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Abstract 

 
We propose a practical technique to compile pattern-matching for prioritised 

overlapping patterns in equational languages into a minimal, deterministic, left-to-

right, matching automaton.  First, we present a method for constructing a tree 

matching automaton for such patterns.  This allows pattern-matching to be 

performed without any backtracking.  Space requirements are reduced by using a 

directed acyclic graph (dag) automaton that shares all the isomorphic subautomata 

which are duplicated in the tree automaton.  We design an efficient method to 

identify such subautomata and avoid duplicating their construction while generating 

the dag automaton. We conclude with some easily computed bounds on the size of 

the automata, thereby improving on previously known equivalent bounds for the tree 

automaton.   

Keywords: Term rewriting system, pattern-matching, tree automaton, dag automaton. 

 

1.  Introduction 

The key technical problems in implementing equational computations as reduction 

sequences are finding redexes, choosing which redex to reduce at each step and 

performing the reduction.  The first stage is often called pattern-matching and this can 

be achieved as in lexical analysis by using a finite automaton.  In order to avoid 

backtracking over symbols already read, extra patterns are added.  These correspond to 

overlaps in the prefixes of original patterns.  In this paper, we focus on avoiding the 

duplication of subautomata caused by the repetition of pattern suffixes when these new 

patterns are added.  This results in a more efficient pattern-matcher.  Consequently we 

also obtain much improved bounds on the size of the recognising automaton. 

A simple-minded way of pattern-matching is to try each rule sequentially until a 

left-hand side is matched or the whole pattern set is exhausted.  However, this method 

may consume considerable effort unnecessarily.  Usually, patterns are pre-processed to 

produce an intermediate representation allowing the matching to be performed more 

efficiently.  One such representation consists of a matching automaton [3, 4, 7]. 

Here we concentrate on another method of building minimal (with respect to size), 

deterministic (i.e. no backtracking), matching automata for prioritised, overlapping 

patterns.  First, a method for generating a deterministic tree matching automaton for a 

given pattern set is described.  Although the generated automaton is efficient since it 

avoids symbol re-examination, it can only achieve this at the cost of increased space.  

As we shall see, the main reason for the increase in space requirements is the 

duplication of functionally identical or isomorphic subautomata in the tree-based 

automaton.  However, the problem of directly constructing matching automata that do 

not duplicate such subautomata has not been previously described [2, 11].  We tackle 
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this next, describing a method that efficiently identifies equivalent states that would 

lead to identical subautomata and then constructing the equivalent reduced dag-based 

automaton.  This is achieved without explicitly constructing the tree automaton first.  

Finally, we bound the size of the dag automaton using easily obtained parameters. 

2.  Notation and Definitions 

In this section, we recall the notation and concepts that will be used in the rest of the 

paper.  Symbols in a term are either function or variable symbols.  The non-empty set 

of function symbols F = {a, b, f, g, ...} is ranked i.e., every function symbol f in F has 

an arity which is the number of its arguments and is denoted #f.  A term is either a 

constant, a variable or has the form ft1 t2...t#f  where each ti, 1 ≤ i ≤ #f, is itself a term.  

We abbreviate terms by removing the usual parenthesis and commas.  This is 

unambiguous in our examples since the function arities will be kept unchanged 

throughout, namely #f = 4, #g = #h = 2, #a = #b = 0.   Variable occurrences are 

replaced by ω, a meta-symbol which is used since the actual symbols are irrelevant 

here.  A term containing no variables is said to be a ground term.  We generally 

assume that patterns are linear terms, i.e. each variable symbol can occur at most once 

in them.  Pattern sets will be denoted by L and patterns by π1, π2, ..., or simply by π.  

A term t is said to be an instance of a pattern π if there exists a substitution σ for the 

variables of π such that t = σπ. 

Definition 2.1:  A position in a term is a path specification which identifies a node in 

the parse tree of the term.  Position is specified here using a list of positive integers.  

The empty list Λ denotes the position of the root of the parse tree and the position p.k 

(k≥1) denotes the root of the kth argument of the function symbol at position p.   

