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THE CLASS NUMBER OF
PURE FIELDS OF PRIME DEGREE

CHARLES J. PARRY AND COLIN D. WALTER†

Here we give necessary and sufficient conditions for a prime l to divide the class
number of the Galois closure of a pure field of degree l over the rationals. The work
extends that of Honda in [4] and that of the first author in [8].

§1. Notation.

l an odd rational prime.

t = (l −1)/2.

m > 1 an l-power free rational integer .

l x  the real l-th root of x if x is real, otherwise any l-th root of x.

ζ a primitive l-th root of unity.

¦, « the ring of rational integers and field of rational numbers.

L = «(ζ), L+ the l-th cyclotomic field and its maximal real subfield.

J = «(√(−1)tl ) the quadratic subfield of L.

k = «( l m ) a pure field of degree l.

K = «(ζ, l m ) the Galois closure of k/«.

H, hl, h
+, h*, h the class numbers of K, L, L+, J, and k respectively.

E, E+ the unit groups of L and L+.

G(Ω1/Ω2) the Galois group of a normal extension Ω1/Ω2 of fields.

§2. Extensions by roots of units.  In order to make use of Hasse’s formula for
the number of ambiguous classes of K/L it is necessary to consider the maximum
abelian extension of L which is unramified outside l and whose Galois group has
exponent l, namely

L*  =  L( l l , l e | e ∈  E).

For a primitive root a modulo l set
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ζζ    for odd  n ≡/ 1 mod (l − 1),

e0  =  ζ and e1  =  l ,

and for such values of n define

Ln  =  L( l
ne ).

Then Ln is independent of the choice of a and depends only on l and the residue of n
modulo l − 1.  The index of the group  〈en | n odd, ≡/ 1 mod (l − 1)〉  in the group
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 | 1 ≤ r ≤ t − 1 〉 of cyclotomic units is finite and prime to l because the
determinant of the matrix (a2sr)1≤r,s≤t−1 which relates the two given bases is non-zero
modulo l. But the cyclotomic units have index in E+ equal to the class number h+ of
L+ ([2] §5.2 Theorem 2). Hence, if h+ is also prime to l, then the t − 1 fields Ln for

odd n ≡/  1 mod (l − 1) generate L(
l

e+ | e+ ∈  E+).  Kummer’s lemma ([2] §3.1
Lemma 4) shows that

l ζ   ∉   L(
l

e+ | e+ ∈  E+)

and

L( l e | e ∈  E)   =   L( l ζ , 
l

e+ | e+ ∈  E+).

Also l l ∉  L( l e | e ∈  E), because otherwise le = α l for some e ∈  E, α ∈  L, and this
is plainly absurd when the norm for L/« is applied. Thus the Ln are independent over
L and generate L* if l |⁄ h+. As this fact is basic to our investigation, for this section
and the next we make the supposition that l does not divide h+. It is true in all known
cases and in particular when l is a regular prime, i.e. when l |⁄ hl.

Define  µ, λn ∈  G(L*/«) by

µ : ζ õ ζa,  l ne  õ 
µl

ne ,

and

λn : ζ õ ζ,  l ne  õ ζ l
ne ,  l me  õ l me   for  m ≠ n.

These automorphisms generate G(L*/«). It is easy to verify that 
11 −− µnal

ne  ∈  L,

from which it follows that Ln/« is normal and  λnµ = µλn
an

.  If N = L( l e ) ≠ L for

e = ∏en
r(n) and N /« is normal then for some b ≡/  0 mod l we have

eb  ~  eµ−1
  =  ∏en

µ−1r(n)  ~  ∏en
an−1r(n) ,

where ~ means equality up to an l-th power in L.  Hence br(n) ≡ an−1r(n) mod l for
all n, and r(n) ≡ 0 mod l for all but one n. Thus N = Ln for some n.

THEOREM 1.  Suppose l  |⁄ h+. Then the only subfields of L* with degree l over L
and normal over « are the t+1 fields Ln.  They are independent over L and generate
L*. Moreover,

G(Ln/«)  ≅   〈λ n, µ | λn
l = µl−1 = 1, λnµ  = µλn

an〉.

With some simple calculations the condition for λn and µi to commute yields:

LEMMA 2.  Each element of G(Ln/«) has order dividing l(n, l−1) or l−1 and there are
elements of both orders.

§3. Ambiguous classes.  We shall follow the notation of Hasse ([3], Ia, §13)
for the cyclic extension K/L with generating automorphism λ.  An ideal class C of K
is called ambiguous over L if Cλ = C. Let η* = NK/L(K) ∩ E and define q* by
[η* : El] = lq*. Lastly suppose d is the number of primes of L which ramify in K.

LEMMA 3.  The number A of ambiguous classes in K/L is given by
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A = hl l
q*+d−t−1 .

