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Preliminary Remarks 

• Only about half these slides will be covered. 

The remainder are for future study. 

• The first half of the slides are introductory to 

give you a feel for the topic. 

• The second half sketches some of the main 

implementation issues. 

• There are additional notes which give much 

more detail. These are primarily for when you 

really have to learn the subject in order to 

implement pairings. 

• There is a lot of deep mathematics behind 

pairings, but it can all (or mostly) be avoided. 

• For those who have not seen pairings before, 

the key things to master are: 

1.   The notation 

2.   Miller’s Algorithm 

3.   The Final Exponentiation 
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Motivation – Some Applications 

• Pairings provide new protocols and services 

not available in classical cryptography.  

We would like identity-based encryption where all 

users share common public parameters – this 

would reduce key distribution problems.  

Classical RSA doesn’t work. The keys di, ei satisfy  

diei = 1  mod N. 

Then j can deduce i's private key from ei since he 

knows N and inversion mod N is “easy”. 

• Are there systems where j cannot deduce i’s 
private key from his own keys? 

Ohgishi, Sakai & Kasahara (1999) and  
Boneh & Franklin (2001)  
solved this with pairings on elliptic curves. 

The public identity-based encryption key of an 
identity (person) may contain, for example: 

• the identity's email address  

• the current date  

• a subject or security level 

• a department/group name. 

An example would be a national health service. 
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Definition of Bilinear Pairing 

 

A bilinear pairing (“pairing” for short) is a map  

e: G1 × G2 → G' 

for abelian groups G1, G2, G' such that  

i)   e(A+B,C)  =  e(A,C) e(B,C),    and  

ii)  e(A,C+D)  =  e(A,C) e(A,D) 

for all A,B ∈ G1, C,D ∈ G2.  

• G1 and G2 will be subgroups or quotient 

groups of an elliptic curve (written additively),  

• G' is a group of roots of unity in a field  

(the “embedding” field), with |G1| = |G2| = |G'|.  

• Note that  e([r]A, [s]C)  =  e(A,C)rs.  

Our pairings require two additional properties: 

i) non-degeneracy: e(A,C)≠1 for some A∈G1, C∈G2 

ii) computability: there is an efficient algorithm to 

determine e(A,C) from A and C. 

Example  e(u,v) = uMvT for vectors u,v and matrix M.
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The DLP – Discrete Log Problem 

Notation: 

• Elliptic curve group G1 defined over K0 

• Pairing e into the “embedding” field K   

(the field containing the necessary roots of unity, i.e. of 1.) 

Suppose Q = αP for P ∈ G1. 

• The discrete log problem (DLP) for G1 is to find α. 

Choose R∈G2 with h = e(Q,R) ≠ 1.  

Then h = e(αP,R) = gα where g = e(P,R).  

Solving DLP in K yields α, so solves DLP in G1.  

• We want Q and P public and α private.   

So we need to the DLP to be difficult in K.  

The MOV threshold from this attack means an 

embedding degree of at least 6 to 9 when the 

order q of K0 has 192 bits,  

i.e. K has an order qk of at least 1536 bits, say. 

• Computations over K are expensive, so the 

embedding degree k = [K:K0] must be kept down. 
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Joux's Three Party Key Agreement  

In 2000, Joux presented a scheme for one-round, 

3-party key agreement based on bilinear maps, 

the first constructive use of these maps in crypto. 

(The usual Diffie-Helman scheme is between two 

parties and so takes more rounds for more parties.)  

In the Joux scheme,  

• P is a public generator of G = G1 = G2.  

• The three parties A, B, C  choose random 

integer secrets a, b, c.  

The protocol is as follows: 

• A  publishes  aP 

B  publishes  bP 

C  publishes  cP 

• A  computes  e(bP,cP)a = e(P,P) abc 

B  computes  e(aP,cP)b = e(P,P) abc 

C  computes  e(aP,bP)c = e(P,P)abc 

All parties now possess the shared secret key  

s = e(P,P) abc ∈ G'. 

An attacker cannot deduce a from P and aP as the 

DLP is too hard. 
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IBE –––– Identity-Based Encryption 

There are four parts to this: 

• SETUP chooses the public parameters such as 

the curve and a private master key. 

• EXTRACT generates private decrypt keys from 

the public and private parameters determined 

by SETUP and a public encrypt key. 

• ENCRYPT is a description of encryption. 

• DECRYPT is a description of decryption. 