Positions of symbols in a term can be totally ordered according to the left-to-right 

order of the symbols in the term or the pre-order traversal of the parse tree.  This 

ordering generalises to cases where the positions are of symbols in different terms 

because we can compare their integer lists lexicographically.  So any set of positions 

can be put in left-to-right order. 

Definition 2.2:  A matching item is a triple r:α•β where αβ is a term and r is a rule 

label.  The label identifies the origin of the term αβ and hence, in a term rewriting 

system, the rewrite rule which has to be applied when αβ is matched.  The label is not 

written explicitly below except where necessary.  The meta-symbol • is called the 

matching dot,  α and β are called the prefix and suffix respectively, and the first symbol 

of β is called the matching symbol.  The position of the matching dot is called the 

matching position and is identified with the position of the matching symbol.  A final 

matching item is one of the form α•.   It has a final matching position which we write 

as ∞. 

Throughout this paper left-to-right traversal order is used.  So the matching item •β 

represents the initial state prior to matching the pattern β.  In general, the matching 

item α•β denotes that the symbols in α have been matched and those in β have not yet 

been recognised.  Finally, the matching item α• is reached on successfully matching 

the whole pattern α. 

Definition 2.3:  A set of matching items in which all the items have the same prefix is 

called a matching set.  A matching set in which all the items have an empty prefix is 

called an initial matching set whereas a matching set in which all the items have an 
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empty suffix is called a final matching set.  The rule set for a matching set is the set of 

labels appearing in its items. 

Definition 2.4:  For a set L of pattern suffixes and any symbol s, let L\s denote the set 

of pattern suffixes obtained by removing the initial symbol s from those members of L 

which commence with s.  Then, for f ∈ F define Lω and Lf by:  

    Lω   =           L\ω 

   Lf  = { L \ f ∪ ω 
#f

 L \ ω  if  L \ f  = ∅ 

∅     otherwise 

where ω#f  denotes a string of #f symbols ω.  The closure L  of a pattern set L is then 

defined recursively by Gräf [2] as follows:  

    
L        = 

 { 

L     if L = {ε} or L = ∅ 

U }{ω∪∈Fs sLs   otherwise

Roughly speaking, with two item suffixes of the form fα and ωβ we always add the 

suffix fω#fβ in order to postpone by one more symbol the decision between these two 

patterns.  Otherwise backtracking might be required to match ωβ if input f leads to 

failure to match fα. 

3.  Tree Matching Automata 

In this section, we describe a practical and efficient method to construct a tree 

matching automaton for a prioritised overlapping pattern set.  The pattern set L is 

converted into the above closed pattern set L  while generating the matching 

automaton.  In general, the construction technique described here is inspired by the 

LALR method used in YACC to generate parsers for LR-languages [1,5].  This has 

been used for many years to compile imperative languages.  The pattern set to be 

compiled is considered as a set of right-hand sides of syntactic productions.  However, 

there are no Shift-Reduce or Reduce-Reduce conflicts since we are only treating root 

matching of the input and the priority rule enables us to resolve multiple matches. 

The pattern set compiles into a deterministic tree matching automaton which is 

represented by the 4-tuple 〈S0, S, S∞ , δ〉 where S is the state set, S0 ∈ S is the initial 

state,  S∞ ⊆ S is the final state set and δ is the state transition function.  The states are 

labelled by matching sets which consist of original  patterns whose prefixes match the 

current input prefix, together with extra instances of the patterns which are added to 

avoid backtracking in reading the input.  In particular, the matching set for S0 contains 

the initial matching items formed from the original patterns and labelled by the rules 

associated with them.  Transitions are considered according to the symbol at the 

matching position, i.e. that immediately after the matching dot.  For each symbol s ∈ 

F∪{ω} and state with matching set M, a new state with matching set δ(M,s) is derived 

using the composition of the functions accept and close defined in Figure 3.1. 
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  accept(M,s)  =  {r:αs•β  r:α•sβ ∈ M }  

  close(M)  =  M ∪ {r:α•fω#fµ   r:α•ωµ ∈ M  and  

          ∃ q:α•fλ ∈M for some suffix λ and f∈F } 

  δ(M,s)  =  close(  accept(M,s)  ) 

