

Dual Exponentiation Schemes

Colin D. Walter

Information Security Group
Royal Holloway University of London
Colin.Walter@rhul.ac.uk

RS^CONFERENCE2012

The Problem

- Motivation: New algorithms are always useful as there are always so many different optimisations and conflicting pressures on resource-constrained platforms.
- Aim: Better exponentiation on space-limited chip. (Fast memory is expensive.)
- Setting: Mixed base representation for the exponent.
- Solution: Define a dual for the associated addition chain.
- Benefits: Derive new algorithms from existing ones; Better understanding of exponentiation.

Outline

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

Background

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

r-ary Exponentiation - L2R (Brauer, 1939)

Inputs:

$$
\begin{aligned}
& g \in G, \\
& D=\left(\left(d_{n-1} r+d_{n-2}\right) r+\ldots+d_{1}\right) r+d_{0} \in \mathbb{N} \text { where } 0 \leq d_{i}<r .
\end{aligned}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow g^{d}$ for all $d, 0<d<r$.
$P \leftarrow 1_{G}$
for $i \leftarrow n-1$ downto 0 do $\{$
if $i \neq n-1$ then $P \leftarrow P^{r}$
if $d_{i} \neq 0$ then $\left.P \leftarrow P \times T\left[d_{i}\right]\right\}$
return P

r-ary Exponentiation - R2L (Yao, 1976)

Inputs: $g \in G$, $D=d_{n-1} r^{n-1}+d_{n-2} r^{n-2}+\ldots+d_{1} r^{1}+d_{0}$ where $0 \leq d_{i}<r$.
Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow 1_{G}$ for all $d, 0<d<r$.
$P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do $\{$
if $d_{i} \neq 0$ then $T\left[d_{i}\right] \leftarrow T\left[d_{i}\right] \times P$
if $i \neq n-1$ then $\left.P \leftarrow P^{r}\right\}$
return $\prod_{d: 0<d<r} T[d]^{d}$

Sliding Window - L2R

Inputs: $g \in G$,

$$
\begin{aligned}
& D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}, \text { where } \\
& d_{i} \in\left\{0, \pm 1, \pm 3, \ldots, \pm \frac{1}{2}(r-1)\right\}, r_{i} \in\left\{2,2^{w}\right\} \text { and } d_{i}=0 \text { if } r_{i}=2 .
\end{aligned}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow g^{d}$ for all $d \neq 0$.
$P \leftarrow 1_{G}$
for $i \leftarrow n-1$ downto 0 do $\{$
if $i \neq n-1$ then $P \leftarrow P^{r_{i}}$
if $d_{i} \neq 0$ then $\left.P \leftarrow P \times T\left[d_{i}\right]\right\}$
return P

Sliding Window - R2L

Inputs: $g \in G$,

$$
\begin{aligned}
& D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}, \text { where } \\
& d_{i} \in\left\{0, \pm 1, \pm 3, \ldots, \pm \frac{1}{2}(r-1)\right\}, r_{i} \in\left\{2,2^{w}\right\} \text { and } d_{i}=0 \text { if } r_{i}=2 .
\end{aligned}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow 1_{G}$ for all $d \neq 0$.
$P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do $\{$
if $d_{i} \neq 0$ then $T\left[d_{i}\right] \leftarrow T\left[d_{i}\right] \times P$
if $i \neq n-1$ then $\left.P \leftarrow P^{r_{i}}\right\}$
return $\prod_{d \neq 0} T[d]^{d}$

Mixed Base Exponentiation - L2R

Inputs: $g \in G$,

$$
\begin{array}{r}
D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N} \\
\text { where }\left(r_{i}, d_{i}\right) \in \mathcal{R} \times \mathcal{D}
\end{array}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow g^{d}$ for all $d \in \mathcal{D} \backslash\{0\}$.
$P \leftarrow 1_{G}$
for $i \leftarrow n-1$ downto 0 do $\{$
if $i \neq n-1$ then $P \leftarrow P^{r_{i}}$
if $d_{i} \neq 0$ then $\left.P \leftarrow P \times T\left[d_{i}\right]\right\}$
return P