Here is BasicIdent in the Boneh-Franklin scheme. 

The full scheme is a “minor” extension.  

Given: 

• A curve with subgroup G1 of prime order r,  

• A pairing e into G', also of order r. 

• H a hash function from n-bit texts to G1 

• H' a hash function from G' to n-bit texts.  
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SETUP  

• choose a master secret s,  

• choose a random generator P of G2,  

• publish P and Ppub = sP. 

EXTRACT  for public identity ID 

• compute the hash QID = H(ID) ∈ G1   

• generate ID’s private key dID = sH(ID) = sQID 

ENCRYPT  message M for identity ID 

• compute  QID  = H(ID) ∈ G1   

• compute  gID = e(QID,Ppub) ∈ G'  

• choose random  ρ ∈ Z  

• output ciphertext pair  ρP, M⊕H'(gID
ρ) . 

DECRYPT  (U,V): 

V ⊕ H'(e(dID,U))  

  = (M ⊕ H'(gID
ρ))             ⊕  H'(e(dID, ρP)) 

  =  M ⊕ H'(e(QID,Ppub)
ρ)  ⊕  H'(e(sQID,ρP))   

  =  M ⊕ H'(e(QID,P)ρs)  ⊕  H'(e(QID,P)ρs) 

  =  M 
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The arithmetic requirements are: 

• a random number generator  

• four hashing functions (for the full scheme)  

• determining suitable fields & curves 

• computing the pairing 

• exponentiation in G'  

Next, we must fill in the missing arithmetic detail. 
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Notation (for reference) 

• p  the field characteristic. Usually a small 

prime (2 or 3), or a large prime of 160+ bits. 

• q  the order of the field K0 containing the 

elliptic curve.  Typically 160 or 192 bits. 

• K0 = GF(q)  the field in which the curve lies. 

• E(K0)  the chosen elliptic curve over K0. 

• r  the prime order of a large subgroup of E(K0). 

Ideally  q/r  is small, typically q/r < 24. 

• G1 = E(K0)[r]  the group of points whose  

rth multiple is the point O at infinity.  

This is cyclic (because r is so large). 

• k  the embedding degree, the smallest number 

such that r divides qk–1.  

k divides r–1, and typically divides 12.  

• K = GF(qk)  the embedding field, the smallest 

extension of K0 containing the rth roots of 1. 

• G2 = E(K) / rE(K),  the quotient group of points 

defined over K modulo the rth multiples. 

• G' = µr, the group of rth roots of 1 in GF(qk) 

• e: G1×G2 → G'  the selected bilinear pairing. 
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Divisors 

Divisors summarise a function’s main properties 

using a formal representation of its zeros & poles.  

Definition.  A divisors is a formal sum over Z of 

points on the curve E(K), e.g.  

D = ∑P∈E(K) nP(P)   where nP∈Z for all P∈E(K). 

Terminology: 

• The degree of D is deg(D)= ∑PnP . 

• Its support is sup(D) = {P | nP ≠ 0}. 

• (P) is the divisor of degree 1 and support        

P ∈ E(K). 

• ordP(f)  is the multiplicity of P as a zero of f 

where f : E(K) → K. 

• (f) = ∑P ordP(f) (P)  is a principal divisor. 

Properties 

• (cf) = (f)  for non-zero c∈K*. 

• (c) = 0  is the empty sum for c ∈ K*. 

• (fg) = (f) + (g),     (f / g) = (f) – (g) . 

• deg((f)) = 0 and  ∑P [ordP(f)] P = O . 
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• deg((f)) = 0 and  ∑P [ordP(f)] P = O . 

For example, if lPQ(x,y) is the line through P and Q 

on E(K), then R = –P–Q is the third point at which 

the line meets E(K) and the associated divisor is 

(l)  =  (P) + (Q) + (R) – 3(OOOO) . 

So O is a pole of order 3. 

Definition  For f : E(K) → K and D = ∑PnP(P), define  

f(D) = ∏P f(P)
nP 

This extends the definition of  f  from points on the 

curve to any divisor. 

For a non-zero constant c∈K,  

(cf)(D) = f(D)  if  deg(D) = 0 

because the constants c all cancel.  

We are only interested in divisors with degree 0. 

Definition  Two divisors are equivalent if they 

differ by a principal divisor, i.e.  

D1 ~ D2   if, and only if,   D1 = D2+(f) 

for some function f.  