Figure 3.1: Automata Transition Function 

The items obtained by recognising the symbols in those patterns of M where s is the 

next symbol form the set accept(M,s) which is called the kernel of δ(M,s).  However, 

the set δ(M,s) may contain more items.  The presence of two items α•ωµ and α•fλ in M 

creates a non-deterministic situation since the variable ω could be matched by a term 

having f as head symbol.  The item α•fω#fµ is added to remove this non-determinism 

and avoid backtracking.  The transition function thus implements simply the main step 

in the closure operation described by Gräf [2] and set out in the previous section.  

Hence the pattern set resulting from the automaton construction using the transition 

function of Figure 3.1 coincides with the closure operation of Definition 2.4.  The item 

labels simply keep account of the originating pattern for when a successful match is 

achieved. 

Non-determinism is worst where the input can end up matching the whole of two 

different patterns.  Then we need a priority rule to determine which pattern to select. 

Definition 3.2:  A pattern set L is overlapping if there is a ground term that is an 

instance of at least two distinct patterns in L.  Otherwise, L is non-overlapping. 

Definition 3.3:  A priority rule is a partial ordering on patterns such that if π1 and π2 

are overlapping patterns then either π1 has higher priority than π2 or π2 has higher 

priority than π1. 

When a final state is reached, if several rules have been successfully matched, then 

the priority rule is engaged to select the one of highest priority.  Examples of priority 

rules are the textual and specificity priority rules.  The textual rule is used in the 

majority of functional languages.  Among the matched patterns, the rule chooses the 

pattern that appears first in the text.  The specificity rule [6] can be used only if for any 

pair of overlapping patterns, one pattern is an instance of the other.  The former pattern 

is said to be more defined than the latter.  So among the matched patterns, the rule 

chooses the most defined pattern.  Whatever rule is used, we will apply the word match 

only to the pattern of highest priority which is matched.   

Definition 3.4:  A term t matches a pattern π ∈ L  if, and only if, t is an instance of π 

and t is not an instance of any other pattern in L of higher priority than  π. 

Example 3.5:  Let L = {faaωa, fgaωaab, fωbbb} be the set of patterns of rules 

numbered 1, 2 and 3 respectively.  The matching automaton for L is given in Figure 

3.6.  Each state is labelled with its matching set.  Transitions corresponding to failures 

are omitted, and an ω-transition is only taken when there is no other available 

transition which accepts the current symbol.  The automaton can be used to drive the 

pattern-matching process irrespective of the chosen term rewriting strategy. 
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3  fω • bbb

3  fgωωb • bb

3  fgωωbbb •

2  fgaωaa • b

2  fgaωaab •

3  fgaωbb • b

3  fgaωbbb •
 

Figure 3.6:  Tree Automaton for {1: faaωa, 2: fgaωaab, 3: fωbbb} 

4.  Optimal Pattern-Matching Automata 

The tree automaton described above is time efficient during operation because it avoids 

symbol re-examination.  However, it achieves this at the cost of increased space 

requirements.  The unexpanded automaton corresponding to the pattern set of Figure 

3.6, and to which no patterns are added, is given in Figure 4.1.  It is much smaller. 

There, fabbb is only recognised by backtracking from state 2 to state 1 and then taking 

the branch through state 4 instead.  But in Figure 3.6 a branch recognising fabbb has 

been added to avoid backtracking, thereby duplicating the existing sub-branch which 
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recognises the bbb in fωbbb. We can see similar duplication in several other branches 

of Figure 3.6; those identified by sharing the same main state numbers. 

By sharing duplicated branches, the tree automaton can be converted into an 

equivalent but smaller directed acyclic graph (dag) automaton.  States which recognise 

the same inputs and assign the same rule numbers to them are functionally equivalent, 

and can be identified. For instance, the dag automaton corresponding to Figure 3.6 is 

given in Figure 4.2.  The number of states is thereby reduced from 27 to 17, leaving 

just one state more than in the non-deterministic machine of Figure 4.1. 