Moreover A|H, and l|A ⇔ l|H.

Proof.  The formula for A is given by Hasse (loc. cit.). The other assertions are
proved by Moriya in [7]. The ambiguous classes form a subgroup of the ideal class
group of K and so A divides H. For the remaining implication, decompose the ideal
class group of K into orbits under λ.

Now let ̀  be a prime ideal in L lying over a rational prime p ≠ l which divides
m, and recall the assumption that l  |⁄ h+ for this section.

LEMMA 4.  The Hilbert norm residue symbol

L

n me






`
,

is 1, if, and only if, the Artin symbol [`, Ln/L] is trivial. Further, [`, Ln/L] = 1 when
pn ≡/ 1 mod l, and [`, L0/L] = 1, if, and only if, pl−1 ≡ 1 mod l2.

Proof.  The notation and elementary properties for residue symbols are described
by Hasse in [3], part II. If pr || m then ̀ r || m in L and so
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where the final term is the Artin symbol considered as a root of unity.
Let f be the least positive integer such that pf ≡ 1 mod l and assume pn ≡/ 1 mod l.

Then ̀  has degree f over « from which [̀ , L/«] has order f. If @ is a prime divisor
of ` in Ln with degree f’ over L then f’ = 1 or l and [@, Ln/«] has order ff’ in G(Ln/«).
As f divides l−1 but not n, Lemma 2 ensures that f’ = 1. Hence 1 = [@, Ln/«] f =
[@, Ln/L] as required.

Finally suppose n = 0. Then with f as above [̀, L0/L] = 1 ⇔ ` splits completely
in L0 ⇔ pf ≡ 1 mod l2 ⇔ pl−1 ≡ 1 mod l2.

THEOREM 5.  Suppose l   |⁄  h+. If N denotes the number of odd n with 1 < n < l such
that pn ≡/  1 mod l for all p|m, then

q*  ≥  N + δ,

where δ = 0 or 1 according as m has a prime divisor p ≠ l with pl−1 ≡/ 1 mod l2, or
not.

Proof.  The unit en is a norm in K/L, if, and only if ,







`

men,
  =  1

for all primes ̀  containing (m). Since (l) has only one prime divisor in L, the product
formula for the norm residue symbol permits this prime to be ignored. Lemma 4
ensures that there are at least N values of n such that
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THE CLASS NUMBER OF PURE FIELDS OF PRIME DEGREE 223

for all `. Thus at least N of the units en are norms and ζ is a norm exactly when
δ = 1. Since the units en and ζ generate a subgroup of index prime to l in E it follows
that q* ≥ N + δ.

If f | n then the primes p which have order f modulo l divide into two classes
according as [̀, Ln/L] = l or not. Lemma 2 and the Tchebotarev Density Theorem
prove the existence of infinitely many primes in either class relative to each Ln. The
remainder of this section considers the problem for Lt. Let t > 1 be odd and suppose
the (imaginary) quadratic subfield J = «(√(−l)) of L has class number h*.  It is
well-known [1, p. 300] that h* < l and consequently  l   |⁄ h*.

LEMMA 6.  Lt is a class field over J with conductor (l).

Proof.  Let I l be the group of fractional ideals of J which are prime to l and let
Pl

(n) be the subgroup generated by elements α ≡ 1 mod (√(−l))n of J. Since the only
units of J are ±l it follows from [6, p. 111] that the ray class group I l/Pl

(n) has order
h*l n−1t. At least one member of the corresponding tower of class fields L(n) contains
L because (√−l) is the only prime ramified in L/J. Hence L ⊂  L(1) as [L : J] is prime
to [L(n) : L(1)] and L(n)/J is abelian. Again from degree considerations and l  |⁄ h*  there
can only be one abelian extension N/J of conductor (l) and degree l over L. As the
complex conjugate of N also has the same properties, N/« must be normal. Being
unramified outside √(−l), N is a subfield of L* , and Theorem 1 shows that N = L0 or
Lt. Thus it suffices to prove that the conductor of L0/J is not (l). Suppose the contrary
and choose α ∈  J with α ≡ 1 mod (l) but α ≡/ 1 mod (√(−l))3. Then 1 = [(α), L0/J] =
[NJ/«(α), L0/«]. Hence

NJ/« α  =  1 mod l2

as L0/« has conductor (l2). This contradiction establishes the lemma.

LEMMA 7.  [̀ , Lt/L] ≠ 1 precisely for those primes p which satisfy

ph* =  (x2 + ly2)/4

for some integers x, y with y ≡/  0 mod l.

