6 gates. Now the speed is
roughly proportional to the depth of circuitry, Brickell’s method led to an 11 gate
critical path length, and 6 is the critical path length here. Hence this method
apparently leads to a clock speed close to double that obtainable previously,
namely an 11/6-fold increase. However, we shall have to modify this conclusion
slightly after further analysis.

Before tackling this, we end the section with the observation that the di-
rection of computation coincides with that of carry propagation. This is to our
advantage in several ways. First, the multiplicand A can be converted into an
irredundant form by keeping a carry bit which is updated as the digits of A
are consumed, least significant first. Hence the digit multiples B∗ = AiB need
be selected from a set of only 2 (or r for the general radix). This is the tech-
nique X of Section 1. Secondly, by using the circuit of Figure 3, the lowest digit
of the partial product is not redundant. Therefore, neither is the multiple q of
M to be added at each iteration. However, under the Brickell scheme, q must
be from a redundant digit range. In consequence, the adder here is simpler at
least as far as some background control is concerned. This happens because non-
redundant digits need 1 bit less in their representation, saving 1 gate of depth
in the selections of both B∗ and M∗.

5 Signal Broadcasting.

So far we have assumed that most of the hardware operating during a clock cycle
is just what has already been studied. Unfortunately, this is not the case − in
particular, signal broadcasting and amplification need to be performed.

The bits controlling the multiples q and Ai of M and B respectively need to
be broadcast to each digit over the whole length of the adder in order for the next
iteration to form or select the bits for M∗ and B∗. Signal decay creates a need
for about 1 extra amplification gate for every four outputs to which the signal
needs distributing. So, with a 512 to 1024 bit modulus M , a tree structure with
a depth of 5 gates is required to distribute these signals (see Figure 4). Moreover,
clock signals need to be distributed in the same way to operate the registers.

In Brickell’s scheme, the last bits to be formed are the two determining the
multiple q of M . Hence, for a typical digit position in the adder, we need 5 gates
to distribute these two bits to that position, 2 gates to use them to select the
right digit in M∗, and, as noted before, up to 6 gates to perform the addition.
This gives a total depth of about 13 gates for the adder proper − more than
double that of our restricted view in the previous two sections.
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However, specific outputs can be calculated more quickly by distributing sig-
nals preferentially to the associated inputs before they are fanned out elsewhere.
In particular, we probably need just 2 rather than 5 gates to broadcast signals
to the inputs which determine the next q. As before, 2 further gates are used to
select the right input multiple of M , and, as in Figure 2, 11 more generate the
required choice of q′. This gives a total depth of 11 + 2 + 2 = 15 gates along a
critical path in an implementation of the standard algorithm [1].

M∗0
′=1M∗1

′=1

M1=1

q′ distributed to almost 45 locations

∧

∧ ∧ ∧ ∧

∧ ∧ ∧

∧∧ ⊕ ∧ ⊕ ∧ ⊕

∧ ⊕

∧ ⊕ ∧ ⊕ ∧ ⊕

∧ ⊕

∨ ∨ ∨

∧ ⊕ ∧ ⊕∨ ∨ ∨

∨

⊕ ∧ ⊕ ∧ ⊕

∧ ⊕

∨ ∨ ∧ ⊕

∧ ⊕ ∧ ⊕

Coeffs of 24 | Coeffs of 23 | Coeffs of 22 | 21 | 20

R4 R4 M4 q B4 Ai B3 R3 R3 M3 q B3 Ai B2 R2 R2 M2 q B2Ai R1 M∗1 R0=1

(M∗0 =1)
‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1

R′4=1 R′3=2 R′3=1

R′2=2 R′2=1 R′1=1 R′0=1

(q′=1)

Fig. 4. New Adder with Distributed Signals
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Under the new scheme, it is clear from Figure 3 that q′ = R′0 is formed 4
gates before the typical output bit of R′. Hence, using a tree of depth 4 rather
than the 5 needed, that bit can be partly distributed over the length of the
register in the current clock cycle while the adder settles. Then the complete
distribution of the signal at the start of the next cycle requires just 1 more gate,
and only 1 gate is needed to select the right input multiple of M . This gives a
total adder depth of just 6 + 1 + 1 = 8 gates.

Further improvement is possible. Consider Figure 4. This shows explicitly
the initial gates needed to obtain M∗ from M and q, and B∗ from B and Ai .
However, it assumes q and Ai already fully distributed, and M∗1 available from
the previous clock cycle. The general output digit of R′ is produced in a depth
of only 7. So, once R′0 is formed, there is a depth of 5 available for the full
distribution of q′ (= R′0) before the adder settles, and M∗′1 is easily computed
during this. So the initial hypotheses about q and M∗1 can be met, and we obtain
a circuit of depth 7.

The calculation of some values may be advanced so that M∗′ can be com-
pletely formed ready for the next iteration. This enables the gate depth to be
reduced from 7 to the absolute lower bound of 6 determined by the main body
of the adder. The details are provided in Figure 5, with the advanced inputs
being marked as such. The speed of the combinational logic in the adder is the
limiting factor there, which is what we wished to achieve.