0
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a

g

a

a a a b

b b b

ω 

ω 
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13
3

a

1

2
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2

9

5

 
Figure 4.1:  Unexpanded Automaton for { 1: faaωa,2: fgaωaab,3: fωbbb} 
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Figure 4.2:  Dag Automaton for {1: faaωa, 2: fgaωaab, 3: fωbbb} 
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By sharing duplicated branches, the tree automaton can be converted into an 

equivalent but smaller directed acyclic graph (dag) automaton.  States which recognise 

the same inputs and assign the same rule numbers to them are functionally equivalent, 

and can be identified. For instance, the dag automaton corresponding to Figure 3.6 is 

given in Figure 4.2.  The number of states is thereby reduced from 27 to 17, leaving 

just one state more than in the non-deterministic machine of Figure 4.1. 

The above example hides the complexity of recognising duplication where a number 

of suffixes are being recognised, not just one.  The required dag automaton can be 

generated using finite state automaton minimisation techniques but this may require a 

lot of memory and time.  The obvious alternative approach consists of using the 

matching sets to check new states for equality with existing ones while generating the 

automaton.  In the case of equality, the new state is discarded and the existing one is 

shared.  However, comparison  of matching sets may be prohibitively expensive and it 

may well require bookkeeping for all previously generated matching sets.  A major aim 

of this paper is to show how to avoid much of this work.  First we must characterise 

states that would generate isomorphic subautomata. 

Definition 4.3: Two matching items r1:α1•β1 and r2:α2•β2 are equivalent if, and only 

if, the suffixes and rule labels are equal, i.e. β1 = β2 and r1 = r2.  Otherwise, they are 

inequivalent. 

Definition 4.4:  Two matching sets M1 and M2 are equivalent if, and only if, to every 

item i in M1 ∪ M2 there correspond items i1 ∈ M1 and i2 ∈ M2 which are equivalent to 

i.  Otherwise, the sets are inequivalent. 

For instance, in Figure 3.6 the matching sets labelling the states 9(1) and 9(2)
 are 

equivalent whereas the matching sets labelling the states 3 and 4(2)
 are inequivalent.  

Clearly, equivalence is the right criterion for coalescing nodes of the tree automaton to 

obtain the equivalent dag automaton: such sets will certainly accept the same pattern 

suffixes and result in the same rewrite rule being applied.  So, 

Lemma 4.5:  Two matching sets generate identical automata if they are equivalent.  

 We believe this equivalence is actually necessary as well as sufficient to combine 

corresponding states in the automaton.  However, equivalent matching sets may have 

different prefixes, as can be seen in Figure 3.6.  Since only the suffixes are relevant to 

matching, only they appear labelling the states in Figure 4.2. 

5.  Dag Matching Automaton Construction 

In this section, we describe how to build the minimised dag automaton efficiently 

without first constructing the tree automaton.  This requires the construction of a list of 

matching sets in a suitable order to ensure that every possible state is obtained, and a 

means of identifying potentially equivalent states.   

The items in matching sets all share a common prefix before the matching dot (e.g. 

see Figure 3.6), namely the string of symbols recognised before reaching the matching 

position.  Hence, the matching position of any item is an invariant of the whole 

matching set.  The states of the tree automaton can therefore be ordered using the left-

to-right total ordering on the common matching positions of their matching sets.  

Unfortunately, states which are functionally equivalent may not share the same 

matching position (see [8]).  So the matching position is not uniquely defined for a 
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state in the dag automaton.  However, one way of assigning an acceptable and unique 

matching position to a dag state is always to choose the leftmost (or the rightmost) 

position of all the states which have been coalesced.  This is done starting with the 

initial state and working downwards. 

The dag automaton is constructed as in Algorithm 5.1.  We iteratively construct the 

machine using a list l of matching sets in which the sets are ordered according to the 

matching position of the set.  So the initial matching set is first and final matching sets 

come last.  Each set in l is paired with its corresponding state in the automaton and a 

pointer is kept to the current position in the list l. 

