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SUMMARY

We propose a practical technique to compile left-to-right pattern-matching of prioritised overlapping
function definitions in equational languages to a matching automaton from which efficient code can be
derived.  First, a matching table is constructed using a compilation method similar to the technique that
YACC employs to generate parsing tables.  The matching table obtained allows for the pattern-matching
process to be performed without any backtracking.  Then, the known information about right sides of
the equations is inserted in the matching table in order to speed-up the pattern-matching process. Most
of the discussion assumes that the processed pattern set is left-linear, the non-linear case being handled
by an additional pass following the matching stage.  Copyright   1999 John Wiley & Sons, Ltd.
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1.   INTRODUCTION

As research has proved so far, the pattern-matching feature of equational and functional
languages is very expressive, fully compensating for the lack of side effects in such languages.

The operational semantics behind the rewriting-based programming paradigm is now well-
known [1−3].  It consists of using a set of equations considered as left-to-right rewrite rules to
simplify a given term, called the subject term.  Starting from this term, the evaluation process
produces a sequence of expressions by repeatedly replacing instances of left sides of rules with
their corresponding right sides until no further replacements are possible.  An instance of a left
side in the subject expression is called a redex, and an expression with no redex is said to be in
normal form.

The pattern-matching process provides a rule whose left side matches the expression
considered.  As patterns can overlap, several rules can be matched at the same time.  In this
case, a meta-rule allowing for the selection of a single matched rule is used.  Examples of such
a meta-rule are the first matched rule (textual order) and the most specific matched rule [4].
The textual order meta-rule will be used here in the case of overlapping patterns. However,
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the method presented through this paper is easily adapted to any meta-rule which can be
established at compile-time.

Usually, the pattern set is pre-processed producing an intermediate representation allowing
for the matching process to be performed efficiently.  Different kinds of such representations
have been studied: conditional constructs, like those in procedural languages, have been
exploited for this purpose.  Examples include the if-then-else construct [5] and the case-
expression [6,7].  Another kind of representation consists of a matching tree (also called the
index tree) [3,8].  Similarly, pattern-matching definitions have been compiled into a finite
matching automaton in References [1,9,10,11,12].

Pattern-matching automata have been studied for over a decade. Gräf [9], Maranget [13]
and Christian [14] describe matching automata for unambiguous patterns based on left-to-
right traversal.  Gräf [9] adds instances of patterns using a closure operation, so symbol re-
examination could be avoided.  Maranget [13] describes two techniques to compile lazy
pattern-matching.  The first technique generates a deterministic matching automaton that is
equivalent to that obtained by Gräf [9].  The second technique, however, generates automata
with failures that allow non-deterministic pattern-matching (i.e. with symbol re-examination).
These automata possess a static exception construct that enables some code sharing.  In
functional programming, Augustsson [6] and Wadler [7] describe pattern-matching techniques
that are also based on left-to-right traversal, but allow prioritised overlapping patterns.  They
compile patterns into CASE constructs using four compilation rules: the empty rule, the
constructor rule, the variable rule and the mixture rule.  Although the latter methods are
practical and economical in terms of space usage, they may re-examine symbols in the input
term.  In the worst case, these methods can degenerate to the naive method of checking the
input term against each pattern individually.  In contrast, Christian’s [14] and Gräf’s [9]
methods, together with Maranget’s [13] first technique, avoid symbol re-examination at the
cost of increasing the space requirements, while Maranget’s [13] second technique guarantee
that the size the resulting automaton is linear in the size of the patterns.  However, one has to
bear in mind that the functional approach followed by Wadler [7] and Maranget [13] combines
the operations of forcing weak normalisation of the subterm whose the head symbol
mismatches the symbol in the pattern and examining the resulting head symbol while in the
term rewriting approach followed by Christian [14] and Gräf [9], symbols are examined
without forcing any evaluation.

The practical method we shall describe in this paper is similar to a method of automatic
generation of parsers [15,16], which has been used for many years to compile imperative
languages.  Backtracking in the pattern-matching process can consume considerable time as
well as space.  So, through the matching table generation process, we convert the original
pattern set to an equivalent closed pattern set which avoids the need for backtracking.  We use
a different approach from that described by Gräf [9] to compute the closure of pattern sets.  In
contrast with his method, we also deal with prioritised overlapping patterns.  Furthermore,
Gräf [9] does not show how to use the constructed matching automaton in the context of a
given rewriting strategy.  After the method of generating the matching table is described, we
describe how to interpret such a matching table through an abstract rewriting machine.  We
show that the rewriting machine is simple yet expressive, and any rewriting strategy can be
used after minor changes to it.  We illustrate this machine using the three most popular
strategies namely, leftmost-innermost [17,18], leftmost-outermost [12] and the adaptive
strategy [19] used in most lazy functional languages such as Miranda [19], LML [20] and
Haskell [21].  The adaptive strategy implements the functional approach described in
Reference [7].  Our method, like most others, is restricted to the subclass of left-linear
programs for which a variable can occur only once in the left side of an equation.
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Using the technique of partial evaluation [22], Strandh [3] transforms the code generated
for equational programs so that the code obtained allows for some matching and rewriting
steps to be avoided.  Similar work can be found in References [23-25].  Instead, we customise
the idea of partial evaluation so it can be used directly on the equational program itself, not on
the code generated for it.  For the adaptive strategy, it is possible to avoid some matching and
rewriting steps if the equation’s right sides are analysed at compile-time.  The rewriting
machine permits this analysis to be done easily, and it generates a new equivalent set of
equations which is more efficient.  Finally, an evaluation of an implementation of the proposed
ideas is provided.

2. NOTATION AND DEFINITIONS

Definition 2.1. An equational program can be defined as a 4-tuple EP = 〈F, V, R, T〉  where
F = { f, g, h, ...} is a set of function symbols, V = {x, y, z, ...} is a set of variable symbols and R
 �^� 1 →� 1, 2 →� 2, ...} is a set of rewrite rules called the term rewriting system, ZKHUH� i

DQG� i are terms, called the pattern and template, respectively.  T is the subject term, which is
the expression to evaluate.

For convenience, in most of the paper, we will consider the patterns to be written from the
symbols in F ∪ � ^ `��ZKHUH�  is a meta-symbol used whenever the symbol representing a
YDULDEOH�GRHV�QRW�PDWWHU���)RU�D�SDWWHUQ�VHW� ��ZH�GHQRWH�E\�F  the subset of F containing only
WKH�IXQFWLRQ�V\PEROV�LQ�WKH�SDWWHUQV�RI� ���$�term is either a variable, a constant symbol or has
the form f� 1, 2, ����� n) ZKHUH� HDFK� i (1 � i ��n) is itself a term and n is the arity of the
function symbol f denoted by #f.  The subject term is supposed to be a ground term, i.e. a term
containing no variable occurrences.  Terms are interpreted syntactically as trees labelled with
symbols from F ∪  V.  An instance of a term t can be obtained by replacing leaves labelled with
variable symbols by other terms.  In practice, however, both the subject term and templates are
turned into Directed Acyclic Graphs (DAGs) so that common subterms may be shared
(represented physically once).  This allows for the evaluation of such subterms to be
performed at most once during the whole rewriting process.

