

Dual Exponentiation Schemes

Colin D. Walter

Information Security Group

Royal Holloway University of London

Colin.Walter@rhul.ac.uk

29 Feb 2012

The Problem

- Motivation: New algorithms are always useful as there are always so many different optimisations and conflicting pressures on resource-constrained platforms.
- Aim: Better exponentiation on space-limited chip. (Fast memory is expensive.)
- Setting: Mixed base representation for the exponent.
- *Solution*: Define a *dual* for the associated addition chain.
- Benefits: Derive new algorithms from existing ones; Better understanding of exponentiation.

Outline

- 1 Background
- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

Background

1 Background

- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

r-ary Exponentiation — L2R (Brauer, 1939)

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r+d_{n-2})r+\ldots+d_1)r+d_0 \in \mathbb{N}$ where $0 \le d_i < r$.
Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow g^d$$
 for all $d, 0 < d < r$.
 $P \leftarrow 1_G$
for $i \leftarrow n-1$ downto 0 do {
if $i \neq n-1$ then $P \leftarrow P^r$
if $d_i \neq 0$ then $P \leftarrow P \times T[d_i]$ }
return P

r-ary Exponentiation — R2L (Yao, 1976)

Inputs:
$$g \in G$$
,
 $D = d_{n-1}r^{n-1} + d_{n-2}r^{n-2} + \ldots + d_1r^1 + d_0$ where $0 \le d_i < r$.
Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow 1_G$$
 for all $d, 0 < d < r$.
 $P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do {
if $d_i \neq 0$ then $T[d_i] \leftarrow T[d_i] \times P$
if $i \neq n-1$ then $P \leftarrow P^r$ }
return $\prod_{d:0 < d < r} T[d]^d$

Royal Holloway University of London

Sliding Window — L2R

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N}$, where
 $d_i \in \{0, \pm 1, \pm 3, \ldots, \pm \frac{1}{2}(r-1)\}$, $r_i \in \{2, 2^w\}$ and $d_i = 0$ if $r_i = 2$.
Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow g^d$$
 for all $d \neq 0$.
 $P \leftarrow 1_G$
for $i \leftarrow n-1$ downto 0 do {
if $i \neq n-1$ then $P \leftarrow P^{r_i}$
if $d_i \neq 0$ then $P \leftarrow P \times T[d_i]$ }
return P

Royal Holloway University of London

Sliding Window — R2L

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N}$, where
 $d_i \in \{0, \pm 1, \pm 3, \ldots, \pm \frac{1}{2}(r-1)\}$, $r_i \in \{2, 2^w\}$ and $d_i = 0$ if $r_i = 2$.
Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow 1_G$$
 for all $d \neq 0$.
 $P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do {
if $d_i \neq 0$ then $T[d_i] \leftarrow T[d_i] \times P$
if $i \neq n-1$ then $P \leftarrow P^{r_i}$ }
return $\prod_{d\neq 0} T[d]^d$

Royal Holloway University of London

Mixed Base Exponentiation — L2R

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N},$
where $(r_i, d_i) \in \mathcal{R} \times \mathcal{D}.$

Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow g^d$$
 for all $d \in \mathcal{D} \setminus \{0\}$.
 $P \leftarrow 1_G$
for $i \leftarrow n-1$ downto 0 do {
if $i \neq n-1$ then $P \leftarrow P^{r_i}$
if $d_i \neq 0$ then $P \leftarrow P \times T[d_i]$ }
return P

Royal Holloway University of London

Mixed Base Exponentiation — R2L

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N},$
where $(r_i, d_i) \in \mathcal{R} \times \mathcal{D}.$

Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow 1_G$$
 for all $d \in \mathcal{D} \setminus \{0\}$.
 $P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do {
if $d_i \neq 0$ then $T[d_i] \leftarrow T[d_i] \times P$
if $i \neq n-1$ then $P \leftarrow P^{r_i}$ }
return $\prod_{d \in \mathcal{D} \setminus \{0\}} T[d]^d$

A Compact Right-to-Left Algorithm (Arith13, 1997)

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N},$
where $(r_i, d_i) \in \mathcal{R} \times \mathcal{D}.$

Output: $g^D \in G$

$$T \leftarrow 1_{G}$$

$$P \leftarrow g$$
for $i \leftarrow 0$ to $n-1$ do {
 if $d_{i} \neq 0$ then $T \leftarrow T \times P^{d_{i}}$
 if $i \neq n-1$ then $P \leftarrow P^{r_{i}}$ }
return T

The loop body involves computing P^{d_i} en route to P^{r_i} .