(We need this for technical reasons but will ignore 

related theory.) 
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The Tate Pairing 

The groups for the pairing  e : G1×G2 → G'  are 

• G1  =  E(K)[r]  =  {P∈E(K) | [r]P = O},  

i.e. the subgroup of curve points defined over K 

whose order divides the prime r.  

• G2  =  E(K) / rE(K)  where rE(K) = {[r]P | P∈E(K)} 

This has exponent r. 

• G'  =  K* / K*r  ≅ µr , the rth roots of unity. 

Pick P∈E(K)[r] and Q∈E(K).  Let f be such that  

(f)  =  r(P) – r(O) . 

Choose divisor D ~ (Q) – (O) with support disjoint 

from (f).  Then the Tate Pairing is defined by 

〈〈〈〈P,Q〉〉〉〉 = f(D) ∈∈∈∈ K*/(K*)r 

As |K*| = qk–1, we can raise elements of K to the 

power (qk–1)/r to obtain an rth root of unity and 

avoid the ambiguity of the quotient group.   Hence 

we define the pairing 

e(P,Q)  =  〈〈〈〈P,Q〉〉〉〉(q
k–1)/r ∈∈∈∈ µµµµr . 

Note that 〈P,Q〉 = 1K mod K*r if P,Q ∈ E(L) for any 

subfield L ⊂ K not containing µr since f(D) ∈ L ∩ µr = {1}. 

So we usually pick P∈E(K0)[r] and Q properly in E(K). 
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There are a number of other related pairings, e.g. 

• The Weil pairing is a ratio  〈P,Q〉 / 〈Q,P〉 ∈ µr  

with no “final exponentiation”,  

but is too expensive. 

• The eta (η), ate, R-ate, optimal ate, etc. 

pairings are more efficient,  

but specific to particular contexts. 

We won’t cover these, but the arithmetic 

techniques are similar.   

In particular, the ate pairing involves a smaller final 

exponent and the function f is evaluated at one 

divisor, namely Q, not the two implied by D. 
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Chords to the Curve 

Two lines are used to describe the addition law 

P+Q = S  on an elliptic curve over K, namely 

• The chord lPQ through P and Q, and 

• The vertical line vS through S, –S and O.  

The corresponding divisors are  

(lP,Q) = (P) + (Q) + (–S) – 3(O) 

 and  

(vS) = (S) + (–S) – 2(O) 

Consequently,  

(lP,Q / vS) = (P) + (Q) – (S) – (O) 

nicely represents the addition.  

Computationally, in affine coords, 

lP,Q(x,y)  ≡  rx+sy+t 

for some r,s,t ∈ K such that rxP+syP+t = 0 and   

rxQ+syQ+t = 0.  If  P,Q ∈ E(K0) then r,s,t ∈ K0. 

Similarly, if the curve has form y2 = f(x) then    

vS(x,y) ≡ x–xS 

which is satisfied by S and –S = (xS,–yS). 
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Miller's Algorithm 

We need to construct a function f with divisor  

(f)  =  r(P) – r(O) . 

This is done by constructing f1, f2,..., fr such that 

(fi) = i(P) – ([i ]P) – (i –1)(O) . 

Lemma.  Let lij be the chord through [i]P,[j]P and 

vi+j the vertical line through [i+j]P, –[i+j]P.  Then: 

• f1 = c1, and  

• fi+j = cij fi fj lij vi+j
–1  

for some constants c1, cij for 1≤ i, j ≤ r. 

Proof.      First,  (f1) = 1(P)–([1]P)–(1–1)(O)  = 0  

is the empty formal sum. So f1 is a constant.  

Secondly, (lij / vi+j)  =  ([i]P) + ([j]P) – ([i+j]P) – (O) 

gives  (fi fj lij / vi+j)   

= i(P)–([i]P)–(i–1)(O) + j(P)– ([j]P)–(j–1)(O) + (lij/vi+j)  

= i(P) –(i–1)(O) + j(P) –(j–1)(O) – ([i+j]P) – (O)  

= (i+j)(P) – ([i+j]P) – (i+j–1)(O)     =  (fi+j) 

which establishes the claim by induction.    ■ 
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 〈P,Q〉 requires evaluating f at a divisor D of degree 0. 

 

Corollary.   For a divisor D of degree 0, 

• f1(D) = 1, and  

• fi+j (D) = fi (D) fj (D) lij (D) vi+j (D)–1.  