Definition 2.2. A position in a term is a path specification which identifies a node in the graph
of that term, and therefore both the subterm rooted at that point and the symbol which labels
WKDW� QRGH�� �$� SRVLWLRQ� LV� VSHFLILHG� KHUH� XVLQJ� D� OLVW� RI� SRVLWLYH� LQWHJHUV�� � 7KH� HPSW\� OLVW�
denotes the graph root, the position k denotes the kth child of the root, and the position p.k
denotes the kth (k �����FKLOG�IURP�WKH�SRVLWLRQ�JLYHQ�E\�p.  The symbol, respectively subterm,
rooted at position p in a term t is denoted by t[p] , respectively t / p.  A position in a term is
valid LI��DQG�RQO\�LI��WKH�WHUP�KDV�D�V\PERO�DW�WKDW�SRVLWLRQ���6R� �LV�YDOLG�IRU�DQ\�WHUP��DQG�D
position p = q.k is valid if, and only if, the position q is valid, the symbol f at q is a function
symbol and k ���f.

For instance, in the term t = f(g(a, h(a, a), b(a, x), c), t> @ denotes the single occurrence
of f, t[2.2] denotes the variable symbol x, whereas t[2] denotes the symbol b while t/2 indicates
the subterm b(a,x) and the positions 2.2.1 and 1.3 are not valid.  In the following, we will
abbreviate terms by removing parentheses and commas.  For instance, t abbreviates to
fgahaabaac.  This will be unambiguous, since the given function arities (i.e. #f = 3, #g = #h =
#b = 2, #a = #c = 0) will be kept unchanged throughout all examples.  In particular, the arities
#f = 3, #g = 2 and #a = 0 will be used in the running example.

Definition 2.3. $�SDWWHUQ�VHW� �LV�RYHUODSSLQJ�LI�WKHUH�LV�D�JURXQG�WHUP�WKDW�LV�DQ�LQVWDQFH�RI�DW
OHDVW�WZR�GLVWLQFW�SDWWHUQV�LQ� �
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)RU�LQVWDQFH��WKH�VHW� � �^ID ,�I D }  is an overlapping pattern set because the term faac
LV� DQ� LQVWDQFH� RI� ERWK� SDWWHUQV�� ZKHUHDV� WKH� VHW� 
�  � ^ID ,� IF }  is a non-overlapping
pattern set.  A similar notion is that of pattern prefix-overlapping:

Definition 2.4. $�SDWWHUQ� VHW� � LV�prefix-overlapping if there is a ground term with a non-
HPSW\�SUHIL[�WKDW�LV�DQ�LQVWDQFH�RI�SUHIL[HV�RI�DW�OHDVW�WZR�GLVWLQFW�SDWWHUQV�LQ� �

)RU�LQVWDQFH��WKH�VHW� � �^I DD,�I F} is a non-overlapping pattern set, but it is a prefix-
overlapping because the prefix faa of the term faaa is an instance of both prefixes I D�and
I .

When overlapping patterns are allowed in equational programming, a meta-rule is needed
to decide which rule should be matched when a conflict due to overlapping patterns arises.
The meta-rule defines a priority relationship among overlapping patterns.  Thus, given a
SDWWHUQ�VHW� �DQG�D�PHWD�UXOH��ZH�FDQ�IRUPDOLVH�WKH�QRWLRQ�RI�SDWWHUQ�PDWFKLQJ�DV�IROORZV�

Definition 2.5. A term t matches D�SDWWHUQ� i ∈ � �LI�DQG�RQO\�LI�t LV�DQ�LQVWDQFH�RI� i and t is not
DQ�LQVWDQFH�RI�DQ\�SDWWHUQ� j ∈ � �VXFK�WKDW�WKH�SULRULW\�RI� j LV�KLJKHU�WKDQ�WKDW�RI� i .

Definition 2.6. A term t1 is more general than a term t2 at a given common valid position p if
and only if t1[p] ∈  V, t2[p] ∈  F and the prefixes of t1 and t2 ending immediately before P are
the same.

Definition 2.7. The closed pattern set π � FRUUHVSRQGLQJ� WR� D� JLYHQ� SDWWHUQ� VHW� � LV� WKH� VHW
REWDLQHG�E\�DSSO\LQJ�WR� �WKH�FORVXUH�RSHUDWLRQ�GHILQHG�E\�*Uäf [9] as follows:

For any s ∈  F ∪  { `���OHW� �� s EH�WKH�VHW�RI�HOHPHQWV�RI� �VWDUWLQJ�ZLWK�s but with the first
symbol s UHPRYHG���'HILQH�  DQG� f, f ∈  F by

= ���

�� f    =  { � ���f  ∪  #f ��� �����LI� �� f  � ®
 ®                           otherwise.

The closure operation is then defined recursively by:

 π  = {
� ����������������������      if  = { } or �  ®

U
}{ ω

π
∪∈ Fs

ss               otherwise.

Here  is the empty string and #f is a repetition of #f symbols .  7KH�VHW� f includes all the
SDWWHUQV�LQ� �VWDUWLQJ�ZLWK�f, but with f removed.  In addition, while factorising a pattern set
according to a function symbol f �L�H��FRPSXWLQJ� f ), the operation above takes account of the
components starting with a variable symbol as well; the symbol � is considered as possibly
representing a subterm whose root symbol is f.  Therefore, a new component is added to the
VHW� f.  This component is obtained by replacing �by a sequence of s whose length is #f.
This sequence stands for the arguments of f.

The closure operation supplies the pattern set with some instances of the original patterns.
In effect, if one pattern is more general than another at some position p then the pattern with
� replaced by I #f LV� DGGHG�� � )RU� LQVWDQFH�� WKH� SUHIL[�RYHUODSSLQJ� SDWWHUQ� VHW� �  � ^I D ,

I D,�I J J }  FDQ�EH�FRQYHUWHG�WR�DQ�HTXLYDOHQW�FORVHG�SDWWHUQ�VHW� �XVLQJ�WKH�FORVXUH
operation computed as follows:

π = ff π  = },,{ ωωωωωωωωω ggaaf   

= },,{ ωωωωωωω ggaaf = Pfω ,
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where

P = ga PgPPa ∪∪ ωω

= },{}{},{ aggaaa ωωωωωωωω ∪∪
= {D , aa,� D,�J J ,�J D}.

7KHQ��WKH�FORVHG�SDWWHUQ�VHW�FRUUHVSRQGLQJ�WR�  is:

π  = {I DD,�I D ,�I J D,�I J J ,�I D}.

,W� LV�FOHDU�WKDW�WKH�QHZ�SDWWHUQ�VHW�DFFHSWV�WKH�VDPH� ODQJXDJH�DV�  does, since the added
patterns are all instances of the original ones.  The closure operation terminates and can be
computed incrementally (for full detailed description and formal proofs see Reference [9]).