The Transposition Method

1 Background

- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

The Computational Di-Graph

An addition chain for *D* yields a computational, acyclic *di-graph*:

Here is that for 1+1=2; 1+2=3; 2+3=5.

RSACONFERENCE2012

For convenience, nodes are numbered so n_d represents g^d .

- Addition i+j = k gives directed edges $n_i n_k$ and $n_j n_k$.
- It is *acyclic*, with a single root n_1 and a single leaf n_5 .
- All nodes except root n_1 have input degree 2 as all op^s are binary.

•
$$\#Ops = \#Nodes - 1 = \frac{1}{2} \#Edges.$$

By induction, D = # paths from n_1 to n_D .

Di-Graph for the Transpose Method

- Reverse the edges for the "transposition" method. Node inputs are again multiplied together.
- Path count is D, as before. So it again computes g^D.
- Nodes may need merging or expanding to restore in-degree 2. The #binary operations is not changed: ¹/₂#edges.
- This reverses the addition chain in some sense.
- It doesn't preserve space requirements and without care, sq^g & multⁿ counts may change.

Space Duality

- 1 Background
- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

Space-Aware Addition Chains

Definition. For a given set of registers, take five classes of "atomic" op^s :

- Copying one register to another;
- Copying one register to another & initialising source register to 1_G ;
- In-place squaring of the contents of one register;
- Multiplying two different registers into one of the input registers;
- Multiplying two different registers into one of the input registers, & initialising the other input to 1_G .

A **space-aware addition chain** is a sequence of such operations in which the registers are named.

Every addition chain can be written as a space-aware addition chain.

Matrix Representation — Space

For a device with two locations, matrix examples of each class are:

$$\left[\begin{array}{cc}1&0\\1&0\end{array}\right],\quad \left[\begin{array}{cc}0&0\\1&0\end{array}\right],\quad \left[\begin{array}{cc}2&0\\0&1\end{array}\right],\quad \left[\begin{array}{cc}1&1\\0&1\end{array}\right],\quad \text{and}\quad \left[\begin{array}{cc}1&1\\0&0\end{array}\right].$$

They act on a column vector containing the values in each register.

By omitting more general op^{ns}, this set is *closed under transposition*.

- Copy (without initialise) becomes multiplication with initialise, and *vice versa*. (The *red* matrices.)
- Other operations stay in their class under transposition.

Definition. The *dual* of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)

The dual uses the same space but may not have the same mult^n count.

Matrix Representation — Space

For a device with two locations, matrix examples of each class are:

$$\left[\begin{array}{cc}1&0\\1&0\end{array}\right],\quad \left[\begin{array}{cc}0&0\\1&0\end{array}\right],\quad \left[\begin{array}{cc}2&0\\0&1\end{array}\right],\quad \left[\begin{array}{cc}1&1\\0&1\end{array}\right],\quad \text{and}\quad \left[\begin{array}{cc}1&1\\0&0\end{array}\right].$$

They act on a column vector containing the values in each register.

By omitting more general op^{ns}, this set is *closed under transposition*.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The *dual* of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)

The dual uses the same space but may not have the same mult^n count.

Matrix Representation — Space

For a device with two locations, matrix examples of each class are:

$$\left[\begin{array}{cc}1&0\\1&0\end{array}\right], \quad \left[\begin{array}{cc}0&0\\1&0\end{array}\right], \quad \left[\begin{array}{cc}2&0\\0&1\end{array}\right], \quad \left[\begin{array}{cc}1&1\\0&1\end{array}\right], \text{ and } \left[\begin{array}{cc}1&1\\0&0\end{array}\right].$$

They act on a column vector containing the values in each register.

By omitting more general op^{ns}, this set is *closed under transposition*.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The *dual* of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)

The dual uses the same space but may not have the same multⁿ count.

The Dual Chain — An Example

 $R3 \leftarrow R2$; $R3 \leftarrow R2+R3$; $R1 \leftarrow_I R2$; $R2 \leftarrow_I R3$; $R2 \leftarrow_I R1+R2$ In matrices acting on a col^{mn} vector:

 $\left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{array}\right]$

The dual (the transpose) is:

 $\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right] \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{array}\right]$

i.e. $R1 \leftarrow R2$; $R3 \leftarrow_I R2$; $R2 \leftarrow_I R1$; $R2 \leftarrow R2+R3$; $R2 \leftarrow_I R2+R3$

- Both have two multiplications and no squarings.
- Both compute g^3 from $g \in G$ with R_2 for I/O.