Thus the constants cancel in the previous lemma,  

and so can be ignored. 

 

Since (fr) = r(P)–([r ]P)–(r –1)(O) = r(P) – (r)(O) = (f), 

〈P,Q〉 = fr(D) . 

The construction of fr via the formula for fi+j in 

terms of fi and fj shows fr(D) can be computed by 

inserting some extra computation into an algorithm 

for determining [r]P.  
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Choose  D = (Q+S)–(S) for random point S.   

Then D ~ (P) – (O) as required for the Tate pairing.    

In the following, T holds a multiple [ j ]P of P, and 

f contains the corresponding  fj (D). 

 

ALGORITHM: Miller  

INPUTS:  Points P,Q ∈ E(K),  

    P of order  r = ∑i=0
n–1

 ri2
i,  ri∈B,  rn–1=1.  

OUTPUT:  The Tate pairing 〈P,Q〉 mod K*r. 

{ Choose random S∈E(K) 

  Q' ← Q+S 

  T  ← P 

  f   ← 1K 

  For i ← n–2 downto 0 do  

  { Determine lines l and v for doubling T.  

    T ← [2]T 

f  ← f2 l(Q') l(S)–1 v(Q')–1 v(S) 

If ri = 1 then  

{ Determine l and v for the addition T+P.  

T ← T+P 

f  ← f l(Q') l(S)–1
v(Q')–1

v(S) 

} 

 } 

  Return f  

} 



19/44 
 

 

• This is the binary left-to-right algorithm for [r]P. 

• Pick S in E(K0) so f(S) is cheaper to calculate. 

• The support of D must not intersect any fi 

which occurs. 

This will be evident by obtaining 0/0.   

If this happens, run it again with a different S. 
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Other Scalar Multiplication Algorithms 

 

Other scalar multiplication algorithms for [r]P can 

be used, e.g. NAF or m-ary, but most are too 

expensive.  (See additional notes for details.)  

Useful cases restrict allowable operations to only:  

• doublings T ← [p]T   or  

• tuplings    T ← [p]T   for very small p = char(K)  

and  

• additions  T ← T ± P  

 

The main drawback with alternative algorithms is 

the cost of an extra multiplication fd(D) for digits  

d ≠ ±1 since the addition step becomes: 

 Determine l and v for the addition T+Pd.  

T  ← T+Pd 

f   ← f fd l(Q') l(S)–1
v(Q')–1

v(S) 

Recall f1(D) =1, so digit d=1 is not a problem. 

Otherwise there are extra multiplications in K. 
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The Main Efficiency Issues 

 

• Work in K0 when possible.  

Values in K take k times more space than in K0, 

and multiplications take k2-fold more time. 

• If P ∈ E(K0) then all the lines are over K0. 

• If S ∈ E(K0) then half the evaluations are in K0. 

About half the multiplication count is calculating 

[r]P, the rest determining and evaluating the lines. 

So, with lines and S in K0,  

• Evaluating the lines at Q' dominates the time. 

• K0 should be kept down to the size used in 

classical ECC. 

Clearly,  

• Divisions & inversions should be avoided.  

So f is split into numerator and denominator values 

fN and fD. Then, e.g., the addition step becomes 

fN ← fN l(Q') v(S);   fD ←  fD l(S) v(Q') 

which has the same number of multiplications. 

Then there is a single final division f = fN/fD.  
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Separating Mult
s
 over K0 and K  

 

Field multiplications for updating f might be 

separated into  

• those over K0 using variables f0N , f0D and  

• those over K using variables f1N , f1D, say. 

By estimating each K×K multn as equivalent to k2 

multns over K0,  it is clear that only the total number 

of K×K multns is significant.   

• The multn count is unchanged by the above split. 

• Multns should be done in the order which 

minimises the number of K×K operations.  

The saving is O(k) whereas  

the cost of all multiplications is O(k2).   

Hence this is significant only for small k.   
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Projective or Affine Coordinates? 

• Use affine coordinates for Q'. 

As Q' ∈ E(K), 3 coordinates for Q' increases the 

cost of each l(Q') and v(Q') in Miller’s algorithm.  

It is cheaper to convert Q' = Q+S to affine coords 

once for all when the random S ∈ E(K0)  is chosen.  

To do this, the Extended Euclidean Algorithm gives 

the inverse at the cost of 10 or so multiplications –  

much less than the number of double & add steps. 