:LWK�FORVHG�SDWWHUQ�VHWV��LI�D�SDWWHUQ� 1 LV�PRUH�JHQHUDO�WKDQ�D�SDWWHUQ� 2 at position p, then
2[p@� LV�FKHFNHG� ILUVW�� �7KLV�GRHV�QRW� H[FOXGH� D�PDWFK� IRU� 1 because the closed pattern set
GRHV�FRQWDLQ�D�SDWWHUQ�WKDW�LV� 1 ZLWK� 1[p] UHSODFHG�E\� 2[p] # 2[p].  Under this assumption, an
important property of such closed pattern sets is that they make it possible to determine
whether a target term is a redex merely by scanning that term from left-to-right without
backtracking over its symbols [9].

Symbol re-examination cannot be avoided in the case of non-closed prefix-overlapping
SDWWHUQ�VHWV�ZKDWHYHU�WKH�RUGHU�LQ�ZKLFK�WKH�SDWWHUQV�DUH�SURYLGHG���)RU�LQVWDQFH��OHW�  be the
prefix-overlapping set {IF F,� I JD D}.   Using the textual order meta-rule, the first pattern
must be matched first, if possible.  Then the term fcgaaa cannot be identified as an instance of
the second pattern without backtracking to the first occurrence of c when the last symbol a is
encountered.  However, the closure π  = { IFJD F,� IFJD D,� IFJ F,� IF F,� I JD D}  allows
matching without backtracking.  Then the term will match the second pattern.

3. MATCHING TABLE GENERATION

In this section, we describe a different approach to compute the closure of a pattern set �via
GLUHFW� FRPSLODWLRQ� UDWKHU� WKDQ� YLD� WKH� VHWV� f, as in Reference [9] (see Definition 2.7).  We
compile pattern sets into matching tables.  In general, the pattern-matching compilation
technique at the heart of this paper can be thought of as a table-driven method inspired by the
LALR method used in YACC [15,16] to generate parsers for LR-languages.  In that context,
the pattern set to be compiled is considered as the set of right sides of syntactic productions.
The left sides of these productions are non-terminals representing the types of the patterns,
and each variable symbol is a non-terminal for its type.  Since we are dealing only with
untyped systems, there is only one non-terminal.  As with YACC [15,16] the compilation
process creates a finite automaton, for which we must define the states and the state transition
function.

Definition 3.1. A matching item is a pattern which is split into a prefix and suffix by inserting
the matching dot ( · ) at some point.

In general, for the pattern �the matching item �·  means that the symbols in the prefix
�have been matched and those in  have not been checked yet.  Thus, the matching item ·

represents the initial state prior to matching the pattern , whilst the matching item ·
represents the final state after matching the whole pattern .

Definition 3.2. A set of matching items in which every item has the same prefix before the
matching dot is called a matching set.  The initial matching set contains all the matching items
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Â i�V�W�� i ∈ � ��ZKHUHDV�PDWFKLQJ�VHWV�FRQWDLQLQJ�LWHPV�RI�WKH�IRUP� i· are final matching sets.
Note that final matching sets can contain only one matching item.

$�SDWWHUQ�VHW� �LV�FRPSLOHG�LQWR�D�GHWHUPLQLVWLF�ILQLWH�PDWFKLQJ�DXWRPDWRQ���7KH�VWDWHV�RI
this matching automaton are computed using the following transition operation .  For each
symbol s ∈  F ∪  { } and matching set I, a new matching set (I, s) is defined by

(I,s) = { V· �| ·V �∈  I}  ∪  { V·I #f �| ·V �∈  I and
for some f ∈  F and term 
, ·VI 
�∈  I}

Notice that the presence of the items V· � together with the items V·I 
� in the same
matching set creates a non-deterministic situation for a pattern-matcher, since � can be
substituted with a term having f as head symbol.  The items V·I #f �are added to remove such
QRQ�GHWHUPLQLVP�DQG�DYRLG�EDFNWUDFNLQJ�� �)RU� LQVWDQFH�� OHW� � �^I D,� IF F},  and let M be
the matching set obtained after accepting the root symbol f so M = { f· D, f·F F}  ∪  { f·F D}.
The item f·F D�is added because a target term with the prefix fc could match the pattern I D
too if the last argument of f were a rather than c.  So supplying the instance IF D�would allow
the pattern-matcher to decide deterministically which option to take. Without this new item,
the pattern-matcher would need to backtrack to the first argument of f if the option offered by
I D�were taken, and a symbol c encountered as the last argument of f in the target term.
Notice that the transition operation thus described implements exactly the main step in the
closure operation due to Gräf [9], but replaces his recursive description with a straightforward
iterative construction. Therefore, the union of the final pattern sets resulting from the
automaton construction procedure coincides with the closure of the initial pattern set.

Each matching set is associated with a state in the matching automaton, namely that
accepting the common prefix (before the matching dot) in the given pattern set. The initial
state and final states correspond to the initial matching set and final matching sets,
respectively. The edges of the finite automaton are traversed according to the current input
symbol, namely s causes the transition from I to (I, s).  The matching automaton
FRUUHVSRQGLQJ� WR� �  � ^I D ,� I D,� I J J }  is given in Figure 1. Transitions
corresponding to failure are omitted.

The finite matching automaton corresponding to a given pattern set is represented using a
matching table. Matching tables are simple, compact and expressive. Also, they allow a direct
access to a given matching state (see Section 5). A matching table is an N × (L + 1) matrix of
transitions, where N is the number of non-final states in the automaton (10 in the example of
Figure 1) and L is the number of function symbols in F . The extra column of N entries is used
for variable occurrences in the patterns, all of which are denoted by . The distinction
between  and the other symbols permits a concise representation of the matching table. This
enables the use of matching tables for equational programs with an infinite alphabet.

For a matching state I and a symbol s ∈  F  ∪  { } , let (I, s) = J.  Then the matching
table entry MT[I, s] is

accept-symbolJ if J is not a final state and s ∈  F .
accept-termJ if J is not a final state and s = .
reducer if J is a final state and r is the matched rule (see the next section).
fail Otherwise, i.e. J is empty.
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·f D
·f D
·f J J

f· D
f· D
f· J J

f ÂD
f Â D
f ÂJ J
f ÂDD
f ÂJ D

f ÂDf DÂ
f DÂD

f JÂ J
f JÂ D

f J Â J
f J Â D

f J ÂJ
f J ÂD

f J JÂ f J DÂ

f J J Â

f J J Â

f DÂf DDÂ f D Â

f

g
a

a
a

g a

s0

s1

s2

s5s4s3

s7

s6

s8

s9

Figure 1.  Pattern-matching automaton for  = { I D ,�I D,�I J J }

Here the subscript J indicates the next state to enter.  Accept-symbol and accept-term mean
that the current input symbol (respectively the current input term) is matched, and the state
(I, s) is entered.  Reducer means that the rule number r has been matched and should be

applied, whereas fail means matching has failed at the given symbol s.
The rules given are used straightforwardly. In all cases, an -transition is chosen only

when the matching table entry for the specific current input symbol is fail.  So if s ∈  F  is the
current input symbol and I the current state, then action MT[I, f] is performed if it is not a fail,
and otherwise MT[I, ] is performed.  Setting an entry to reducer requires solving an
additional problem if the matched pattern has been added by the construction process.  For
original patterns the rule number to use is uniquely defined.   However, two or more original
patterns could match any added patterns.  The selection is made by applying the rule priorities
provided to associate a unique rule with each added pattern.