Mixed Base Exponentiation - R2L

Inputs: $g \in G$,

$$
\begin{array}{r}
D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}, \\
\text { where }\left(r_{i}, d_{i}\right) \in \mathcal{R} \times \mathcal{D} .
\end{array}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow 1_{G}$ for all $d \in \mathcal{D} \backslash\{0\}$.
$P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do $\{$
if $d_{i} \neq 0$ then $T\left[d_{i}\right] \leftarrow T\left[d_{i}\right] \times P$
if $i \neq n-1$ then $\left.P \leftarrow P^{r_{i}}\right\}$
return $\prod_{d \in \mathcal{D} \backslash\{0\}} T[d]^{d}$
didnd insuld Information Security Group

A Compact Right-to-Left Algorithm (Arith13, 1997)

Inputs: $g \in G$,

$$
\begin{array}{r}
D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N} \\
\text { where }\left(r_{i}, d_{i}\right) \in \mathcal{R} \times \mathcal{D}
\end{array}
$$

Output: $g^{D} \in G$

$$
\begin{aligned}
& T \leftarrow 1_{G} \\
& P \leftarrow g \\
& \text { for } i \leftarrow 0 \text { to } n-1 \text { do }\{ \\
& \quad \text { if } d_{i} \neq 0 \text { then } T \leftarrow T \times P^{d_{i}} \\
& \left.\quad \text { if } i \neq n-1 \text { then } P \leftarrow P^{r_{i}}\right\} \\
& \text { return } T
\end{aligned}
$$

The loop body involves computing $P^{d_{i}}$ en route to $P^{r_{i}}$.

The Transposition Method

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

The Computational Di-Graph

An addition chain for D yields a computational, acyclic di-graph:

Here is that for

$$
1+1=2 ; 1+2=3 ; 2+3=5 .
$$

For convenience, nodes are numbered so n_{d} represents g^{d}.

- Addition $i+j=k$ gives directed edges $n_{i} n_{k}$ and $n_{j} n_{k}$.
- It is acyclic, with a single root n_{1} and a single leaf n_{5}.
- All nodes except root n_{1} have input degree 2 as all op ${ }^{5}$ are binary.
- \#Ops $=\#$ Nodes $-1=\frac{1}{2} \#$ Edges.
- By induction, $D=\#$ paths from n_{1} to n_{D}.

Di-Graph for the Transpose Method

- Reverse the edges for the "transposition" method. Node inputs are again multiplied together.
- Path count is D, as before. So it again computes g^{D}.
- Nodes may need merging or expanding to restore in-degree 2. The \#binary operations is not changed: $\frac{1}{2} \#$ edges.
- This reverses the addition chain in some sense.
- It doesn't preserve space requirements and without care, sq^{g} \& mult ${ }^{\mathrm{n}}$ counts may change.

Space Duality

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

Space-Aware Addition Chains

Definition. For a given set of registers, take five classes of "atomic" ops:

- Copying one register to another;
- Copying one register to another \& initialising source register to 1_{G};
- In-place squaring of the contents of one register;
- Multiplying two different registers into one of the input registers;
- Multiplying two different registers into one of the input registers, \& initialising the other input to 1_{G}.

A space-aware addition chain is a sequence of such operations in which the registers are named.

Every addition chain can be written as a space-aware addition chain.

Matrix Representation - Space

For a device with two locations, matrix examples of each class are:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \text { and }\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] .
$$

They act on a column vector containing the values in each register.
By omitting more general $\mathrm{op}^{\mathrm{ns}}$, this set is closed under transposition.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The dual of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)
The dual uses the same space but may not have the same mult ${ }^{n}$ count.

Matrix Representation - Space

For a device with two locations, matrix examples of each class are:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \text { and }\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] .
$$

They act on a column vector containing the values in each register.
By omitting more general $\mathrm{op}^{\mathrm{ns}}$, this set is closed under transposition.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The dual of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)
The dual uses the same space but may not have the same mult ${ }^{n}$ count.

Matrix Representation - Space

For a device with two locations, matrix examples of each class are:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \text { and }\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] .
$$

They act on a column vector containing the values in each register.
By omitting more general $\mathrm{op}^{\mathrm{ns}}$, this set is closed under transposition.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The dual of a space-aware chain is its transpose.
(The transposed operations are applied in reverse order.)
The dual uses the same space but may not have the same mult ${ }^{n}$ count.