Algorithm 5.1:  Initialise l to contain just the pair of the initial matching set and state, 

and set the current pointer to it.  For the iterative step, let 〈M,S〉 be the current pair in l.  

For each symbol s ∈ F∪{ω}, compute the non-empty matching sets δ(M,s) as defined 

above.  If there is no pair 〈M',S'〉 in l such that δ(M,s) is equivalent to M' then create a 

state S', add it to the automaton with a transition labelled s from S to S' and insert the 

pair 〈δ(M,s),S'〉 into l according to the matching position of δ(M,s).  Otherwise, i.e. 

when such a pair 〈M',S'〉 already exists in l, create a transition s from S to S'.  Lastly, 

increment the pointer to the next matching set in l, if such exists, and repeat.  The 

process halts when the end of the list l is reached. 

The list l represents the equivalence classes of matching states where the assigned 

matching position is that of the representative which is generated first.  In each new set 

which is generated, the position of the current matching set is incremented at least one 

place to the right.  So new members of l are always inserted to the right of the current 

position.  This ensures that all necessary transitions will eventually be generated 

without moving the pointer backwards in l.  It is easy to see from the definition of the 

close function that added patterns cannot contain positions that were not in one of the 

original patterns.  So l contains sets with matching positions from a finite collection 

and, as each set can only generate a finite number of next states all of which are to the 

right, the total length of l is bounded and the algorithm must terminate.   

The tree and dag automata clearly accept the same language and the automaton is 

minimal, in the sense that, by construction, none of the matching sets labelling the 

states in the automaton are equivalent.  We now illustrate the algorithm. 

Example 5.2:  When applied to the pattern set of Example 3.5, the algorithm generates 

the same matching sets as in Figure 3.6, and we number the sets as there.  It is clear 

from that figure that matching sets which are equivalent have been given the same 

number (with different bracketed subscripts for different occurrences) whereas 

inequivalent sets have different numbers.  The left-to-right order by the matching 

position is given in Figure 5.3.   

Matching position List of states 

Λ 0 

1 1 

1.1 2 

1.2 5, 6 

2 3, 4, 7 

3 8, 9, 10 

4 11, 12, 13 

∞ 14, 15, 16 

Figure 5.3: States of Figure 3.6 with their Matching Positions. 
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 One possible final list l which preserves this order is therefore given by reading it 

from top to bottom: (0, 1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16).  As each state 

in this list becomes the current state, it is readily seen that the new states it generates 

(as given by the transitions from the current state in Figure 3.6) are further along the 

list because their matching positions are further to the right.  In fact, the states are 

numbered in order of creation in this list:  State 0 generates state 1 which in turn 

generates states 2, 3 and 4.  Then state 2 generates states 5 and 6 which are to the left 

of 3 and 4 and so are inserted before them.  Next, state 5 generates a state which is 

found to be equivalent to 4, so that in the dag there will be a transition to state 4 from 

both states 1 and 5.  The process continues until the final states 14, 15 and 16 are 

reached (one for each initial pattern) when the algorithm terminates and the dag 

automaton of Figure 4.2 is obtained.   

6.  Checking for Equivalence 

In this section, we show how matching sets can frequently be discriminated easily so 

that the cost of checking for equivalence is reduced.  However, in some cases, 

comparison of suffixes in the matching sets cannot be avoided.  We look at three 

properties to help achieve this.  One is the set of rules represented by patterns in the 

matching set, another is the matching position and the third is a state weight function 

wt.   The first and last yield the same values for equivalent states.  We must extend the 

arity notation #f to include variable symbols and ω  which are all considered to be like 

constants and so of arity 0, i.e., #ω  = 0.    

Definition 6.1:  The weight wt of a string of function and variable symbols si is: 

    wt(s1 ... sn)   =  ∑ = −+ n
i is1 )1(#1   for n ≥ 0 

and the weight of a matching item α•β is defined as the weight of its prefix, viz.  

    wt(α•β)   =   wt(α). 