For instance, for the pattern set  = {1: I D , 2: I D, 3: I J J }  of Figure 1, the
added patterns I DD�and I J D�would be associated respectively with the rule numbers 1
and 2 if the textual order rule were used.
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7DEOH�,��0DWFKLQJ�WDEOH�IRU� � �^I D ,�I D,�I J J }

f a g
0 accept-symbol1 fail fail fail
1 fail " " accept-term2

2 " accept-symbol3 accept-symbol5 accept-term4

3 " reduce1 fail reduce1

4 " reduce2 " fail
5 " fail " accept-term6

6 " " " accept-term7

7 " reduce2 accept-symbol8 fail
8 " fail fail accept-term9

9 " " " reduce3

Ambiguity arises for patterns introduced that belong to the overlap of any original
SDWWHUQV�� )RU� H[DPSOH�� OHW� 3� EH� WKH� SDWWHUQ� DGGHG� EHFDXVH� SDWWHUQ� 1 is more general than
SDWWHUQ� 2 at a given position p. 5HFDOO� WKDW� 3� LV�REWDLQHG� IURP� 1 by replacing the subterm

1[p] = �E\�D�WHUP�RI�ZKLFK�WKH�VXEWHUP� 2[p] LV�DQ�LQVWDQFH��7KXV�� 3� LV�DQ� LQVWDQFH�RI� 1.
1RUPDOO\�� 3�ZLOO�IDLO�WR�RYHUODS�ZLWK� 2, DQG�VR�WKH�UXOH�IRU� 1�ZLOO�DOVR�EH�DVVRFLDWHG�ZLWK� 3.
+RZHYHU�� LI� 1� DQG� 2� RYHUODS�� 3� PD\� DOVR� EH� DQ� LQVWDQFH� RI� 2. Therefore, the template
DVVRFLDWHG�ZLWK�HLWKHU� 1�RU� 2 could be selected to rewrite the subexpression being evaluated.
The use of the given meta-rule allows for the selection of such a template. This is performed at
FRPSLOH�WLPH�E\�DVVRFLDWLQJ�WKH�SUHVFULEHG�UXOH�QXPEHU�DPRQJ�WKRVH�FRUUHVSRQGLQJ�WR� 1 and

2, WR�WKH�DGGHG�SDWWHUQ� 3.
7KH�PDWFKLQJ�WDEOH�FRUUHVSRQGLQJ�WR�WKH�SDWWHUQ�VHW� �RI�)LJXUH���LV�VKRZQ�LQ�7DEOH�,��,W

corresponds to the finite automaton of that figure. For convenience, the states/matching sets
have been numbered as before. Notice that rows representing final states do not exist in the
matching table. The decision to reduce the target expression using the matched rewriting rule
is anticipated in the state leading to the corresponding final state. This allows for the reduction
of the matching table by r rows, where the number r of final states is also the number of
patterns in the closure of the original pattern set.

4.   REWRITING MACHINE APPLICATION

In this section, we show how the matching table constructed so far can be used in rewriting.
This detail was not covered by Gräf [9] for his associated finite automaton.  We illustrate the
rewriting process using the three most popular reduction strategies, namely leftmostinnermost,
which is used for strict functional languages such as HOPE [17], and ML [18] leftmost-
outermost [12], and the adaptive strategy which is used in most lazy functional languages such
as LML [20], Haskell [21] and Miranda [19].  The last strategy is sometimes called ‘top-to-
bottom left-to-right lazy strategy’ [4], and is defined after the next example.

Consider the prioritised equational program, which has the following set of rewrite rules
with the subject term t = f(c, f(a, a, a), a):

f(x, a, y) → y (r1)
f(x, y, a) → a (r2)

c → c (r3)

Closure would add the pattern f(x, a, a) which overlaps both left sides.  Then assuming a
textual order meta-rule, f(x, a, a) would be associated with r1.  The leftmost-outermost
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strategy would reduce t using r2, and a would be the normal form obtained whilst the leftmost-
innermost (or applicative) strategy would result in an infinite computation, since it would
cause the repeated reduction of c.  Arguably, the reduction sequence that best captures the
semantics [19] of the prioritised system above is as follows. Contracted redexes are
underlined:

f(c, f(a, a, a), a)   →     f(c, a, a)   →    a

This strategy, which we will call the adaptive strategy, selects the leftmost-outermost redex
after reducing the arguments needed to normal form.  That is, if during pattern-matching the
root symbol of a subterm fails to match a function symbol f in the pattern, then the subterm is
evaluated before re-attempting the match.  If the root symbol of the normal form of the
subterm is different from f, the matching of that pattern fails and the next pattern is tried.

In some cases, the adaptive strategy terminates when the leftmost-outermost strategy does
not.  For instance, consider the rewriting system {f(x, a, y) → a, g(x, y) → a, c → c}.   The
evaluation of the term f(c, g(a, a), c) using the leftmost-outermost strategy fails to terminate,
since it would try to rewrite the subterm c that represents the outermost-leftmost redex.
However, the adaptive strategy would try to match the pattern of the first rule by rewriting the
second argument of f to a.  It does this, and hence succeeds in rewriting f(c, g(a, a), c) to a.
The adaptive strategy requires equational programs to follow the constructor discipline [26].
This can be formalised as follows:

Definition 4.1. A function symbol is a constructor for the pattern set �if it does not appear at
the root of any pattern in .

Definition 4.2. Let R be a term rewriting system, and suppose every symbol position in a
pattern of R, other than the first, is a constructor symbol for the set of patterns of R.  Then R
is called a constructor system.

For instance, consider the term rewriting system (E) that follows.  The initial symbols f, g
and h are not constructors, whereas the symbols a and b are.  Therefore, (E) is a constructor
system.

1.  f(x, a, y)     = a 4.  g(x, a)  = x
2.  f(x, y, a)     = a 5.  h(b(x, a), a) = a
3.  f(x, b(s, y), b(t, z)) = h(b(y, a), g(x, a)) 6.  h(x, a)  = g(a, x)

The constructor discipline entails almost no loss of generality, since the majority of
equational programs observes this discipline [12] and the majority of those that do not, can be
syntactically transformed so as to follow it [26,27].  For the remainder of this paper, we
assume, in common with most researchers in the area, that the term rewriting system is a
constructor system.

The pattern-matching process is incorporated into a simple abstract rewriting machine
represented by the 5-tuple RM = 〈 I, P, MT, R, T〉 , which will be used to rewrite the term T to
its normal form.  I is the current matching state which corresponds to a row index in the
matching table MT.  R represents the root position of the subterm in T currently being
matched.  P is the current position the matching process has reached in the subterm T[R].