The Dual Chain - An Example

$$
R 3 \leftarrow R 2 ; R 3 \leftarrow R 2+R 3 ; R 1 \leftarrow, R 2 ; R 2 \leftarrow, R 3 ; R 2 \leftarrow, R 1+R 2
$$

In matrices acting on a col ${ }^{m n}$ vector:

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The dual (the transpose) is:
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$
i.e. $R 1 \leftarrow R 2 ; R 3 \leftarrow, R 2 ; R 2 \leftarrow, R 1 ; R 2 \leftarrow R 2+R 3 ; R 2 \leftarrow, R 2+R 3$

- Both have two multiplications and no squarings.
- Both compute g^{3} from $g \in G$ with R_{2} for I/O.

Extra Requirements

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

The Main Problems

1 \#Mults may not be preserved in the dual as copying becomes mult ${ }^{n}$ with initialisation.

2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:
■ Select the initialising op ${ }^{n}$ when possible.
■ Eliminate 1_{G} as an operand.

- Remove operations whose output is not used.
- Fix a subset of registers for I/O.
(An I/O register must read input and write non-trivial output.)
Definition. A space-aware chain is normalised if the above hold.

RSNCONFERENCE2012

The Main Problems

1 \#Mults may not be preserved in the dual as copying becomes mult ${ }^{\mathrm{n}}$ with initialisation.

2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:
■ Select the initialising op ${ }^{n}$ when possible.

- Eliminate 1_{G} as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O.
(An I/O register must read input and write non-trivial output.)
Definition. A space-aware chain is normalised if the above hold.

The Main Problems

[1 \#Mults may not be preserved in the dual as copying becomes mult ${ }^{\mathrm{n}}$ with initialisation.
2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:

- Select the initialising op^{n} when possible.
- Eliminate 1_{G} as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O.
(An I/O register must read input and write non-trivial output.)
Definition. A space-aware chain is normalised if the above hold.

Counting Ones

Instances of 1_{G} or \perp arise from:
a) Initial value of a non-input register.
b) Initialised by copy or mult ${ }^{\mathrm{n}} \mathrm{op}^{\mathrm{n}}$.

Instances of 1_{G} or \perp finish their lives as:
c) Final value in a non-output register.
d) Overwritten by a copy $o p^{n}$.

Since $\# \mathrm{a}=\# \mathrm{c}$, we conclude $\# \mathrm{~b}=\# \mathrm{~d}$.
Subtracting the \#\{copies with init $\left.{ }^{\text {n }}\right\}$ from \#b and \#d, we have

$$
\text { \#Mult }{ }^{\text {ns }} \text { with init }{ }^{n}=\# \text { Copies without init }{ }^{n}
$$

These op ${ }^{n}$ types are swapped in the dual \& others stay as they are. So:

- Theorem. For a normalised space-aware chain, \#Mult ${ }^{\text {ns }} \& \#$ Sq $^{\text {res }}$ are the same for the dual.

Counting Ones

Instances of 1_{G} or \perp arise from:
a) Initial value of a non-input register.
b) Initialised by copy or mult ${ }^{\mathrm{n}} \mathrm{op}^{\mathrm{n}}$.

Instances of 1_{G} or \perp finish their lives as:
c) Final value in a non-output register.
d) Overwritten by a copy op^{n}.

Since \#a = \#c, we conclude \#b = \#d.
Subtracting the \#\{copies with init $\left.{ }^{\mathrm{n}}\right\}$ from $\# \mathrm{~b}$ and $\# \mathrm{~d}$, we have

$$
\# \text { Mult }^{\text {ns }} \text { with init }{ }^{\mathrm{n}}=\# \text { Copies without init }{ }^{\mathrm{n}}
$$

These op ${ }^{n}$ types are swapped in the dual \& others stay as they are. So:

- Theorem. For a normalised space-aware chain, \#Mult ${ }^{\text {ns }} \& \#$ Sq $^{\text {res }}$ are the same for the dual.

Counting Ones

Instances of 1_{G} or \perp arise from:
a) Initial value of a non-input register.
b) Initialised by copy or mult ${ }^{\mathrm{n}} \mathrm{op}^{\mathrm{n}}$.

Instances of 1_{G} or \perp finish their lives as:
c) Final value in a non-output register.
d) Overwritten by a copy $o p^{n}$.