Extra Requirements

1 Background

- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

The Main Problems

- #Mults may not be preserved in the dual as copying becomes multⁿ with initialisation.
- 2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:

- Select the initialising opⁿ when possible.
- Eliminate 1_G as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O. (An I/O register *must* read input *and* write non-trivial output.)

Definition. A space-aware chain is *normalised* if the above hold.

20 / 30

The Main Problems

- #Mults may not be preserved in the dual as copying becomes multⁿ with initialisation.
- 2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:

- Select the initialising opⁿ when possible.
- Eliminate 1_G as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O.
 (An I/O register *must* read input *and* write non-trivial output.)

Definition. A space-aware chain is *normalised* if the above hold.

20 / 30

The Main Problems

- #Mults may not be preserved in the dual as copying becomes multⁿ with initialisation.
- Intersection 2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:

- Select the initialising opⁿ when possible.
- Eliminate 1_G as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O. (An I/O register *must* read input *and* write non-trivial output.)

Definition. A space-aware chain is normalised if the above hold.

Instances of 1_G or \perp arise from:

a) Initial value of a non-input register.

b) Initialised by copy or multⁿ opⁿ.

Instances of 1_G or \perp finish their lives as:

c) Final value in a non-output register.

d) Overwritten by a copy op^n .

Since #a = #c, we conclude #b = #d. Subtracting the $#\{copies with init^n\}$ from #b and #d, we have $#Mult^{ns}$ with initⁿ = #Copies without initⁿ

These opⁿ types are swapped in the dual & others stay as they are. So:

 Theorem. For a normalised space-aware chain, #Mult^{ns} & #Sq^{res} are the same for the dual.

Instances of 1_G or \perp arise from:

a) Initial value of a non-input register.

b) Initialised by copy or multⁿ opⁿ.

Instances of $\mathbf{1}_{G}$ or \bot finish their lives as:

c) Final value in a non-output register.

d) Overwritten by a copy op^n .

Since #a = #c, we conclude #b = #d. Subtracting the $#\{copies with init^n\}$ from #b and #d, we have $#Mult^{ns}$ with initⁿ = #Copies without initⁿ

These opⁿ types are swapped in the dual & others stay as they are. So:

 Theorem. For a normalised space-aware chain, #Mult^{ns} & #Sq^{res} are the same for the dual.

Instances of 1_G or \perp arise from:

a) Initial value of a non-input register.

b) Initialised by copy or multⁿ opⁿ.

Instances of 1_G or \perp finish their lives as:

c) Final value in a non-output register.

d) Overwritten by a copy opⁿ.

Since #a = #c, we conclude #b = #d. Subtracting the $#{copies with init^n}$ from #b and #d, we have

 $#Mult^{ns}$ with initⁿ = #Copies without initⁿ

These opⁿ types are swapped in the dual & others stay as they are. So:

 Theorem. For a normalised space-aware chain, #Mult^{ns} & #Sq^{res} are the same for the dual.

Instances of 1_G or \perp arise from:

a) Initial value of a non-input register.

b) Initialised by copy or multⁿ opⁿ.

Instances of $\mathbf{1}_{G}$ or \bot finish their lives as:

c) Final value in a non-output register.

d) Overwritten by a copy opⁿ.

Since #a = #c, we conclude #b = #d. Subtracting the $#{copies with init^n}$ from #b and #d, we have

 $#Mult^{ns}$ with initⁿ = #Copies without initⁿ

These opⁿ types are swapped in the dual & others stay as they are. So:

Theorem. For a normalised space-aware chain, #Mult^{ns} & #Sq^{res} are the same for the dual.

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^* is described by the transpose M^{T} .

Theorem a) f* computes the same values as f iff its matrix is symmetric.b) In particular, it uses the same registers for output as input.

- In the normalised case, unused registers give columns of zeros.
- Used, non-output registers are over-written with 1_G : more zeros.
- Used, non-input registers are initialised to 1_G : more zeros.
- So only the sub-matrix M_{IO} on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a *single* exponentiation and its dual compute the same values.

(Duals become unique only when written in atomic operations.)

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^* is described by the transpose M^{T} .

Theorem a) f* computes the same values as f iff its matrix is symmetric.b) In particular, it uses the same registers for output as input.