Now, let 〈 I, P, MT, R, T〉  be the current state of RM.  Then its next state is determined
according to the reduction strategy used, MT[I, T[R.P]]  and MT[I, ].  Possible state
transition rules for the abstract machine using the leftmost-innermost and leftmost-outermost
strategies are described in Figures 2 and 3 respectively.  The transition rule of Figure 2 uses
the adaptive strategy.  In each of these three figures, MatchingAction represents the matching

r2 r1
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action to be performed.  This is either MT[I, T[R.P]]  or fail, depending on whether or not the
symbol T[R.P] is a function symbol that actually appears in a pattern.

〈 I, P, MT, R, T〉   →
Case MatchingAction of

accept-symbolJ: If  U = { i | 1 ��i � #T[R.P], ¬IsNormal(P.i) } � ® then

For i ∈  U do Normalise(T/R.P.i)

else 〈J, Next(P), MT, R, t〉 ;
reducer : 〈��� ��07�� ��ApplyRuler(T, R)〉 ;
fail: Case MT[I, ] of

accept-termJ: 〈J, NextArg(P), MT, R, T〉 ;
reducer: 〈��� ��07�� ��ApplyRuler(T, R)〉 ;
fail: If  Next(R) Defined then 〈��� ��07��Next(R), T〉

else MarkAsNormal(T);

End

End

Where MatchingAction = If  T[R.P] ∈  F  then MT[I, T[R.P]] else fail

Figure 2.  State transition rule for innermost-leftmost strategy

All of these strategies require each subterm of T to be marked initially as not normal (i.e.
not known to be in normal form).  The normal form of a given term T is obtained by applying
the appropriate state transition rule repeatedly until the root of T is marked as normal.  Such
an iteration sequence will be called Normalise(T).  It starts in the initial state 〈��� ��MT, ��T〉 ,
with all the nodes in the graph of T marked as not normal.

〈 I, P, MT, R, T〉   →
Case MatchingAction of

accept-symbolJ: 〈J, Next(P), MT, R, T〉 ;
reducer: 〈��� ��07��� ��ApplyRuler(T, R)〉 ;
fail: Case MT[I, ] of

accept-termJ: 〈J, NextArg(P), MT, R, T〉 ;
reducer: 〈��� ��07�� ��ApplyRuler(T, R)〉 ;
fail: If  Next(R) Defined then 〈��� ��07��Next(R), T〉

else MarkAsNormal(T);

End

End

Where MatchingAction = If  T[R.P] ∈  F  then MT[I, T[R.P]] else fail

Figure 3.  State transition rule for leftmost-outermost strategy

The function Next(P) returns the position of the symbol after that at position P in the term
T whereas NextArg(P) returns the position of the next argument (i.e. the next sibling in that
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graph).  Here NextArg will travel back up towards the root of T to find the lowest ancestor of
P which has a branch to the right of P .

For instance, let T = fagaahaa.  Then applying the functions Next WR�SRVLWLRQV� ��������
and 2.2 returns the positions 1, 2.1, 2.2 and 3, respectively.  For both of positions 2 and 2.2,
function NextArg returns position 3.  The function Next is undefined for the position of the last
symbol in the term, whilst NextArg is undefined for all positions between the root and the
right-most leaf of the parse tree of T.  Regarding the example term T above, Next is undefined
for position 3.2 while NextArg is undefined for positions 3.2 and 3.  Where NextArg is used in
the transition rules, it is always defined, but when Next(R) becomes undefined the machine
halts.

In the transition rule for the adaptive strategy, when a rule is applied, R remains the root of
the subterm in which the next redex is searched for, whereas for the other two strategies, the
new root R EHFRPHV� �� �Apply-ruler(T, R) instantiates the template of the matched rule r,
replaces the variable nodes by their actual graph-values, and finally, rewrites the subterm
T / R using the newly constructed template instance.  Given a position P, the Boolean function
IsNormal checks whether the graph rooted at position P is known to be in normal form,
whereas the function MarkAsNormal(T) marks the root of the term T when this term is known
WR�EH�LQ�QRUPDO�IRUP���(YHQWXDOO\��WKH�PDFKLQH�KDOWV�DW����� ��MT, L, T), where T is marked as
normal and L is the position of the last symbol in the term T.

The machine state transition rules of Figures 2 and 3 are used in the obvious way.  For the
adaptive strategy, whenever a function symbol f labels the current matching position P and the
entry MT[I, f] is fail, two alternatives are possible according to whether there is another
function symbol g for which MT[I, g] is not fail.  When such a symbol exists, the subterm
rooted at position P is normalised then, the transition rule tried again (in the hope that g might
be matched).  Otherwise, the entry MT [I,� ] is tried.

For instance, consider a rewriting system for which the matching table is that of Table I.
Suppose rule 1 is fxay → a and the subject term is T = fcfcaac.  Using the transition rule of
Figure 2 first causes the normalisation of argument fcaa of the root symbol f, since the entry
MT[0, f] is accept-symbol1 and not all of the arguments of the first f in T are in normal form.
The subterm fcaa readily matches the pattern of rule 1 so T reduces to fcac. Then state 1 is
entered.  Once the prefix fca is accepted, I and P become 3 and 3, respectively.  Subsequently,
with c at T[3], MT[3, ] indicates that the pattern of rule 1 is matched, so T reduces to a.  The
same outcome arises from the use of the transition rule of Figure 3.  There the prefix fc is
accepted and state 2 entered; then the subterm fcaa is skipped because MT[2, f] is fail and so
MT[2,� ] is performed.  Thus state 4 is entered, and so matching at the root fails.
Subsequently, the strategy fails to find a redex at position 1, but succeeds in identifying the
redex fcaa at position 2.  This readily matches the pattern of rule 1, and is rewritten to a, so T
reduces to fcac.  Once again, the strategy succeeds in matching the pattern of rule 1 at
SRVLWLRQ� �VR� WKDW�T reduces to a.  A similar result obtains from using the transition rule of
Figure 4.  This accepts the prefix fc; enters state 2 with P = 2; since MT[2, f] is fail and T[P] is
not in normal form, the normalisation of subterm fcaa takes place so that T reduces to fcac;
the match of the symbol at position 2 is re-attempted; the symbol T[2] = a is accepted and
state 3 entered; with the normal form c at position 3, MT[3,� ] indicates that the pattern of
rule 1 is matched.  The adaptive strategy then applies that rule, and so T reduces to a.

When a pattern is matched the pattern-matching process needs to provide the actual
substitutions for s in that pattern.  This is to enable template instantiation so that redexes can
be reduced.  Gräf’s technique [9] does not mention such a detail.  Since variable occurrences
in patterns are known, their positions can be pre-computed and stored at compile-time. Once a
rule has been matched and the value of a variable is needed, the subterm corresponding to the
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position of that variable can be retrieved from the target expression.  This is then provided to
the template instantiating process which uses it to replace occurrences of the variable.