 

 The following properties are readily verified (e.g. part (iii) by structural induction): 

Lemma 6.2:  

 i)  wt(ε)    =  1   i.e. the weight of the empty string is 1.  

 ii)  wt(α1α2...αn ) =  ∑ = −+ n
i iwt1 )1)((1 α  for any n strings α1, α2, ..., αn. 

 iii) wt(t)    =  0   for any term t. 

 iv) wt(α•β)   =  n   if β = t1...tn is a string of n terms. 

 v) wt(σ(α))   =  wt(α) for any string α and substitution σ. 

Using the arities as given previously to our example function symbols, we have for 

example: 

  wt(fag•ωaab)   = 1 + (#f−1) + (#a−1) + (#g−1)  =  1 + 3 −1  + 1 =  4 

  wt(fafab•ωaab)  = 1 + (#f−1) + (#a−1) + (#f−1) + (#a−1) + (#b−1)  =  4 

So the weight obtained is indeed the number of individual subterms after the matching 

dot.  As symbol strings or as sequences of terms, these suffixes are identical although 

their parent patterns have different structures.  For a matching item α•β, β is always a 

sequence of terms and so the weight function represents the number of terms in the 

suffix that have not yet been checked.  This is the number of disconnected subtrees left 

after deleting the prefix nodes from the parse tree of the original term.   



282  Lecture Notes in Computer Science, vol. 1298, pp. 273-286, Springer, 1997. 

Since the prefix is an invariant of a matching set M, so is the weight and we can 

safely write wt(M) for the common weight of any item in M.  By (iv), the weight is 

determined uniquely from any suffix.  So, as equivalent sets have the same suffix sets, 

the weight of a matching set is an invariant of its equivalence class.  Equivalent 

matching sets must also have the same subsets of rules represented in their patterns.   

Lemma 6.3: Equivalent matching sets have the same weight and rule sets. 

In Figure 4.2, all inequivalent matching sets are distinguished by the use of either 

the weight function or the rule set.  Thus the criteria are useful in practice.  However, 

they will clearly not be sufficient in general.  In the opposite direction, it is also 

sometimes easy to establish equivalence.  Combining these with the matching position, 

we have the following very useful result which enables the direct checking of 

equivalence to be avoided entirely in Example 3.5. 

Theorem 6.4:  Matching sets that share a common matching position, weight and rule 

set are equivalent. 

Proof:  It suffices show the kernels of the matching sets are equivalent, since then the 

function close will add equivalent items to both sets.  Let M1 and M2 be two matching 

sets that share the same weight, rule set and common matching position p.  Let i1 = 

r:α1•β1 and i2 = r:α2•β2 be any two items associated with the same rule in their 

respectively kernels.  The definitions of accept and close guarantee that the suffixes 

consist of a suffix of the original pattern πr of the rule preceded by a number of copies 

of ω.  To identify this suffix, let p′ be the maximal prefix of the position p 

corresponding to a symbol in πr.  This is either the whole of p or is the position of a 

variable symbol ω.  Either way, substitutions made by close for variables before p′ in 

either i1 or i2 have already been fully passed in the prefix, and no substitution has yet 

been made for any variable further on in πr.  So if β is the suffix of πr that starts at p′ 
then the items i1 and i2 must have the form α1•ω n1β and α2•ω n2β for some n1, n2 ≥ 0.  

Since M1 and M2 have equal weight, we have wt(α1) = wt(α2).  So n1 = n2 by Lemma 

6.2(iv) and i1 and i2 are equivalent.  We conclude that M1 and M2 are equivalent. 

Although matching sets that share these three properties are equivalent, the 

matching positions of equivalent matching sets are not necessarily identical.  An 

example can be found elsewhere (see [8]).  Finally, we observe what weights and 

matching positions are possible: 

Theorem 6.5:  The weight and matching position of any matching set are the same as 

those of some matching item consisting of an original pattern with a matching dot. 