 

• According to Galbraith, empirical evidence  

does not justify projective coords elsewhere. 

The main extra cost from projective coords is that 

the vertical lines are now in the form zTx – xTz = 0 .   

Evaluating this at Q' and S costs another K0×K 

multn and another K0×K0 multn, which is more 

expensive than the inversion in K0 to put T in affine 

coordinates (unless k is exceptionally small). 
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Removing the Factors involving S 

 

• Recall the “final exponentiation” to obtain e(P,Q)  

Pick  S ∈ E(K0)[r]  in Miller's algorithm to make 

calculations of l(S) and v(S) entirely within K0.  

• Then      l(S)q–1 = 1 = v(S)q–1. 

If r /q–1 then (qk–1)/r is a multiple of q–1, so 

l(S)(qk–1)/r = 1 = v(S)(qk–1)/r. 

So l(S) and v(S) make no contribution to  

e(P,Q)  =  〈P,Q〉(q
k–1)/r ∈ µr . 

 

Theorem. If r is prime to q–1 and k>1 then S = O 

can be chosen in Miller's Algorithm and the factors 

l(S) and v(S) deleted from it. 

 

Unfortunately, the calculations of l(Q') and v(Q') 

are much more expensive than l(S) and v(S), so 

the saving is not so significant. 
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Theorem. In Miller's Algorithm, if r is prime to q–1 

and k>1 then all the factors of f, namely fd, l(Q'), 

l(S), v(Q'), v(S) can be replaced by multiples α1fd, 

α2l(Q'),... for any α1, α2,... ∈K0*. 

 

The reasoning is the same here – each αj is 

annihilated by the final exponentiation.  

This is useful if denominators have appeared,  

e.g. through calculating a gradient and avoiding 

the inversion when adding two points. 
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The Frobenius Automorphism 

Consider the final exponentiation 

e(P,Q)  =  〈P,Q〉(q
k–1)/r 

If p = char(K), the Frobenius automorphism 

is the map   γ → γp for γ ∈ K. Clearly, 

γ
p
 = γ  for  γ ∈ Fp 

by Lagrange’s theorem on the ×ve group Fp*. 

 

If q = pn then elements of Fq are stored using a 

representation of Fq as a vector space over Fp.  

If γ = ∑i=0
n–1γibi, γi ∈ Fp, is the repn of γ ∈ Fq using 

basis (b0,b1,...,bn–1) over Fp then  

γ
 p
 = (∑i=0

n–1
γI bi )

p
  = ∑i=0

n–1
γi

 p
bi

 p
 = ∑i=0

n–1
γI bi

 p
 

because all absent terms in the product have  

binomial coefficients which are multiples of p. 

• Raising to the power p requires  

no general field multiplications,  

only constant multiplications and additions. 

The bi
p
 are pre-computed if p is small.  
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With careful choice of the field representation, 

such as a normal basis, the expressions for the bi
p
 

are very simple linear combinations of the bj. 

 

To take advantage of a cheap Frobenius 

automorphism, use m-ary exponentiation with m=p:  

     ALGORITHM:  p-ary Exponentiation  

     INPUTS:   γ ∈ K,  r' = ∑i=0
n–1 rip

i.  

     OUTPUT:   Γ = γr'. 

Pre-compute & store the occurring γri 

Γ ←  γrn–1   

For i ← n–2 downto 0 do  

   Γ ← Γp;  

if ri ≠ 0 then Γ ← Γ×γri  

Return Γ  

 

For small p ≠ 2, this should be cheaper than 

exponentiation using a base 2 representation of 

the final exponent r' = (qk – 1)/r. 
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For large p we want only a few non-zero digits ri, 

which is almost the case for many pairing-friendly 

curves after this adjustment: 

Theorem  Suppose r divides n, n divides both qk–1 

and |E(K0)|, and  P ∈ E(K0)[r].  Then 

e(P,Q) = 〈P,Q〉r
(qk–1)/r = 〈P,Q〉n

(qk–1)/n 

 

Example 

For q = 3163 take the super-singular curve of order  

n = q–√(3q)+1 = 3163–382+1  

n = 7r for a prime r.  The embedding degree is k=6 

since n is a factor of q2–q+1 which divides q3+1 

and hence q6–1. 

So we can evaluate the pairing using n rather than r.  

The final exponentiation is then by  

n' = (q6–1)/n = (q3–1)(q+1)n'' 

for n'' = q+√3q+1 = 3163+382+1. 

