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Abstract

A systolic array for modular multiplication is presented using the ideally suited algorithm
of P.L. Montgomery. Throughput is one modular multiplication every clock cycle, with a
latency of 2n+ 2 cycles for multiplicands having n digits. Its main use would be where many
consecutive multiplications are done, as in RSA cryptosystems.

1 Introduction.

Among other reasons, security for an ever-increasing number of electronic banking trans-
actions has fuelled research into cryptographic algorithms and efficient implementations of
them. Some of the main systems for encryption or key transfer, such as RSA [7], require fast
modular multiplication of numbers containing 500 or more bits. Here we describe a systolic
array for performing this. It provides another alternative for the rapid encryption of bulk
data.

Two pieces of related work have appeared during revision of this paper. One, by Koç and
Hung [4], is the only attempt so far at a systolic algorithm for modular multiplication. The
other, by Shand, Bertin and Vuillemin [8], describes a pipeline similar to one row of the array
presented here which the authors have programmed into their hardware array. The first of
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these suffers from excessive latency and a slow clock, the result of the unsuitability of the
natural algorithm [1] which is based on Horner’s nested multiplication method. It involves
repeated additions of the multiplicand and repeated subtractions of the modulus. These are
interleaved to keep register size down. For speed, just a few of the most significant digits of
the partial product are used to decide the multiple required in the next modular subtraction.
In a digit-level systolic array, this multiple must be pumped down the cells performing the
subtraction from the cell for the most significant digit to that of the least. But, because
carry propagation is in the opposite direction, a redundant number system has to be used
to limit the influence of carries. However, a delay is still caused while the limited carries are
accumulated at each cell. So, overall, the first digit of the output in [4] appears after about
13n/2 clock cycles, where n is the maximum number of digits in any input. Moreover, the
clock cycle needs to be slow enough to allow for calculating the multiple of the modulus.

The clash in direction between the movement of the carries and that of the multiple of
the modulus is resolved by using P. L. Montgomery’s algorithm [6] which re-structures the
operation so that the modular adjustment depends instead on the least significant digits.
Like Shand et al. [8], we make use of this and, like them, we can expect similarly impressive
computation speeds. The result of this choice is a truly systolic algorithm with much reduced
latency and a faster clock. Indeed the most complex cell is the most common one, which
performs two digit multiplications and three digit additions, and the delay till the first output
digit appears is just 2n+ 2 clock cycles. There is, unfortunately, a price to pay for the
greater efficiency. Some post-processing of the output is required, but the cost of this is
relatively slight if a number of modular multiplications with a common modulus are performed
sequentially, as in the RSA cryptosystem.

2 The Basic Algorithm.

The ideas which are combined here are those of Montgomery [6] on modular arithmetic,
and of McCanny and McWhirter [5] on systolic multiplication. Montgomery shows how to
perform modular multiplication by a method which includes reversing the order of treating
the digits of the multiplicand, shifting down instead of up, and adding rather than subtracting
multiples of the modulus. A Pascal-like description of his algorithm for (A×B) mod M is
given below, and is followed by a short justification of how it works. Further detail is found
also in [2]. First, however, we review the notation that is used.

Numbers A are written with base r and digits A[i], so that A =
∑n−1

i=0 A[i]ri where n
is the number of digits in A. The choice of digit range is unimportant, but we interpret
mod r as yielding a digit value. Let m and n be the number of digits in the inputs M and A
respectively. Normally, B has at most the same number of digits as M or, at worst, satisfies
B < 2M . We assume the latter, so that B has at most m+1 digits. The radix r is chosen
before implementation so that the operations div r and mod r are trivial. In particular, here
they are done by shifting or inspecting the lowest digit respectively. The choice for r will
probably be a small, fixed power of 2 to make translation to and from binary easy.
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A pre-condition for the algorithm to work is that there is no common factor between r and
M . In the definition of Q[i] below, the multiplicative inverse (r −M [0])−1 mod r is required.
This is the digit which, when multiplied by r −M [0], gives a product with remainder 1 on
division by r. The co-primeness of M and r ensures that such a number exists. Inspection
of the assignment to P shows that there is a multiple of r to be divided by r. Hence no
information is lost in the division, which is therefore exact.