〈 I, P, MT, R, T〉   →
Case MatchingAction of

accept-symbolJ: 〈J, Next(P), MT, R, T〉  ;
reducer : 〈��� ��07��5��ApplyRuler(T, R)〉 ;
fail: If  T[R.P]∈  F   and ∃ f∈ F (MT[I, f]�IDLO��and ¬IsNormal(P) then

Normalise(T/R.P)

else Case MT[I, ] of

accept-termJ: 〈J, NextArg(P), MT, R, T〉 ;
reducer: 〈��� ��07��5��ApplyRuler(T, R)〉 ;
fail: If  Next(R) Defined then 〈��� ��07��Next(R), T〉

else MarkAsNormal(T);

End

End

Where MatchingAction = If  T[R.P] ∈  F  then MT[I, T[R.P]] else fail

Figure 4.  Machine state transition rule for the adaptive strategy

However, as backtracking has been eliminated, the cost of dynamically collecting pointers
to variable instances during pattern-matching may be cheaper.  Let 〈 I, P,MT, R, T〉  be the
current state of RM.  It is clear that when the matching action to perform is MT[I,� ] (i.e.
either accept-term or reduce), the subterm T / R.P is the actual value of the variable [P] if
matching of pattern  succeeds.  This collects substitutions for the matched pattern, not for the
original pattern in the rule which is to be applied.   For instance, consider the pattern set of
Figure 1 and let faaa be the subject term.  Because faaa would match the non-original pattern
I DD, only one variable substitution would be available when matching concludes. However,
faaa has to be rewritten using rule 1 whose pattern I D �requires two substitutions, not one.
In this case, the missing substitution is always the instance a at position 3 in the matched
pattern.

To be able to collect the missing substitutions when non-original patterns are matched, we
need to consider some cases for which the matching action to perform is MT[I, f] for f ∈  F .
When the matching action to perform is MT[I, f], a substitution needs to be collected only if
MT[I,� ] is distinct from fail.  Then in the example above, two additional variable instances
would be collected when the second and last symbols a in faaa are accepted in states 2 and 3,
respectively.  This is because the actions to be performed are MT[2, a] = accept-symbol3 and
MT[3, a] = reduce1 with MT[2,� ] = accept-term4 and MT[3,� ] = reduce1, respectively, but
not fail.  No substitution would be collected when the symbol f is accepted in state 0, because
MT[0,� ] = fail.  The substitution for the second occurrence of a is collected because faaa is
an instance of the pattern I D� (rule 2) too.  Then the required substitutions would be
available if rule 2 were to be applied (in case rule 2 has higher priority than rule 1).

In some cases, even if the target term can match only one original pattern, there may be
more variable substitutions than are required.  For instance, when the non-original pattern
I J D� in Figure 1 is matched, four variable instances would be collected, namely those
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rooted at positions 1, 2, 2.1 and 2.2 in the target term: three correspond to the occurrences of
�and one to the occurrence of g.  No substitutions are collected for the occurrences of f and

a in states 0 and 4, respectively, because MT[0,� ] and MT[4,� ] are fail.  Since I J D� is
associated with rule 2 whose pattern is I D, only the variable instances rooted at positions 1
and 2 would be used, and the rest ignored.

5. ANALYSIS OF RIGHT-HAND SIDES

Exploiting the idea of partial evaluation in the compilation of equational programs, we can
feed the templates into a partial evaluator for further processing.  The result may enable the
skipping of some matching steps every time a rewrite rule is performed.  In the best case, the
construction of some terms will be avoided.  In this section, we describe how to take
advantage of known information in the templates by partially evaluating them at compile-time.

In general, partial evaluation consists of transforming a given program Prog (perhaps
using some partial input) into another program Prog’ which produces the same result.  The
main transformations [22] are known as constant folding, function specialisation and call
unfolding.  Constant folding simplifies expressions by replacing known subexpressions by their
values, while function specialisation specialises function definitions to take advantage of some
information concerning some of its arguments.  Finally, call unfolding unfolds function calls to
expose it to some improvements due to a particular calling context.

Partial evaluation for equational programming was first introduced by Strandh [3] and
continued by Durand [23,24], Sherman [25] and Miniussi [28].  In most of these works, the
equational program is compiled into intermediate code, then using the information known
about the equations’ right sides, this code is specialised by means of the transformations
above.  The specialised code avoids the construction of some nodes and the checking of a
known part of the templates.  However, rather than applying the transformations to the code
generated for the equational program, we instead apply them instead directly to the rewrite
rules of the program.

The right-hand side analysis at compile-time exploits the first two transformations, namely
constant folding and function specialisation, (i) to transform the templates themselves so the
construction of some terms will be avoided at run-time, and (ii) to specialise the pattern--
matcher so that it avoids checking the known part of the template.  The analysis consists of
matching and rewriting the templates as far as they allow it using the matching automaton.
This process halts when the template considered is not defined enough to continue matching
or rewriting.  Then the current matching state K and position Q are returned with the current
template.  This new template decorated with K and Q is used to replace the appropriate
rewrite rule right side in the original equation system.  K and Q are used to specialise the
pattern-matcher so that when the rule is applied at run-time, pattern-matching will commence
in state K at position Q.

For instance, consider the template hbyagxa of rule 3 in the system (E) of Section 4.
While trying to match the whole template to the pattern of rule 5, the subterm gxa is
encountered.  The adaptive rewrite strategy requires this to be rewritten if possible.  When it is
analysed, rule 4 can be applied, and so gxa is rewritten to x.  The strategy now requires the
resulting term hbyax to be rewritten, if possible.  However, pattern-matching halts at the last
symbol because it is not known whether the value of x will match a as in the pattern of rule 5,
or not.  So hbya·x is returned as the new template.  The analysis recognises the first four
symbols (they match those of the pattern of rule 5), and so pattern-matching can safely
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commence at the fifth symbol at run-time.  Now, let the subject term be fabaabaa.  In the
original equation system (E), the evaluation would proceed by

fabaabaa   →     hbaagaa   →    hbaaa   →    a

where redexes are underlined.  However, when the template of rule 3 is replaced by hbya·x to
give a rule 3’  the evaluation would proceed by

fabaabaa   →    hbaa·a   →    a

thereby skipping one rewriting step and some pattern-matching.

5.1.  Template pattern-matching

Pattern-matching of templates or their subterms differs from that earlier on because we
may now have variable symbols in the subject term.  Functions are treated in the same way as
before.  However, when a variable is encountered at position P, there are three possible
courses of action.  First, suppose that there is only an -transition from the current matching
state in the matching automaton.  (So every pattern in the current matching set has a variable
symbol at P, and the matching table contains fail under each function symbol.)  Then, the
variable in the pattern can be instantiated to the run-time value of the variable in the subject
term.  So pattern-matching will succeed at run-time, and analysis can continue as determined
by the matching table entry.  Secondly, suppose every transition from the current matching
state is either fail or is identical to the entry under �in the matching table.  Again at run-time,
the non-fail action will be performed anyway (whether via a function or � symbol entry).
Thus, matching will again succeed at P, and so the analysis may proceed as before.  Finally,
and otherwise, for some function symbol f there is a (non-fail) f-transition from the current
matching state that is different from the -transition.  In this case, the analysis must halt and
return P paired with the current state because at run-time, the template variable may either
match f or default to , so that the next state is not determined.