Multiplying out, there is a base 3 representation of 

n' with at most 2×2×3 = 12 small non-zero digits. 

This makes exponentiation by n' extremely fast. 
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Pairing-Friendly Curves 

 

These curves have:  

• a small embedding degree k,  

• a large prime factor r in the curve order,  

• a small co-factor |E(K0)|/r.  

 

There are a number of different families of curves. 

P1363 is a bit out of date, but a good reference is 

the “Taxonomy” paper of Freeman, et al.  

 

We look at two cases:  

• Super-singular curves, 

• MNT curves. 
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Super-Singular Elliptic Curves 

Definition.   An elliptic curve E defined over a field 

Fq of characteristic p is super-singular if p | t, 

where t = q+1–|E(Fq)|.   If p / t then E is ordinary. 

So the number of finite points is a multiple of the 

characteristic on super-singular curves. 

By Hasse's bound, |t| ≤ 2√q for trace t.   

The only choices for super-singular curves are:  

• t =  0   with k=2,  

• t = ±2√q  with k=1, 

• t = ±√q    if char(F) ≡ 0,2 (mod 3) with k=3,  

• t = ±√(2q)    if char(F) = 2  with k=4, and  

• t = ±√(3q)    if char(F) = 3  with k=6.   

If r > 4√q is prime divisor of |E(K0)|, then r2 exactly 

divides |E(K)|, E(K)[r] is the direct product of two 

subgroups of order r and E(K)[r] ∩ rE(K) = {O}.  

So E(K)/rE(K) ≅ E(K)[r]/rE(K) and we can 

effectively take both arguments from E(K)[r].  
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There is also a nice “distortion” map which maps 

E(K0)[r] to another subgroup of E(K) with order r. 

This is defined over a conjugate of K0 and the two 

generate the full group E(K)[r].  

The advantage is that half the work of a pairing 

calculation is avoided: all the denominators can be 

ignored as above (page 24) because they are 

annihilated when raising to the power q–1. 

 

The most frequently used constructions for these 

curves are the following: 

1. E : y2 = x3+a over Fp, where p ≡ 2 (mod 3). 

Here |E(Fp)| = p+1 and k=2. 

2. E : y2 = x3+x over Fp, where p ≡ 3 (mod 4). 

Here |E(Fp)| = p+1 and k=2. 

3. E : y2 = x3+a over Fp2, where p ≡ 5 (mod 6) 

and a∈Fp2 is a square but not a cube.  

Here |E(Fp2)| = p2–p+1 and k=3. 

4. E : y2+y = x3+x+a  where Fq, q=2ℓ for odd ℓ and 

a∈F2. Here |E(Fq)| = q±√(2q)+1 and k=4. 

5. E : y2 = x3–x+a where Fq, q=3ℓ for odd ℓ and 

a∈F3*.  Here |E(Fq)| = q±√(3q)+1 and k=6. 
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Suitable fields and curves with these parameters 

are found as follows: 

1. First, systematically choose random p of the 

required magnitude: applying the Rabin-Miller 

primality testing algorithm to check primality. 

2. Run Rabin-Miller again on r where r is 

obtained from n = |E(K0)| using the above 

formula, and removing all small factors. 

Typically a sieve of Eratosthenes is used for p, 

tagging all elements in the table having a prime 

divisor less than 216, say.  

• The probability of both p and n being prime is 

O(1/log(np)), and so not difficult.  

For char(K0) = 2, 3 the choice of fields is very 

limited: |E(Fq)| rarely has a large prime factor for 

suitable q.   q = 3163 is one example.  

There are simple equations provided with these 

constructions which define how to build K/K0.  Also 

there are tables of irreducible polynomials for 

generating K0 , e.g. F2251 = F2[t]/(t
251 + t7+ t4+ t +1).  

• Fast multiplication methods, such as Toom or 

Karatsuba-Ofman, are advisable for K. 
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Characteristic 2 –  a worked example. 

 

Take  super-singular    E : y2+y = x3+x+a    over F2,  

with a ∈ F2 so that  k = 4.  

The tangent at  P = (x1,y1)  is        

l : y = λ(x–x1)+y1 

where λ = x1
2+1. This intersects the curve again at  

x2 = λ2 = x1
4+1 

The vertical line through this is 

v : x–x2 = 0. 