P := 0 ;
For i := 0 to n− 1 do
Begin

Q[i] :=
(

(P [0] +A[i]×B[0]) × (r −M [0])−1
)
mod r ;

P := (P + A[i]×B + Q[i]×M) div r
End

To see what this code does, let Pi be the value of the partial product P at the start of the
loop for which i is the value of the control variable. So P0 = 0. Let Ai =

∑i−1
j=0A[j]rj and

Qi =
∑i−1

j=0Q[j]rj be the lower parts of A and Q. So A0 = Q0 = 0. Then, by induction,

riPi = Ai×B +Qi×M . Thus the final value Pn of P satisfies rnP = A×B +Q×M , so that
P ≡ (r−nAB) mod M . The systolic array described here produces output P with this extra
power of r, but it may also be used to remove that factor. This is done by an extra application
of the operation with inputs P and r2n mod M , the latter being pre-computed once for all
and stored with M . Further detail in the context of the RSA algorithm is provided in Section
4.

Suppose the standard set of digits {0, 1, ..., r − 1} is used for A and Q. Then the maximum
value κ of P satisfies κ = (κ+ (r − 1)B + (r − 1)M) div r, and so κ = M +B. Once the
digits of A run out, subsequent values of P decrease, being bounded above by κi (i = 0, 1, ...)
which satisfy κ0 = κ = M +B and κi+1 = (κi + (r − 1)M) div r, i.e. κi = M + (B div ri).
These yield bounds on the number of digits needed to represent the intermediate and final
values of P . If initially B < 2M then P < 3M always, so that P requires up to two bits more
than M . Furthermore, in the next iteration beyond the one using the last, most significant
digit of A, the output satisfies P < M + (2M div r) ≤ 2M . This would be suitable for re-use
as the B input of a further modular multiplication.

3 The Systolic Array.

A key property of Montgomery’s algorithm is that the choice of modulus multiple is based
on the lowest digit P [0] of the partial product. With this multiple Q[i] determined, the
digits of the i+ 1st partial product Pi+1 can be computed in order starting with the lowest.
Also, with Q[i] known, digits output from one addition cycle enable the corresponding digits
for the next cycle to be found. This is done by the array illustrated in Figure 1 where
each row performs an iteration of the loop and columns compute successive values for a
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single digit position. The typical cell performs a single digit calculation of the assignment
P := (P + A[i]×B + Q[i]×M) div r, and generates a carry in the normal way. So it is
specified by

Pi+1[j − 1] + r×CarryOut = Pi[j] + A[i]×B[j] + Q[i]×M [j] + CarryIn
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Figure 1: Arrangement of Modular Multiplication Cells.

The i+ 1st row down computes Q[i] and Pi+1, whilst the j + 1st column from the right
finds the digit with index j for each Pi. The input digits of M , A and B, and also those of
Q, are just pumped through cells without change until a different modular multiplication is
commenced. In the cases of M and B the digits need delaying by an additional clock cycle
(i.e. the operation time of a cell), so that they arrive when needed. This is achieved by the
latches indicated between the cells.

The cells also forward up the rows the carries from the additions. If the digits of each
number lie in the usual range {0, 1, ..., r−1} then the above definition of the cell shows that
carries are bounded by 2(r−1). Thus the carry needs one more bit than a digit for its
representation.
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Suppose the set-up described at the end of the previous section is used so that B initially
satisfies B < 2M . Then we wish to perform n+ 1 addition cycles to obtain output satisfying
P < 2M . For this there must be n+ 1 rows in the array and A must be padded at the top
end with an extra zero digit, i.e. A[n] = 0. The output we desire is Pn+1 from the row with
input A[n]. It will equal (r−n−1AB) mod M , or be M more than this because it is bounded
by 2M . So, a further row might usefully be added to subtract the possible extra M, with the
decision about whether to take Pn+1 or Pn+1 −M being made when the sign of the latter is
established. This is further discussed below.