Proof: From the definition of close, every symbol in an added pattern has the same 

position as a symbol in some pattern of the generating set.  When that position 

becomes the matching position in the two corresponding patterns, the resulting items 

will have the same weight.   By induction, these positions and weights must occur in 

the original pattern set. 
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7.  Complexity 

In this last main section, we evaluate the space complexity of the dag automaton by 

giving an upper bound for its size in terms of the number of patterns and symbols in 

the original pattern set.  The bound established considerably improves Gräf’s bound 

[2].  The height of a tree or dag automaton is the maximum distance from its root to a 

final state. The breadth of a tree automaton is the number of its final states, which is 

the size of the closure L . Gräf bounds the size of the tree automaton by showing that 

height(Atree) ≤  ∑π∈L|π|     and     breadth(Atree) ≤  Ππ∈L(|π|+1)    

and then using the fact that the automaton size is less than the product of its breadth 

and height. We need a generalisation of breadth which is applicable to the dag 

automata here.  We choose a rightmost matching position for each dag state so that 

positions move rightwards along every path.  The following definition depends on this 

choice and so is not an invariant: 

Definition 7.1:  The breadth of a dag automaton is the maximum number of matching 

sets having the same matching position. 

This wider definition of breadth coincides with the one for tree automata because: 

Lemma 7.2:  The maximum number of matching sets with the same matching position 

in a tree automaton is always the number of final matching sets, i.e. its breadth as a 

tree. 

Proof:  Along any branch from initial to final state of the tree automaton, the matching 

positions are all distinct because each state has a position to the right of its parent.  

Hence, for every occurrence of a given position in the tree, there is at least one 

occurrence of a final position at the end of the branch.  Thus, there are at least as many 

final states as states with any given matching position. 

Lemma 7.3:  If Adag is the dag automaton corresponding to the tree automaton Atree 

then 

   breadth(Adag) ≤ breadth(Atree)   and   height(Adag) = height(Atree). 

Proof: The breadth inequality arises because every state in the dag corresponds to 

some state in the tree automaton that has the same assigned position.  Also, the height 

of the dag and tree automata must coincide since the former has no cycles and so paths 

in the tree cannot become shorter in the dag. 

The size of the tree automaton is bounded above by the product of its height and 

breadth.  The nearest equivalent result for dag automata is that its size is bounded by 

the product of the number of different matching positions and its breadth.  In the 

following, the bound on the breadth of the dag automaton is much better than that 

above for the tree automaton, and the bound for the number of positions essentially 

duplicates the height bound for the tree automaton.  So immediately we have a much 

better overall bound on the size of the dag automaton than that given by Gräf for the 

tree automaton.   

Lemma 7.4:  If at least one pattern has 2 or more symbols, then the breadth of the dag 

automaton for a pattern set L is bounded above by  (2
|L|−1)(Maxπ∈L|π|−1)  where |π| is 

the length of pattern π and |L| is the size (cardinality) of L. 
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Proof:  There is only one state, the initial one, which has the initial position and there 

are exactly |L| states which have the final position, one for each pattern of L.  So the 

breadth bound holds for them.  Otherwise assume that the breadth is determined by a 

non-initial, non-final position.  By Theorem 6.4, the maximum number of inequivalent 

states with the same matching position is bounded by the product of the number of 

different possible weights and the number of different possible rule sets.  The rule set 

for any state could be any non-empty subset of L, of which there are 2
|L|−1.  So it 

remains to show that Maxπ∈L|π|−1 is an upper bound on the number of possible 

weights.  Using Theorem 6.5, the weight of a state is the weight of a prefix of a rule in 

L.  This is the number of terms that could appear in its suffix.  As we ignore initial and 

final positions, the weight is bounded below by 1 and above by one less than the 

number of symbols in the suffix, and hence by the length of the pattern minus 1.  So up 

to at most Maxπ∈L|π|−1 different weights are possible. 

Lemma 7.5:  The height of the minimised dag for a pattern set L is bounded above by 

2 − |L| + ∑π∈L|π|  and the number of its distinct positions is bounded above by               

1 + ∑π∈L|π|. 