∧ ∧ ∧ ∧ ∧∧ ⊕ ∧ ⊕ ∧ ⊕

∧ ⊕

∧ ⊕

∧ ⊕ ∧ ⊕ ∧ ⊕

∧

∨ ∨ ∨

∧ ⊕ ∧ ⊕∨ ∨ ∨

∨

⊕ ∧ ⊕ ∧ ⊕

∧ ⊕

∨ ∨ ∧ ⊕

∧ ⊕ ∧ ⊕

Coeffs of 24 | Coeffs of 23 | Coeffs of 22 | Advanced

R4 R4 M∗4 B4 Ai B3 R3 R3 M∗3 B3 Ai B2 R2 R2 M∗2 B2Ai X Y M1R
′
0R
′
0

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1

R′4=1 R′3=2 R′3=1 R′2=2 R′2=1 R′1=1 X ′ Y ′ R
′′
0=1

M∗1
′=1

Fig. 5. Advanced Adder
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Figure 5 assumes that R′0 is available a full clock cycle ahead of the rest of R′.
So R′0 can be fully distributed to up to 45 places and anded with M to provide
M∗′ in a register awaiting the start of the next cycle. This requires a depth of
only 6 gates. Let R′′ denote the value of the partial product one iteration after
its value is R′. Then the output R′′0 is what we need to justify the assumption
that R′0 is available as an input. It is produced just in time.

To obtain this diagram, we have moved the circuitry for the coefficients of 21

and 20 back from the beginning of one clock cycle to the end of the previous one.
The corresponding inputs and outputs represent bits further on in the calculation
than those higher up the adder. In detail, the advanced inputs are defined by
X = R1 ∧M∗1 , Y = (R1 ⊕M∗1 )∧R0 and R′0 = (R1 ⊕M∗1 )⊕R0 . Thus, since
initially R = 0 and M∗ = 0, the first inputs for X, Y and R′0 are also all zero.

For either circuit under the new algorithm, the extra cost over Brickell’s
scheme of making such efficient use of the combinatorial logic is two extra full
length registers to store the partial or complete calculations of M∗ and B∗. The
prize is a reduction from 15 to just 6 gates along the maximum path length.

Next, a clock signal is required to operate the registers and other memory.
The depth of the combinational logic needed to amplify the clock to each register
bit is, as above, 5, which is less than the adder’s logic. Hence the clocking should
not add to the cycle time. However, we have to add on the set-up and hold
and delay times for the operation of the latches on the registers. With typical
CMOS technology, this amounts to about the delay of three 2-input xor gates,
which form the majority of the gates along the critical paths. So this reduces
the speed-up ratio from an apparent 15/6 to a more realistic 18/9, i.e. the new
design is about twice the old speed. Decreasing the number of latches to reduce
this overhead can be achieved by increasing the radix, which we will not consider
further here.

Finally, there is the problem of very long wires in our design. Through in-
creased capacitance and resistance, this contributes to the power needed to drive
the chip and cuts the clock speed. Although significant, we have mostly ignored
this aspect in the belief that, by affecting equally all implementations using such
chip architecture, it would not seriously upset the relative timing estimates.
Given that the chip area is almost entirely covered by the adder, broadcasting
information over the whole length of the adder will involve wires which are on
average at least half the length of an edge of the chip.

One way of avoiding long wires is pipelining or, more generally, the use of sys-
tolic arrays. Given the large area of such chips, architectures with a fault-tolerant
capacity might provide more cost-effective hardware. In both algorithms the cho-
sen architecture needs to produce the multiple of M first. The new algorithm
is particularly superior in this respect because, unlike Brickell’s scheme, carries
propagate away from this sub-calculation. So the natural way to treat this in a
systolic array is in the same way as ordinary multiplication [8], treating digits
together rather than single bits, and certainly working on only a single compu-
tation. This has been done by the second author in [17]. However, with Brickell’s
scheme, a systolic array could work only by interleaving independent modular
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multiplications. This would require a much larger chip or a time-consuming ex-
ternal interface.

6 Conclusions.

There is a vast world market for cryptography in which the over-riding concerns
are security, authentication, and speed of encryption and decryption. If public
keys are also required then the first two of these desires are currently obtainable
to any extent only through the use of the RSA algorithm, and the last through
dedicated hardware. We have been concerned with increasing the speed of hard-
ware so that the RSA method becomes much more acceptable to the market. The
first chips implementing RSA have already proved their worth with reasonable
speeds but they have had high development costs.

We have shown above how to make much more efficient use of hardware for
encrypting and decrypting messages using the RSA method by changing the
method for modular multiplication. The hardware to achieve this is actually
simpler than before, although at the cost of two extra full-length registers and
some pre- and post- processing. Speed is improved two-fold when compared
with the best existing hardware. It is clear that almost all the elements in the
new design operate essentially continuously, with virtually no idle time during
clock cycles as formerly. Thus it would now appear that no further significant
speed-up is possible using this type of algorithm, assuming an optimal choice
of number representation is made. Being simpler than before, the new method
brings benefits at the design stage of the hardware, as well as during operation.
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