Intermediate values of P are bounded by 3M . This entails that there is no carry from
the column in which each Pi[m+ 1] is computed. So the array needs no column to the right
of this and, since Pi[m+ 2] = 0 always, this value can be input at the left side of the array.
Along the top edge the inputs P0[j] are all 0 because the initial value of P is 0. Also on this
edge, the digits of M [j] and B[j] are input j clock cycles after M [0] and B[0] so that they
match the progress of the carries.
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Figure 2: The Rightmost Cells.

The cells are all identical with the exception of the rightmost column, illustrated in Figure
2, which has the burden of computing the digits of Q. Carries entering the array from the
right are, of course, zero. Also, the digit A[i] is input 2i clock cycles after A[0] since the shift
down puts the calculation of each Pi two cycles behind its predecessor. The digits of Q are
defined as in the Pascal code by

Q[i] =
(
(Pi[0] +A[i]×B[0]) × (r −M [0])−1

)
mod r.

Although the rightmost cells do not generate output digits Pi+1[−1] because they are deleted
by the div r operation, nevertheless a carry may be generated when evaluating the 0th digit
before the shift down:
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r × CarryOut = Pi[0] +A[i]×B[0] +Q[i]×M [0]

In [3] Eldridge and Walter describe how to simplify the calculation of Q[i] by shifting B
up to make B[0] = 0. This is possible here too, but at the cost of an extra row and an extra
column to obtain an output less than 2M . The advantage is that it reduces the complexity of
the rightmost cells, and hence their operation time, to at most that of the standard cells. Such
a simplification maximises the possible clock speed at very little cost. For this it is assumed
that (r −M [0])−1 mod r is pre-computed once (a table look-up) and fed in like M [0]. There
may also be a slight advantage in scaling M to M ′ = ((r −M [0])−1mod r)×M since then
M ′[0] ≡ −1(mod r) leads to the simple definition Q[i] = Pi[0]. Computing would then be
done modulo M ′ giving a result bounded by 2M ′ rather than 2M . So the penalty for that
would be extra cleaning up afterwards.

The first output digit of a modular multiplication appears after 2n+ 2 clock cycles, and
successive digits over the next m clock cycles. Indeed, the output P [j] appears 2n+ 2 cycles
after B[j] is input and 2n+ 2 + j cycles after the very first input, namely B[0]. The latency
is thus 2n+ 2. However, since m+ 1 digits are output on each cycle, the throughput is
equivalent to 1 modular multiplication per cycle.

Comparison with the array of Koç and Hung [4] is worthwhile. The logic of cells is simpler
here because there is no need for a redundant number representation. Also the clock cycle
time is shorter. In [4], this is bounded below by the time to compute the equivalents of the
digits Q[i] in their super cells LY 5 and LU5. For radix 2 and a technology using only 2-input
gates and no buffering to enable outputs to drive more than one load, this requires a circuit
similar to that given in [3] Figure 2, with its critical path length of 13 xor gates. Here a
depth of 5 gates suffices for the general cell (see Figure 3), and less for the rightmost cells,
when the suggested simplifications are made. Allowing for register set-up and hold times, the
clock here should be about (13 + 3)/(5 + 3) = 2 times faster, with the same speed-up factor
for the throughput. Since there are 2n+ 2 clock cycles per operation instead of about 13n/2,
the latency is reduced roughly 7-fold. Different technologies allow trade-offs here between
power, area and speed.