Since \#a = \#c, we conclude \#b = \#d.
Subtracting the \#\{copies with init $\left.{ }^{\text {n }}\right\}$ from \#b and \#d, we have \#Mult ${ }^{\text {ns }}$ with init ${ }^{\text {n }}=\#$ Copies without init ${ }^{\text {n }}$
These op ${ }^{n}$ types are swapped in the dual \& others stay as they are. So:

- Theorem. For a normalised space-aware chain, \#Mult ${ }^{\text {ns }} \& \#$ Sq $^{\text {res }}$ are the same for the dual.

Counting Ones

Instances of 1_{G} or \perp arise from:
a) Initial value of a non-input register.
b) Initialised by copy or mult ${ }^{\mathrm{n}} \mathrm{op}^{\mathrm{n}}$.

Instances of 1_{G} or \perp finish their lives as:
c) Final value in a non-output register.
d) Overwritten by a copy $o p^{n}$.

Since \#a = \#c, we conclude \#b = \#d.
Subtracting the \#\{copies with init $\left.{ }^{\text {n }}\right\}$ from \#b and \#d, we have \#Mult ${ }^{\text {ns }}$ with init ${ }^{\text {n }}=$ \#Copies without init ${ }^{\text {n }}$
These op ${ }^{n}$ types are swapped in the dual \& others stay as they are. So:

- Theorem. For a normalised space-aware chain, \#Mult ${ }^{\text {ns }} \& \#$ Sq $^{\text {res }}$ are the same for the dual.

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^{*} is described by the transpose M^{\top}.

Theorem a) f^{*} computes the same values as f iff its matrix is symmetric.
b) In particular, it uses the same registers for output as input.

■ In the normalised case, unused registers give columns of zeros.
■ Used, non-output registers are over-written with 1_{G} : more zeros.
■ Used, non-input registers are initialised to 1_{G} : more zeros.

- So only the sub-matrix $M_{I O}$ on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a single exponentiation and its dual compute the same values.
(Duals become unique only when written in atomic operations.)

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^{*} is described by the transpose M^{\top}.

Theorem a) f^{*} computes the same values as f iff its matrix is symmetric.
b) In particular, it uses the same registers for output as input.

■ In the normalised case, unused registers give columns of zeros.
■ Used, non-output registers are over-written with 1_{G} : more zeros.

- Used, non-input registers are initialised to 1_{G} : more zeros.
- So only the sub-matrix $M_{I O}$ on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a single exponentiation and its dual compute the same values.
(Duals become unique only when written in atomic operations.)

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^{*} is described by the transpose M^{\top}.

Theorem a) f^{*} computes the same values as f iff its matrix is symmetric.
b) In particular, it uses the same registers for output as input.

■ In the normalised case, unused registers give columns of zeros.
■ Used, non-output registers are over-written with 1_{G} : more zeros.

- Used, non-input registers are initialised to 1_{G} : more zeros.
- So only the sub-matrix $M_{I O}$ on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a single exponentiation and its dual compute the same values.
(Duals become unique only when written in atomic operations.)

New Algorithms

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

High Level Algorithms

Question: When is an algorithm dualisable if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op ${ }^{\text {ns }}$ yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_{G}.
The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)
These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

High Level Algorithms

Question: When is an algorithm dualisable if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op ${ }^{\text {ns }}$ yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_{G}.
The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)
These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

High Level Algorithms

Question: When is an algorithm dualisable if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op ${ }^{\text {ns }}$ yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_{G}.

The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)
These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

An "Old" Algorithm (Arith13, 1997)

Inputs: $g \in G, \quad D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}$
Output: $g^{D} \in G$

$$
\begin{aligned}
& T \leftarrow 1_{G} \\
& P \leftarrow g \\
& \text { for } i \leftarrow 0 \text { to } n-1 \text { do }\{ \\
& \quad \text { if } d_{i} \neq 0 \text { then } T \leftarrow T \times P^{d_{i}} \\
& \left.\quad \text { if } i \neq n-1 \text { then } P \leftarrow P^{r_{i}}\right\} \\
& \text { return } T
\end{aligned}
$$

The loop body involves computing $P^{d_{i}}$ en route to $P^{r_{i}}$.

One Iteration

Base/digit pairs (r, d) are chosen for compact, fast performance. Specifically at most one register in addition to P and T.
e.g. $r=2^{i} \pm 1, d=2^{j}$ will involve i squarings \& 2 mults s.