Proof.  After Lemma 6 let H be the subgroup of I l corresponding to Lt. Then
[H : Pl

(2)] = h* is prime to l.  Also let ̀ * be a prime divisor of p in J and suppose
`* h* = (x + y√(−l))/2.  By means of the Artin map, [`, Lt/L] ≠ 1, if, and only if,
l divides the order of [̀*, Lt/J].  This holds, if, and only if, l divides the order of ̀*
in I l/H, which holds, if, and only if, l divides the order of ̀* h* in I l/Pl

(2). This holds,
if, and only if, l divides the order of (x + y√(−l))/2 mod l, which holds, if, and only
if, y  ≡/  0 mod 1.

§4. The class numbers of K and k.

THEOREM 8.  The class number of K = «( l m , ζ) is prime to l, if, and only if, l is
a regular prime and m may be taken as one of the following:

l,  p1,  lp2
a,  p3p4

a
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where:

1  ≤  a  ≤  l − 1 ;

p1, p2, p3, p4, and l are distinct primes ;

p1 and p3 have order l−1 or non-trivial odd order (l−1)/2 modulo l, and p2 and p4
have order l−1 ;

p1
l−l ≡ 1 mod l2 if p1 has odd order, p2

l−1 ≡/ 1 mod l2, p3
l−1 ≡/ 1 mod l2, and

(p3p4
a)l−1 ≡ 1 mod l2 ;

and, if p = p1 or p = p3 has odd order, then the representation ph* = (x2 + ly2)/4
has y ≡/  0 mod l for the class number h* of «(√(−l)).

Remark.  The earlier supposition that l  |⁄ h+ is no longer required here.

Proof.  If l  |⁄ H Lemma 3 shows that l must be a regular prime and

q* + d − t − 1  =  0 .

Let {pi}  be the set of primes ≠ l which divide m, and let fi be the order of pi modulo
l. The number of odd n ≡/ 1 satisfying pi

n ≡/ 1 mod l is t−1 when fi is even,
t − 1 − tfi

−1 when fi is odd, but ≠ 1, and 0, when fi = 1. Set δ = 1 or 0 according as ζ is
a norm in K/L, or not; and δ’ = 1 or 0 according as (1−ζ) is ramified in K/L, or not.
It follows from Theorem 5 that

q* + d − t − 1  ≥  (t − 1 − ∑ −

odd

1

if
itf + δ) + (δ’ + ∑ −

i
itf 12 ) − t − 1

=   δ + δ’ − 2  + ∑ −

even

12
if

itf  + ∑ −

odd

1

if
itf  (*)

Thus m contains at most two factors pi. When there are two, they have order 2t or
odd order t modulo l if distinct from l and so δ + δ’ = 0. Lemma 4 shows δ = 1
exactly when pi

l−1 ≡ 1 mod l2 for all i and Theorems 3 and 4 of [9] show δ’ = 0
exactly when ml−1 ≡ 1 mod l2. This yields the conditions modulo l2 and the exclusion
of three primes including l dividing m. When {pi}  includes just one prime then
certainly δ + δ’ = 1. Thus the prime must have order 2t or odd order t and for l|m the
condition modulo l2 is immediate. If only l divides m then δ + δ’ = 2.

The precise conditions have now been found to ensure that the right side of (*) is
zero. It remains to discover the further conditions required for equality. Strict
inequality holds, if, and only if, the estimate for q* is not exact. This happens, if
some prime has order 1 modulo l, or if two primes have the same odd order. Except
for p2 this settles the order of each pi. With these restrictions inequality occurs just
when t ≠ 1, there is a prime of odd order, and q* = t − 1 + δ. This yields the
requirement that et is not a norm, if some pi has odd order t ≠ 1. The condition for
this is given in Lemma 7.

Suppose therefore that m has a prime divisor p ≠ l with odd order. Then







`
met ,   ≠  1
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where ̀  is a prime divisor of (p) in L because et is not a norm. If no other prime ≠ l
divides m and ζ is not a norm, then







`
m,ζ

  ≠  1 .

A suitable choice of b gives
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t ,ζ
  =  

b
t mem
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  =  1

and makes ζet
b a norm. Thus q* = t − 1 and equality holds in (*), if, and only if,

δ = 1. The congruence modulo l2 for p1 is now obtained and p2 cannot have odd
order as δ = 0 in that case. If p’ ≠ l also divides m then the conditions modulo l2

show that







’

,
`
mζ

  ≠  1

and the order 2t of p’ modulo l gives







’

,

`
met  =  1 .

Thus












’

,

`
me b

tζ
  ≠  1

for all b and ζet
b cannot be a norm. So q* = t − 2 + δ and (*) is an equality. This

completes the proof.

COROLLARY 9.  Let m have one of the forms described in Theorem 8. If l  |⁄ h+ then

l does not divide the class number of «( l m ).

Proof.  By [5] h divides H because K/k contains a totally ramified prime above l.
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