4 RSA Cryptography.

In practice the systolic array is likely to be of most use for RSA cryptography where
modular exponentiation is needed. This is normally performed by repeated modular multi-
plication. It has already been observed that the array calculates (ABr−n−1) mod M rather
than AB mod M , and an extra M may be present. The extra M makes no difference to
subsequent modular arithmetic, and so can be ignored until the final result of decryption is
obtained. The extra factor of r−n−1 can be removed after each multiplication by using the
array again to multiply (ABr−n−1) mod M and r2n+2 mod M . However, in exponentiation
this also can be left till the end of the calculation.
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Figure 3: The Typical Cell for Radix r = 2.

Encryption and decryption is done using two keys, E and D respectively, with the property
ADE ≡ A mod M . Suppose the encryption of A is done using the systolic array to successively
square A modulo M and to multiply these 2-powers as necessary into a running total, retaining
the unwanted powers of r. Then (Ar−n−1)E mod M is produced rather than AE mod M .
Hence, using the array for an extra modular multiplication by r(n+1)(E+1) mod M will provide
AE mod M . The cost of this extra multiplication is minor compared to the typical number
of modular multiplications in the encryption process. Naturally, the owner of the key E
only needs to compute r(n+1)(E+1) mod M once and store it for use until the key is changed.
Decryption is similar. In fact, only the decrypter needs to adjust for the power of r, and
the property of DE ensures that the scaling factor still depends only on his key. Another
alternative strategy is described in [3].

The main overhead might be in the over-large residue. Although this problem is shared
by all fast implementations of modular multiplication (see [3]), it seems worse here because
the top output digits are generated last of all. Apparently, they need to be known in order to
decide whether a final subtraction of M is necessary or not. This is true in general but false
under appropriate conditions! An easy solution is always to make the message for encryption
into a multiple of r, thus ensuring that the lowest digit is 0. Then, at decryption, the output
will have lowest digit M [0] if, and only if, the extra multiple of M is present. A bottom row
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of special cells can be added to the systolic array to remove ((P [0]×M [0]−1)mod r)×M and
produce the required answer. (The same formula works if up to (r − 1)M needs subtracting,
and there is an obvious generalisation for higher multiples.)

For RSA applications, typical inputs have about 103/2 bits. This means about 106/4 bit-
processing cells, or about 4×106 gates. As this may be beyond available technology for a single
chip, suppose that as many rows as possible are put onto the chip. Theoretically, a number
of chips could be used sequentially to construct the whole array, but in practice it would
be impossible to transfer the required 103/2 bits per cycle between the chips. Alternatively,
it is clearly better to re-route the output back to the input within a single chip, repeatedly
feeding it back in at the top digit by digit as it is calculated, until the required n+ 1 partial
products have been computed. If just n′ rows of cells are built, then at full capacity the array
is simultaneously processing 2n′ different modular multiplications.

It takes 2n+ 2 clock cycles from the input of one digit to the output of the corresponding
digit after the modular multiplication. It is only after such a delay that further progress on
an exponentiation can take place. (Strictly speaking, for a non-zero exponent bit, there is a
modular multiplication into a running total and a modular squaring which can be done simul-
taneously.) Hence the modular multiplications which the array is performing simultaneously
must come from different exponentiations. This indicates that for use in RSA the messages
for encrypting or decrypting should generally be numerous. Of course, one interesting choice
is to reduce the array to a pipeline by just implementing 1 row. This would give a very cheap,
simple modular multiplying chip for performing single encryptions.

5 Conclusion.

A systolic array for modular multiplication has been presented. Although there is an
extra unwanted factor present because of the choice of algorithm, this can be dealt with at
virtually no cost when the algorithm is used in RSA cryptography. Since in the simplest case
a single digit is used to determine the multiple of the modulus to add during iterations of
the algorithm, the clock can be made very fast. Neat solutions have been included to avoid
finishing with output containing an extra unwanted multiple of the modulus, and to achieve
the best possible clock speeds.
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