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The Problem

Motivation: New algorithms are always useful as
there are always so many different optimisations and
conflicting pressures on resource-constrained platforms.

Aim: Better exponentiation on space-limited chip.
(Fast memory is expensive.)

Setting: Mixed base representation for the exponent.

Solution: Define a dual for the associated addition chain.

Benefits: Derive new algorithms from existing ones;
Better understanding of exponentiation.
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r -ary Exponentiation — L2R (Brauer, 1939)

Inputs: g ∈ G ,
D = ((dn−1r+dn−2)r+ . . . +d1)r+d0 ∈ N where 0≤di<r .

Output: gD∈G

——————————————————————————

Initialise table: T [d ]← gd for all d , 0<d<r .
P ← 1G

for i ← n−1 downto 0 do {
if i 6= n−1 then P ← P r

if di 6= 0 then P ← P×T [di ] }
return P
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r -ary Exponentiation — R2L (Yao, 1976)

Inputs: g ∈ G ,
D = dn−1rn−1+dn−2rn−2+ . . . +d1r1+d0 where 0≤di<r .

Output: gD∈G

——————————————————————————

Initialise table: T [d ]← 1G for all d , 0<d<r .
P ← g
for i ← 0 to n−1 do {

if di 6= 0 then T [di ]← T [di ]×P
if i 6= n−1 then P ← P r }

return
∏

d :0<d<r T [d ]d
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Sliding Window — L2R

Inputs: g ∈ G ,
D = ((dn−1rn−2+dn−2)rn−3+ . . . +d1)r0+d0 ∈ N, where
di∈{0,±1,±3, . . . ,± 1

2 (r−1)}, ri∈{2, 2w} and di=0 if ri=2.

Output: gD∈G

——————————————————————————

Initialise table: T [d ]← gd for all d 6= 0.
P ← 1G

for i ← n−1 downto 0 do {
if i 6= n−1 then P ← P ri

if di 6= 0 then P ← P×T [di ] }
return P
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Mixed Base Exponentiation — L2R

Inputs: g ∈ G ,
D = ((dn−1rn−2+dn−2)rn−3+ . . . +d1)r0+d0 ∈ N,

where (ri , di ) ∈ R×D.

Output: gD∈G

————————————————————————–

Initialise table: T [d ]← gd for all d ∈ D \ {0}.
P ← 1G

for i ← n−1 downto 0 do {
if i 6= n−1 then P ← P ri

if di 6= 0 then P ← P×T [di ] }
return P
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Mixed Base Exponentiation — R2L

Inputs: g ∈ G ,
D = ((dn−1rn−2+dn−2)rn−3+ . . . +d1)r0+d0 ∈ N,

where (ri , di ) ∈ R×D.

Output: gD∈G

————————————————————————–

Initialise table: T [d ]← 1G for all d ∈ D \ {0}.
P ← g
for i ← 0 to n−1 do {

if di 6= 0 then T [di ]← T [di ]×P
if i 6= n−1 then P ← P ri }

return
∏

d∈D\{0} T [d ]d
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A Compact Right-to-Left Algorithm (Arith13, 1997)

Inputs: g ∈ G ,
D = ((dn−1rn−2+dn−2)rn−3+ . . . +d1)r0+d0 ∈ N,

where (ri , di ) ∈ R×D.

Output: gD∈G

————————————————————————

T ← 1G

P ← g
for i ← 0 to n−1 do {

if di 6= 0 then T ← T×Pdi

if i 6= n−1 then P ← P ri }
return T

The loop body involves computing Pdi en route to P ri .
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The Computational Di-Graph

An addition chain for D yields a computational, acyclic di-graph:

Here is that for

1+1=2; 1+2=3; 2+3=5.

n1 n2

n3 n5

For convenience, nodes are numbered so nd represents gd .

Addition i+j = k gives directed edges nink and njnk .

It is acyclic, with a single root n1 and a single leaf n5.

All nodes except root n1 have input degree 2 as all ops are binary.

#Ops = #Nodes−1 = 1
2#Edges.

By induction, D = #paths from n1 to nD .
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Di-Graph for the Transpose Method

n1 n2

n3 n5

Reverse the edges for the “transposition” method.
Node inputs are again multiplied together.

Path count is D, as before. So it again computes gD .

Nodes may need merging or expanding to restore in-degree 2.
The #binary operations is not changed: 1

2#edges.

This reverses the addition chain in some sense.

It doesn’t preserve space requirements and
without care, sqg & multn counts may change.
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Space-Aware Addition Chains

Definition. For a given set of registers, take five classes of “atomic” ops:

Copying one register to another;

Copying one register to another & initialising source register to 1G ;

In-place squaring of the contents of one register;

Multiplying two different registers into one of the input registers;

Multiplying two different registers into one of the input registers,
& initialising the other input to 1G .

A space-aware addition chain is a sequence of such operations in which
the registers are named.

Every addition chain can be written as a space-aware addition chain.
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Matrix Representation — Space

For a device with two locations, matrix examples of each class are:[
1 0
1 0

]
,

[
0 0
1 0

]
,

[
2 0
0 1

]
,

[
1 1
0 1

]
, and

[
1 1
0 0

]
.

They act on a column vector containing the values in each register.

By omitting more general opns, this set is closed under transposition.