So  [2]P = (x2,y2)  where   y2 = 1+λ(x2+x1)+y1.  

Then, easily,  

[2]P  =  (x1
4, x1

4+y1
4+1) 

So doubling requires just four squarings  

(the Frobenius) and some additions.   

The lines for Miller's algorithm are a by-product.  
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Characteristic 3 –  a worked example. 

 

Take super-singular    E : y2=x3+a4x+a6   over F3. 

The tangent at P = (x1,y1) is        

l : x = y1y – y1
2 + x1 

where λ = 1/y1 .   This intersects the curve again at    

(λ2+x1, λ
3+y1), giving [2]P = (λ2+x1, –λ3–y1).   

The line between P and [2]P has slope λ' = y1
3–λ,  

from which 

[3]P  =  (x1
9+a6(1–a4), –y1

9)  

Again, no divisions and the tripling is given by four 

applications of the Frobenius, which is very efficient.  

So pairing calculations for fields of characteristic 3 

should be performed with 3-ary exponentiation for 

both scalar point multiplication and final exponentn. 
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Distortion Maps and Vertical Lines 

Super-singular curves have “distortion” maps: 

Definition Suppose E(K) has no points of order r2, 

φ is a non-rational endomorphism of E, and  

Q ∈ E(K0)[r].   If φ(Q) ∉ E(K0) then e(Q,φ(Q)) ≠ 1.  

Such a φ is called a distortion map.  

They only exist for super-singular curves, but 

calculating the Tate pairing at φ(Q) now involves 

only numbers in K0 and its conjugate φ(K0).  

In many circumstances and the right presentation 

of the curve equation, these numbers can be kept 

sufficiently separate for there to computational 

savings, particularly as a result of the final 

exponentiation killing off elements of K0 in the 

same way as noted above. 

In particular,  

• The contributions v(φ(Q)), Q ∈ E(K0)[r], can be 

ignored, i.e. removed, providing the curve 

parameters are chosen suitably. 

• This observation saves half the work before 

the final exponentiation. 

(See the notes for a proof.)
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MNT Elliptic Curves  

(Miyaji, Nakabayashi & Takano) 

 

One of the most widely used and oldest of the 

non-singular pairing-friendly curves are the MNT 

curves.  

 

They are ordinary curves (i.e. not super-singular) 

with “complex multiplication” and require some 

effort to generate. One should use dedicated 

computation packages, such as Mike Scott's 

Miracl software, for this. More construction detail is 

in the notes and the IEEE P1363 standard. 

 

There are recent improvements by Enge and 

others using only local methods & the CRT. 
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The construction begins with a factorisation of the 

polynomial xk–1, (k = 3,4,6) to obtain possible 

values for the trace t = q+1–|E(Fq)|. These are 

parameterised by an integer ℓ : 

k q t 

3 12ℓ 2–1 –1±6ℓ 

4 ℓ
 2+ℓ+1 –ℓ or ℓ+1 

6 4ℓ2+1 1±2ℓ 

E.g. the curve order for k=6 is  q±√q–1,   

which is a factor of q2–q+1, which divides q3+1  

and so also q6–1, establishing that k=6.  

ℓ must be chosen to give fields of the required size, 

and varied until q is prime and the curve order 

q+1–t has a sufficiently large prime factor r.   

The discriminant ∆ = t 
2 – 4q must also consist of a 

large square times a small square-free factor 

(typically under 232) or else the numbers become 

too large and the likelihood of finding solutions of 

the required size becomes too small.  
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Elliptic Curves Coordinates 

The choice of coordinate system affects the 

efficiency of any calculations on it.  

The total time for the elliptic curve operations in a 

pairing calculation is proportional to the time taken 

for a single elliptic curve operation. 

The difference in speeds between the fastest and 

the slowest curve additions is within a factor of 

about 2. So at best the pairing will be done at 

twice the speed with another choice.  

A useful list of the various main addition and 

doubling formulae is given by Bernstein & Lange. 

They are mostly just variations on a theme, with 

the Weierstraß affine coordinates as a standard 

example – see Prof. Koç's lecture. 

e(P,Q) will usually have P in E(K0) and Q in E(K).    

So the computation of rP will be over K0, making it 

relatively cheap, as are the values l(S) and v(S).  

The expensive part is l(Q), v(Q) and the final 

exponentiation.  So Q should be put in affine 

coordinates.   
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Affine Coordinates. 