Proof: Along a path from the initial node to a final node, the positions are all distinct, 

each child having a position to the right of its parent, with each position appearing in 

some pattern of L.  The number of non-initial, non-final positions counting 

multiplicities is ∑π∈L(|π|−1).  Adding 1+|L| to this gives an upper bound on the total 

number of distinct positions, whereas adding 2 gives an upper bound on the height of 

the dag. 

Combining the methods of proof for these two results above yields a very much 

better bound on dag automaton size than simply taking the product of breadth and 

number of positions.  Our main conclusion about the space efficiency of the dag 

automaton described here is the following: 

Theorem 7.6:  The size of the dag automaton for a pattern set L is bounded above by:  

       1 + |L| + (2
|L|−1)( ∑π∈L(|π|−1) )  

Proof:  The number of states in the minimised dag automaton is 1+|L| plus the number 

of non-initial, non-final states in the dag.  By Theorem 6.4, we just need to count the 

number of possible (weight, position) pairs, and multiply by the bound 2
|L|−1 on the 

number of different possible rule sets.  By Theorem 6.5, every (weight, position) pair 

of interest is given by a non-initial symbol position in an original pattern.  So the 

number of such pairs is bounded by the number of such symbols, i.e. by ∑π∈L(|π|−1). 

The above bound is easily computable with no internal knowledge of the patterns.  

However, if we have more specific information about subsets of rules starting with 

given function symbols, then the following improved bound may be applicable: 
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Corollary 7.7:  The size of the dag automaton for a pattern set L is bounded above by: 

1 + |L| + ∑f∈F* { 1 + (2
|L\f |−1)( ∑π∈L\f (|π|−1) )  } +  δ ( Maxπ∈L|π|−2 ) 

where L\f is as in Definition 2.4, F* is the subset of function symbols which appear as 

first symbols in L, and δ = 1 if ω is a pattern of L and L has a pattern of length at least 

3, and δ = 0 otherwise. 

Proof:  Assume, first of all, that ω is not itself a pattern in L.  So L = U *
\

Ff
ffL∈  

and |L| = ∑f∈F | L\f |.   Then, after the initial state, the automaton splits into disjoint 

subautomata Af which are entered according to the symbol f read first.  Thus the size of 

the automaton is bounded by the number 1+|L| of initial and final states, plus 1 for the 

initial state of each Af  plus the number of non-initial, non-final states in each Af .  The 

rule set available for each state in Af is restricted to a subset of those in L\f and the 

(weight, position) pairs of states must correspond to symbol positions in patterns of  

L\f.  So we can apply Theorem 7.6 to bound Af in terms of L\f and so obtain the result.  

Now assume that ω is the initial symbol of a pattern.  Then it is actually the whole 

pattern, so Aω would consist of a single final state.  The close function would add 

patterns to each Af so that failure to match a pattern of fL\f would result in passing 

directly to a sequence of states which recognises all remaining input symbols and 

terminates at the final state of Aω.  For convenience, we will count this sequence of 

states as part of Aω.  Then, apart from extra transitions, the only difference the pattern 

ω makes is to add Aω, which has at most Maxπ∈L|π|−2 non-final states. 

8. Conclusion 

First, we described a practical method that compiles a set of prioritised overlapping 

patterns into an equivalent deterministic automaton which does not need backtracking 

to  announce a match.  Re-examination of symbols while matching terms is completely 

avoided.  The matching automaton can be used to drive the pattern-matching process 

with any rewriting strategy. 

In the main body of the paper, we described a method to generate an equivalent 

minimised dag matching automaton very efficiently without constructing the tree 

automaton first.  We directly built the dag-based automaton by identifying the states of 

the tree-based automaton that would generate identical subautomata.  By using the dag-

based automata we can implement left-to-right pattern-matchers that avoid symbol re-

examination without much increase in the space requirements.  

Some useful functions were described for distinguishing inequivalent states when 

building the dag automaton.  A theorem which guaranteed equivalence in terms of 

several simple criteria was then applied to established improved upper bounds on the 

size of the dag automaton in terms of just the number of patterns and symbols in the 

original pattern set.  These considerably improve Gräf's previous bounds for the tree 

automaton. 
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