Copy (without initialise) becomes multiplication with initialise,
and vice versa. (The red matrices.)

Other operations stay in their class under transposition.

Definition. The dual of a space-aware chain is its transpose.
(The transposed operations are applied in reverse order.)

The dual uses the same space but may not have the same multn count.
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The Dual Chain — An Example

R3← R2; R3← R2+R3; R1←I R2; R2←I R3; R2←I R1+R2

In matrices acting on a colmn vector: 0 0 0
1 1 0
0 0 1

 1 0 0
0 0 1
0 0 0

 0 1 0
0 0 0
0 0 1

 1 0 0
0 1 0
0 1 1

 1 0 0
0 1 0
0 1 0

 =

 0 0 0
0 3 0
0 0 0


The dual (the transpose) is: 1 0 0

0 1 1
0 0 0

 1 0 0
0 1 1
0 0 1

 0 0 0
1 0 0
0 0 1

 1 0 0
0 0 0
0 1 0

 0 1 0
0 1 0
0 0 1

 =

 0 0 0
0 3 0
0 0 0


i.e. R1← R2; R3←I R2; R2←I R1; R2← R2+R3; R2←I R2+R3

Both have two multiplications and no squarings.

Both compute g3 from g ∈ G with R2 for I/O.
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The Main Problems

1 #Mults may not be preserved in the dual
as copying becomes multn with initialisation.

2 The dual chain may not compute the same value
unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:

Select the initialising opn when possible.

Eliminate 1G as an operand.

Remove operations whose output is not used.

Fix a subset of registers for I/O.
(An I/O register must read input and write non-trivial output.)

Definition. A space-aware chain is normalised if the above hold.
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Counting Ones

Instances of 1G or ⊥ arise from:

a) Initial value of a non-input register.

b) Initialised by copy or multn opn.

Instances of 1G or ⊥ finish their lives as:

c) Final value in a non-output register.

d) Overwritten by a copy opn.

Since #a = #c, we conclude #b = #d.
Subtracting the #{copies with initn} from #b and #d, we have

#Multns with initn = #Copies without initn

These opn types are swapped in the dual & others stay as they are. So:

Theorem. For a normalised space-aware chain,
#Multns & #Sqres are the same for the dual.
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Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is
described by matrix M then a dual f ∗ is described by the transpose MT.

Theorem a) f ∗ computes the same values as f iff its matrix is symmetric.

b) In particular, it uses the same registers for output as input.

In the normalised case, unused registers give columns of zeros.

Used, non-output registers are over-written with 1G : more zeros.

Used, non-input registers are initialised to 1G : more zeros.

So only the sub-matrix MIO on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a single
exponentiation and its dual compute the same values.

(Duals become unique only when written in atomic operations.)
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High Level Algorithms

Question: When is an algorithm dualisable if its steps are more complex
than the atomic operations?

We want to be able to decompose steps independently into atomic opns

yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must
not be used and its used non-output registers must be reset to 1G .

The output registers for one step must be the input registers for the next.
(Include unused registers in the I/O set for convenience here.)

These are only requirements on how steps are realised as space-aware
chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that
given by transposing its steps and reversing their order.
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An “Old” Algorithm (Arith13, 1997)

Inputs: g ∈ G , D = ((dn−1rn−2+dn−2)rn−3+ . . . +d1)r0+d0 ∈ N
Output: gD∈G

——————————————————————————

T ← 1G

P ← g
for i ← 0 to n−1 do {

if di 6= 0 then T ← T×Pdi

if i 6= n−1 then P ← P ri }
return T

The loop body involves computing Pdi en route to P ri .
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One Iteration

Base/digit pairs (r , d) are chosen for compact, fast performance.
Specifically at most one register in addition to P and T .

e.g. r = 2i±1, d = 2j will involve i squarings & 2 mults.

It avoids a table entry for each d.

There is now a dual algorithm using the same space – only three registers.

The step T←TPd , P←P r is achieved by

[
r 0
d 1

]
=

[
r d
0 1

]T

.

So the transpose performs the dual opn P ← P r T d .

The sequence of ops is easily determined via the dual.
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A New Compact Left-to-Right Algorithm

Inputs: g ∈ G , D = ((dn−1rn−2+dn−2)rn−3+ . . . +d1)r0+d0 ∈ N
Output: gD∈G

——————————————————————————

T ← g
P ← 1G

for i ← n−1 downto 0 do
P ← P ri×T di

return P

Loop iterations are computed as described on last slide.

It is the dual of the previous R2L algorithm, as just derived.
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The Value of the Algorithm

“Table-less” exponentiation – useful in constrained environments.

If space for only three registers and division has the same cost as
multn, the compact algorithms are faster.

A left-to-right version allows better use of composite ops,
e.g. double-and-add, triple-and-add, quintuple-and-add.

Recoding is done on-the-fly for R2L expn; in advance for L2R expn.
The recoding typically needs up to 3 times the storage space of D.
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Summary & Final Remarks

A general setting enabling most expn algorithms to be
described naturally, namely a mixed base recoding.

A new space- and time-preserving duality
between left-to-right and right-to-left expn algorithms.

A new tableless expn algorithm.
It enables new speed records to be set in certain environments.

New understanding of expn is possible,
e.g. a comparison of R2L initialisation with L2R finalisation steps.

. . .
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