The order of analysing the right sides depends upon the choice of reduction strategy.
Clearly, after applying a given rule the whole template or one of its subterms, or even a
superterm of the template, may be the next candidate for rewriting.  The analysis must use this
strategy to determine the next term to consider.  Therefore, a good choice of the reduction
strategy will enable more to be gained from template knowledge, more compile-time
evaluation to be done, and hence lead to more efficient programs.  In particular, this is the
case for the adaptive strategy of Section 4.  Whenever a term is rewritten, a further attempt
can be made to rewrite the result: a template is always the next candidate term to be rewritten,
and the right side analysis can therefore consider at least this term.

So, we will present the analysis process using that adaptive strategy on the example above,
and assume a constructor discipline as before.  In general, the analysis proceeds by inspecting
in pre-order the nodes of the template graph starting from its root, i.e. taking the symbols in
left-to-right order.  The presence of variable symbols in the subject term means that the
analysis transition rule (see Figure 5) is a version of that of Figure 3 which is modified in the
way described above.  A further modification is necessary because the run-time subject term is
not known, and the strategy applies differently to subterms, which the template may represent.

3 4 5

3’ 5
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〈,��3��07��5�� 〉   →
Case MatchingAction of

accept-symbolJ: 〈J, Next(P), 07��5�� 〉  ;
accept-termJ: If ∀ f∈ F � (MT[I, f] = fail) then 〈J, NextArg(P), 07��5�� 〉

else MarkAsHeadNormal� ��

reducer : If � >5�3@∈  F   or ∀ f∈ F  (MT[I, f] = fail or reduce) then

〈��� ��07��5��ApplyRuler� � R)〉 ;
else  MarkAsHeadNormal� ��

fail:    If  ∃ f∈ F �(MT[I, f] ��IDLO��and >5�3@∈  F  and ¬IsHeadNormal(P) then

HeadNormalise� �5�3�
else Case MT[I, ] of

accept-termJ: 〈J, NextArg(P), 07��5�� 〉 ;
reducer: 〈��� ��07��5��ApplyRuler� � R)〉 ;
fail: MarkAsHeadNormal� ��

End

End

Where MatchingAction = If � >5�3@�∈  F  then�07>,�� >5�3@@�else fail

Figure 5.  Machine state transition rule for template analysis

In general, there are three possible outcomes at each pattern-matching step: failure,
halting and success.  The process halts when run-time knowledge of the value of a variable is
required, or when the run-time context of the template is required before the strategy can
determine the next candidate term for rewriting.  Success leads to a rewrite and the strategy
seeks the next redex, bearing in mind that the new template may not be the whole of the
subject term being evaluated.  If analysis of the whole template produces failure, then no
rewrite of the current term is possible, and another redex is sought, as in the case of success.
For the strategy here, once the current template as a whole returns fail, the process does not
try to analyse the subterms.  This is because it is not known whether the whole template, one
of its subterms or another subterm of the subject term, may become the next candidate to
rewrite.  Thus, until some variables are instantiated, the template obtained by the analysis is
root-redex free, and is therefore said to be in head normal form [3,7].

5.2. Transition rules for template analysis

The analysis transition rule for the adaptive strategy is given in Figure 5.  The head normal
form of a template �is obtained by repeating that transition rule, starting from the initial state
���� ��MT, �� ) until it marks �as head normal.  Initially, all the nodes in the graph of ,
except those labelled with constructors, are marked as not head normal (i.e. not known to be
in head normal form).  Subterms with a constructor root are already in head normal form, and
so are marked as such.  As before, MatchingAction is either MT[I,� [R.P]]  or fail, depending
on whether [R.P] is a symbol that appears in the patterns or not.  Notice that [R.P] may be
the symbol .  Therefore, we must follow MT[I,� ], only if there exists no function symbol f
of F  such that MT[I, f] ��fail.
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Table II.  Decorated matching table for the equation set (E)

f g h a b
0 accept-symbol1 accept-symbol2 accept-symbol3 fail fail fail
1 fail fail fail " " accept-term4

2 " " " " " accept-term5

3 " " " " accept-symbol7 accept-term6

4 " " " accept-symbol10 accept-symbol8 accept-term9

5 " " " reduce4,〈�� 〉 fail fail
6 " " " reduce6,〈5,2〉 " "
7 " " " fail " accept-term1

8 " " " " " accept-term2

9 " " " reduce2,〈�� 〉 " fail
10 " " " reduce1,〈�� 〉 " reduce1,〈�� 〉

11 " " " accept-symbol14 " accept-term13

12 " " " fail " accept-term15

13 " " " reduce6,〈5,2〉 " fail
14 " " " reduce5,〈�� 〉 " "
15 " " " reduce2,〈�� 〉 accept-symbol16 accept-term16

16 " " " fail fail accept-term17

17 " " " " " reduce3’,〈14,2〉

Eventually, after repeatedly applying the transition of Figure 5, the machine halts in
〈 I, P, MT, R,� 〉  with  marked as head normal.  Then the symbol [P] or the context of  is not
defined enough to progress in the matching of .  In both cases, the decoration returned is
merely the value of the pair 〈 I, P〉  at this final stage.  The repetition of the transition rule of
Figure 5 until it halts is called HeadNormalise( ), and it may need to call itself recursively for
subterms.  The Boolean function IsHeadNormal(P) checks whether the subterm rooted at
position P is known to be in head normal form, whereas the function MarkAsHeadNormal( )
marks the root of the template  when this template is known to be in head normal form.

Overall, analysis of all right sides of the equation system (E) yields a revised template list
(a, a,� KE D ,� , a,� JD ), in which the third has changed, and a corresponding list of
decorations (〈��� 〉 , 〈��� 〉 , 〈14, 2〉 , 〈��� 〉 , 〈��� 〉 , 〈5, 2〉 ).  The new matching table is given in
Table II, complete with decorations.  Four of the decorations are 〈��� 〉 , which indicate that
no progress at all was made in matching the templates.

The analysis of the template KE DJ D�of rule 3 is described in Table III.  This is done
using the transition rule of Figure 5 and the original matching table which is the same as the
undecorated version of Table II in this instance.

