Issues of Security with the Oswald-Aigner Exponentiation Algorithm

Colin D Walter

Comodo Research Lab, Bradford, UK

Overview

* Side Channel Leakage
* History
* The Oswald-Aigner Exponentiation Algorithm
* Recovering Secret Key Bits
* Counter-measures
* Conclusion

Side Channel Leakage

* Gates use of power is state and data dependent.
* Wire transmission of power is data dependent.
- So current \& EMR are data dependent.
- For example, noticeable differences between loading data and commencing a long integer computation.
* Conditional Statements are data driven.
- So execution time may be data dependent
- For example, a conditional modular subtraction may have only one arm. So the value of the condition may be deducible.
* Conclusion: secret key information may leak.

RSA Conference 2004

History

* NSA - no such activity? - Tempest shielding.
* Kocher et al (1996-7): Timing \& Power side channel papers.
* Walter \& Thompson (2001): Theory for practical attack on RSA.
* Oswald, Aigner, Smart, Liardet (2001): Randomised Algorithms.
* Walter (2002): Liardet-Smart - use unblinded keys only once.
* Okeya \& Sakurai (2002): Oswald-Aigner, special case.
* Here (2004): Oswald-Aigner, extended general case.

The Oswald-Aigner Algorithm

The Exp ${ }^{n}$ Algorithm contains randomisation to obscure the relationship between data and side channel leakage.

Finite Automaton to compute $P=k Q$
$r b=r a n d o m b i t$ secret key k : read R to L.

Main Assumptions

Suppose:

1. Doubles \& Adds can be distinguished using power/EMR/time.
2. Adds \& Subtracts are indistinguishable.
3. The secret k is re-used many times (≥ 10, say) without blinding.
4. The random bits $r b$ are chosen independently with fixed probability which depends on the current state of the automaton.
5. k has uniformly distributed, independently chosen bits, ...

Recovering Secret Key Bits (1)

* Each point multiplication generates a word over $\{D, A\}$ where the number of D s is the number of bits in k.
- e.g. 11001 yields AD D D AD AD under r-to-l binary exp ${ }^{n}$ algm Here other choices are also possible.
* The $i^{\text {th }}$ " D " is generated by the $i^{\text {th }}$ bit of k, so we can align traces.
* Patterns AD, D and DA are possible for a bit.
* Between two Ds: DD, DAD and DAAD are possible.
* The relative frequencies determine the bit of k.

Recovering Secret Key Bits (2)

Example Strings
Key 11001, Ds aligned:

Recovering Secret Key Bits (3)

1. For each bit pattern, compute frequency of each $\{A, D\}$ pattern.
2. Deduce the possible bit patterns, ranked by likelihood.
3. Remove inconsistencies where associated bit strings overlap.

* Observation: it is easier to recognise bits from longer patterns.

Recovering Secret Key Bits (4)

If $p(r b=1)=1 / 2$ in each state, then the prob of each state is:

$0: 3 / 8$	$1: 1 / 4$
$2: 1 / 4$	$3: 1 / 8$

So the prob of each D-to- D sub-string is:

DD	$15 / 32$
DAD	$16 / 32$
DAAD	$1 / 32$

Recovering Secret Key Bits (5)

* Example. 2 bits is enough with ~ 10 traces. For bit pair $k_{i+1} k_{i}$:

DAAD in some trace means it is 11 , DAD or DAAD in some trace means it is not 00, no DAD or DAAD means 00 (probably), no DD or DAAD means 10 (probably), both DD and DAD means it is $x 1$, both DD and DAD but no DAAD means 01 (probably).

* Apply this to example on slide 8.
(Above bit order as in key, but reversed in trace table.)

Deduction Errors

* Using 10 traces to deduce the most likely bit pair and assuming $p(r b)=1 / 2$, only 1 in 166 bits is incorrect.
* It is computationally feasible to search for, and recover, k with standard ECC key length.
* Precisely, k is recovered from $O(\log \log k)$ traces and $\mathrm{O}\left((\log k)^{2}\right)$ decryptions
* Bits are recovered from local data, not sequentially L-to-R or R-to-L, so less re-computation when errors are made.
* Clearly, therefore, this algorithm should not be used where the initial assumptions hold.

Counter-Measures

* Can the parameters be changed to improve security?
* No! Whatever the chosen probability of $r b=1$ in a given state, similar deductions can be made.

Solutions:

1. Add fresh, random blinding for each use of k.
2. "Add and always double", so every DD, DAD and DAAD is disguised as DAAD (very expensive).
3. "Balanced" code which is the same for A and D.

Dangers

* Longer $\{\mathrm{A}, \mathrm{D}\}$-patterns are more exclusive: the under-lying \{0,1\}-pattern may have uniquely determined substrings.
* Fewer traces but more computation are required with this approach.
* Experimentally, $\mathrm{O}\left({ }^{4} \sqrt{ } k\right)$ keys match a pattern given by k.
* In fact, about 20 patterns for a 16-bit section of a key, and hence $20^{16} \approx 2^{69}$ decryption checks for a 256-bit key. This is just computationally feasible.
* So a single use of the key with this algorithm may be unsafe (making key blinding insufficient as a counter-measure).

Alternative Randomised Algorithms

* Besides the previous counter-measures, there are more secure randomised algorithms:

1. MIST: Walter (RSA 2001)
2. Overlapping Windows: Itoh et al (CHES 2002)

Conclusions

* The original randomised algorithm of Oswald \& Aigner can only be used securely for a few times with the same key unless other counter-measures are employed (although it is undoubtedly more secure than "square and multiply".)
* No parameter choice improves the situation.
* Standard counter-measures improve the security.
* The analysis is applicable to other randomised algorithms where at each point the unprocessed part of the key is fixed.
* It is clearer how to construct safer randomised algorithms.
* There are also suitable alternative algorithms.

RSA Conference 2004