- In the normalised case, unused registers give columns of zeros.
- Used, non-output registers are over-written with 1_G : more zeros.
- Used, non-input registers are initialised to 1_G : more zeros.
- So only the sub-matrix M_{IO} on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a *single* exponentiation and its dual compute the same values.

(Duals become unique only when written in atomic operations.)

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^* is described by the transpose M^{T} .

Theorem a) f* computes the same values as f iff its matrix is symmetric.b) In particular, it uses the same registers for output as input.

- In the normalised case, unused registers give columns of zeros.
- Used, non-output registers are over-written with 1_G : more zeros.
- Used, non-input registers are initialised to 1_G : more zeros.
- So only the sub-matrix M_{IO} on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a *single* exponentiation and its dual compute the same values.

(Duals become unique only when written in atomic operations.)

New Algorithms

- 1 Background
- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

High Level Algorithms

Question: When is an algorithm *dualisable* if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op^{ns} yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_G .

The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)

These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

High Level Algorithms

Question: When is an algorithm *dualisable* if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op^{ns} yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_G .

The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)

These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

High Level Algorithms

Question: When is an algorithm *dualisable* if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op^{ns} yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_G .

The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)

These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

An "Old" Algorithm (Arith13, 1997)

Inputs: $g \in G$, $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+...+d_1)r_0+d_0 \in \mathbb{N}$ **Output:** $g^D \in G$

$$T \leftarrow 1_G$$

$$P \leftarrow g$$

for $i \leftarrow 0$ to $n-1$ do {
if $d_i \neq 0$ then $T \leftarrow T \times P^{d_i}$
if $i \neq n-1$ then $P \leftarrow P^{r_i}$ }
return T

The loop body involves computing P^{d_i} en route to P^{r_i} .

One Iteration

Base/digit pairs (r, d) are chosen for compact, fast performance. Specifically at most one register in addition to P and T.

e.g. $r = 2^{i} \pm 1$, $d = 2^{j}$ will involve *i* squarings & 2 mult^s.

It avoids a table entry for each d.

There is now a dual algorithm using the same space - only three registers.

The step
$$T \leftarrow TP^d$$
, $P \leftarrow P^r$ is achieved by $\begin{bmatrix} r & 0 \\ d & 1 \end{bmatrix} = \begin{bmatrix} r & d \\ 0 & 1 \end{bmatrix}^T$.

So the transpose performs the dual $op^n P \leftarrow P^r T^d$.

The sequence of op^s is easily determined via the dual.

One Iteration

Base/digit pairs (r, d) are chosen for compact, fast performance. Specifically at most one register in addition to P and T.

e.g. $r = 2^{i} \pm 1, d = 2^{j}$ will involve *i* squarings & 2 mult^s.

It avoids a table entry for each d.

There is now a dual algorithm using the same space - only three registers.

The step
$$T \leftarrow TP^d$$
, $P \leftarrow P^r$ is achieved by $\begin{bmatrix} r & 0 \\ d & 1 \end{bmatrix} = \begin{bmatrix} r & d \\ 0 & 1 \end{bmatrix}^T$.

So the transpose performs the dual $op^n P \leftarrow P^r T^d$.

The sequence of op^s is easily determined via the dual.

A New Compact Left-to-Right Algorithm

Inputs: $g \in G$, $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+...+d_1)r_0+d_0 \in \mathbb{N}$ **Output:** $g^D \in G$

$$T \leftarrow g$$

$$P \leftarrow 1_G$$
for $i \leftarrow n-1$ downto 0 do
$$P \leftarrow P^{r_i} \times T^{d_i}$$
return P

Loop iterations are computed as described on last slide.

It is the dual of the previous R2L algorithm, as just derived.

The Value of the Algorithm

- "Table-less" exponentiation useful in constrained environments.
- If space for only three registers and division has the same cost as multⁿ, the compact algorithms are faster.
- A left-to-right version allows better use of composite op^s, e.g. double-and-add, triple-and-add, quintuple-and-add.
- Recoding is done on-the-fly for R2L expⁿ; in advance for L2R expⁿ. The recoding typically needs up to 3 times the storage space of D.

Conclusion

- 1 Background
- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.

RSACONFERENCE2012

. . . .

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.

RSACONFERENCE2012

. . . .

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.

Information Security Group

RSACONFERENCE2012

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.
 - Information Security Group

RSACONFERENCE 2012

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.

RSACONFERENCE2012

. . . .