It avoids a table entry for each d.
There is now a dual algorithm using the same space - only three registers.
The step $T \leftarrow T P^{d}, P \leftarrow P^{r}$ is achieved by $\left[\begin{array}{ll}r & 0 \\ d & 1\end{array}\right]=\left[\begin{array}{ll}r & d \\ 0 & 1\end{array}\right]^{\top}$.
So the transpose performs the dual op ${ }^{n} P \leftarrow P^{r} T^{d}$.
The sequence of $o p^{5}$ is easily determined via the dual.

One Iteration

Base/digit pairs (r, d) are chosen for compact, fast performance. Specifically at most one register in addition to P and T.
e.g. $r=2^{i} \pm 1, d=2^{j}$ will involve i squarings \& 2 mult s.

It avoids a table entry for each d.
There is now a dual algorithm using the same space - only three registers.
The step $T \leftarrow T P^{d}, P \leftarrow P^{r}$ is achieved by $\left[\begin{array}{ll}r & 0 \\ d & 1\end{array}\right]=\left[\begin{array}{ll}r & d \\ 0 & 1\end{array}\right]^{\top}$.
So the transpose performs the dual op ${ }^{n} P \leftarrow P^{r} T^{d}$.
The sequence of $o p^{5}$ is easily determined via the dual.

A New Compact Left-to-Right Algorithm

Inputs: $g \in G, \quad D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}$
Output: $g^{D} \in G$

$$
\begin{aligned}
& T \leftarrow g \\
& P \leftarrow 1_{G} \\
& \text { for } i \leftarrow n-1 \text { downto } 0 \text { do } \\
& \quad P \leftarrow P^{r_{i}} \times T^{d_{i}}
\end{aligned}
$$

return P

Loop iterations are computed as described on last slide.
It is the dual of the previous R2L algorithm, as just derived.

The Value of the Algorithm

■ "Table-less" exponentiation - useful in constrained environments.

- If space for only three registers and division has the same cost as mult ${ }^{\mathrm{n}}$, the compact algorithms are faster.
- A left-to-right version allows better use of composite op ${ }^{\text {s }}$, e.g. double-and-add, triple-and-add, quintuple-and-add.
- Recoding is done on-the-fly for R2L $\exp ^{\mathrm{n}}$; in advance for L2R $\exp ^{\mathrm{n}}$. The recoding typically needs up to 3 times the storage space of D.

Conclusion

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

Summary \& Final Remarks

■ A general setting enabling most $\exp ^{n}$ algorithms to be described naturally, namely a mixed base recoding.

■ A new space- and time-preserving duality between left-to-right and right-to-left $\exp ^{n}$ algorithms.

■ A new tableless $\exp ^{n}$ algorithm. It enables new speed records to be set in certain environments.

■ New understanding of $\exp ^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.

■ . .

Summary \& Final Remarks

■ A general setting enabling most exp ${ }^{n}$ algorithms to be described naturally, namely a mixed base recoding.

- A new space- and time-preserving duality between left-to-right and right-to-left exp ${ }^{\mathrm{n}}$ algorithms.
- A new tableless $\exp ^{n}$ algorithm.

It enables new speed records to be set in certain environments.

- New understanding of exp ${ }^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.
-..

Summary \& Final Remarks

■ A general setting enabling most exp ${ }^{n}$ algorithms to be described naturally, namely a mixed base recoding.

- A new space- and time-preserving duality between left-to-right and right-to-left exp ${ }^{\mathrm{n}}$ algorithms.
- A new tableless $\exp ^{n}$ algorithm. It enables new speed records to be set in certain environments.
- New understanding of exp ${ }^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.
-..

Summary \& Final Remarks

■ A general setting enabling most exp ${ }^{n}$ algorithms to be described naturally, namely a mixed base recoding.

- A new space- and time-preserving duality between left-to-right and right-to-left exp ${ }^{n}$ algorithms.
- A new tableless $\exp ^{n}$ algorithm. It enables new speed records to be set in certain environments.
- New understanding of exp ${ }^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.

■...

Summary \& Final Remarks

- A general setting enabling most $\exp ^{n}$ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left $\exp ^{n}$ algorithms.
- A new tableless $\exp ^{n}$ algorithm. It enables new speed records to be set in certain environments.
- New understanding of $\exp ^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.

■ . .