The usual equation over Fp, p odd, is the short 

Weierstraß form 

E : y2  =  x3 + ax + b 

for which the addition and doubling formulae for 

(x1,x2)+(x2,y2)=(x3,y3) and [2](x1,y1)=(x2,y2) are  

x3 = (y2–y1)
2/(x2–x1)

2–x1–x2  

y3 = (2x1+x2)(y2–y1)/(x2–x1)–(y2–y1)
3/(x2–x1)

3–y1 

and 

x2 = (3x1
2+a)2/(2y1)

2–x1–x1  

y2 = (2x1+x1)(3x1
3+a)/(2y1)–(3x1

2+a)3/(2y1)
3–y1 

The addition formula cannot work for doubling 

since it gives the value 0/0.  

The cost is usually given as a count of general 

field multns, field additions and subtractions, multns 

by small constants, and an inversion.  

However, be aware that communication costs 

between processor and memory may also be 

significant, as may be the costs of moving data 

between registers. 
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Hessian Form 

When there are points of order three, an elliptic 

curve has points (x,y) satisfying an equation:  

x3+y3+1 = 3dxy 

The addition and doubling formulae are, respy, 

x3 = (y1
2x2–y2

2x1)/(x2y2–x1y1)  

y3 = (x1
2y2–x2

2y1)/(x2y2–x1y1) 

and  

x2 = y1 (1–x1
3)/(x1

3–y1
3)  

y2 = x1 (y1
3–1)/(x1

3–y1
3) 

The inverse is –(x1,y1) = (y1,x1). 

Again, just one inversion appears, a result of 

computing the chord gradient. This has about two 

thirds the multiplication count of the Weierstraß 

form. Most other representations fall between 

these two in terms of efficiency. 

 

Steven Galbraith has compared affine and 

projective coordinates and found the latter not to 

provide a noticeable advantage. 
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Although the requirement for speed is perhaps 

most acute in embedded systems, side-channel 

leakage may be a problem there, mainly from 

distinguishing adds from doubles.  

There are many different solutions to such 

leakage. For example, the projective 

representation of the Hessian form uses the same 

formula for both addition and doubling, viz. 

[2](X1,Y1,Z1) = (Z1,X1,Y1) + (Y1,Z1,X1) 

and one can choose that. 

We don’t need to hide r which is public, but in the 

Boneh-Franklin IBE scheme, P is the decryption 

key, and it must not be leaked. 

These issues are covered elsewhere in this 

course, and solved by adding more detail to the 

above formulae, such as specifying the order of 

execution. 
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Finite Field Construction 

 

Efficient field arithmetic has been covered by Prof. 

Koç. Standard curves are chosen using these 

principles. However, they are not generally 

suitable for pairing-based cryptography as the 

embedding degree is too large.  

So one has to generate one's own field. There are 

two main cases: small or large characteristic. 

 

For small characteristics, the frequent use of the 

Frobenius in the final exponentiation suggests that 

a normal basis would be better than a polynomial 

basis.  

There are tables of irreducible polynomials 

(trinomials and pentanomials for p=2) and 

techniques to obtain normal bases for such them.  

Being sparse, a polynomial basis is also possible. 
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For large p, the classical technique is to choose p 

with low Hamming weight so that multiplications 

are cheap. Unfortunately, here p is essentially 

random and so it is difficult to obtain this property. 

Consequently, pairings tend to be computed faster 

when the characteristic is very small. 

For large p the extension degree of K over Fp is 

generally small – typically 6. Hence the generating 

polynomial of K/Fp has small degree.  It is feasible 

to search for a nice irreducible polynomial with 

very small coefficients, with many being zero. 

 

 

 



44/44 
 

Appendix: Other Essential Algorithms 

Other basic, necessary algorithms include: 

• The Rabin-Miller Primality Test. 

Needed in curve generation to check char(K) and  

finding large prime subgroups of E(K0). 

• Square Root Algorithm.  

Used to find the y-coord of a point from its x-coord. 

• The SEA Point Counting Algorithm.  

Finds the order of an elliptic curve. Avoid this by 

picking curves with known order. 

Some attacks modify public parameters. However, 

the curve order can be checked easily by verifying 

the order of a random point.  

Most algorithms are detailed in the number theory 

appendix A to IEEE P1363. 

• Generally, there is no need to implement 

algorithms such as SEA or Rabin-Miller. 

• They are available in many software 

packages, such as Mike Scott's Miracl. 