5.3.  New machine state transition rule

Using the decorated matching table, together with the new template set, it is now possible
to skip all the known nodes in a template and avoid all those reductions that have been done at
compile-time while analysing the templates.  Whenever a rule r is used to rewrite a subterm
the new template is used and the corresponding decoration 〈K, Q〉  from MT is used to set the
current matching state and matching position.  Figure 6 depicts the transition rule for the
machine augmented with these decorations.
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Table III. Analysis of the template KE DJ D

Current State I Current Position P Current term Matching Action
0 ·KE DJ D accept-symbol3
3 1 h·E DJ D accept-symbol7
7 1.1 hb· DJ D accept-term11

11 1.2 KE ·DJ D accept-symbol14

14 2 KE D·J D fail − HeadNormalise(J D)
0 ·J D accept-symbol2
2 1 g· D accept-term5

5 2 J ·a reduce4

0 · fail − HeadNormalise( )
14 2 KE D· fail − MarkAsHeadNormal(KE D )
14 2 KE D· return 〈14,2〉  and KE D·

〈 I, P, MT, R, T〉   →
Case MatchingAction of

accept-symbolJ: 〈J, Next(P), MT, R, T〉  ;
reduce�〈K, Q〉  : 〈K, Q, MT, R, ApplyRuler(T, R)〉 ;
fail : If  T[R.P]∈  F   and ∃ f∈ F  (MT[I, f]�IDLO��and ¬IsNormal(P) then

Normalise(T/R.P)

else Case MT[I, ] of

accept-termJ : 〈J, NextArg(P), MT, R, T〉 ;
reduce�〈K, Q〉  : 〈K, Q, MT, R, ApplyRuler(T, R)〉 ;
fail: If  Next(R) Defined then 〈��� ��07��Next(R), T〉

else MarkAsNormal(T);

End

End

Where MatchingAction = If  T[R.P] ∈  F  then MT[I, T[R.P]] else fail

Figure 6.  New machine state transition rule

6.  EVALUATION

An experimental implementation of the term rewriting machine described in Sections 4 and 5
was built to evaluate the automaton-driven pattern-matcher, which takes advantage of known
right side information.  The number of matching actions and rewrites, as well as the evaluation
times, has been recorded to show the effect on the evaluation process.  Two different toy
equational programs, Prog1 and Prog2, have been written to illustrate the effect of different
degrees of overlap between the templates and the patterns.  We also report the evaluation time
for some common problems which were also used as benchmarks to evaluate HIPER [14].

In both programs Prog1 and Prog2, the function arities are as in the equation system (E).
Program Prog1 (with the equation set below) gains little advantage from the right-hand side
analysis.  It results in few decorations different from the default decoration.  The decoration
list is (〈��� 〉 , 〈5, 2〉 , 〈13, 2〉 , 〈7, 2〉 , 〈15, 3〉 , 〈��� 〉 , 〈��� 〉 , 〈��� 〉 ) and the templates remain
unchanged (they are already in head normal form):
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1.  f(x, a, y) = c 5.  g(x, y)  = f (x, b(x, y), h(y, x))
2.  f(x, y, a) = h(a, x) 6.  h(b(x, a), c) = b(a, x)
3.  f(x, b(s, y), b(t, z)) = h(b(y, a), z) 7.  h(b(x, a), y) = c
4.  g(x, c) = f (b(a, x), x, b(a, x)) 8.  h(x, a)  = b(a, x)

Table IV. Number of rewrites, accept-symbols and accept-term-operations

_______Rewrites_______Accept-symbol operations Accept-term operations
Without

decorations
With

decorations
Without

decorations
With

decorations
Without

decorations
With

decorations
Prog1 60 60 137 67 153 85
Prog2 42 18 132 24 166 36

However, for program Prog2 (with the equation set below), more decorations are different
from the default decoration.  The list is (〈��� 〉 , 〈15, 3〉 , 〈5, 2〉 , 〈��� 〉 , 〈15, 3〉 , 〈��� 〉 , 〈10, 3〉 ,
〈6, 2〉 ), and some templates are rewritten.  Therefore, Prog2 should gain more from the
analysis:

1. f(x, a, y) = c 5.  g(x, y)  = f (x, b(x, y), g(y, c))
2. f(x, y, a) = h(a, a) 6.  h(b(x, a), c) = g(a, c)
3. f(x, b(s, y), b(t, z)) = h(b(y, a), z) 7.  h(b(x, a), y) = f (c, g(x, a), y)
4. g(x, c) = f (b(a, x), a, b(a, x)) 8.  h(x, a)  = g(a, x)

After the analysis of right side rewrites and matches, the rewrite rules for Prog2 become:

1.  fxay = ·c 5’.  gxy = fxbxy·c
2’.  fxya = fabaa·c 6’.  hbxac = ·c
3’.  fxbsybtz = hfybyac·z 7’.  hbxay = fcfxbxac·y
4’.  gxc = ·c 8.  hxa = ga·x

The rule number r is replaced with r’ if the template was rewritten in the analysis and the
matching dot indicates the position where matching can safely begin when the template
instance is matched at run-time.

The numbers of rewrites provided in Table IV clearly show that the use of the decorating
information did indeed improve the evaluation time, and the gain depends upon how much of
the templates are successfully pattern-matched.  Moreover, in our rewriting machine there was
virtually no run-time overhead caused by using the decorations.

The terms evaluated are rather large (130 symbols for Prog1 and 513 for Prog2), and used
a combination of the rewrite rules provided.  It is of little interest to provide them here.  Table
IV provides the numbers of rewrites, accept-symbol and accept-term operations performed for
Prog1 and Prog2 when the result of the analysis was considered/neglected.

The evaluation times obtained for both programs in those two cases are given in Table V,
along with the evaluation times under the OBJ3 system [29].  The timings were taken on a 50
MHz microSPARC I.  Notice that under OBJ3, the same (adaptive) strategy has been used to
obtain those figures, and the numbers of rewrites performed was identical to those obtained
when the decorations were not considered.  Of course, the OBJ3 times include type-checking,
etc., which is not the case for our implementation, and so are greater.  These timings clearly
show that for some equational programs, partial evaluation can provide significant run-time
efficiency gains.
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Table V.  Evaluation times

_Evaluation time (sec.)_ OBJ3
Without

decorations
With

decorations
time
(sec.)

Prog1 0.481 0.421 0.562
Prog2 0.337 0.149 0.399

Table VI.  Evaluation times for miscellaneous benchmarks

_Evaluation time (sec.)_ HIPER
Without

decorations
With

decorations
time
(sec.)

Kbl 0.088 0.079 0.067
Comm 0.130 0.079 0.10
Ring 2.139 2.060 2.83

Groupl 2.487 1.880 2.00

Table VI shows the performance of our machine together with that of HIPER [14] on
some common problems.  These problems were first used by Christian [14] to evaluate his
system HIPER which uses flatterms to perform pattern-matching. The Kbl is the ordinary
three-axiom group completion problem.  The Comm is the commutator theorem for groups.
The Ring problem is to show that if x2 = x in a ring, then the ring is commutative.  Finally, the
Groupl problem derives a complete set of reductions for Highman’s single-law axiomatization
of groups using division.  Times under HIPER are for Sun 4, while times for our
implementation are for MicroSPARC I.

7.  CONCLUSION

In the first part of this paper, we described a practical method allowing for the compilation of
a set of patterns to an equivalent deterministic automaton which does not need any
backtracking to pattern-match terms.  In contrast with the method described by Gräf [9], our
method presented a simple iterative algorithm for closure, and can handle prioritised
overlapping patterns.  Patterns are compiled into matching tables which are simple, compact
and expressive.  Where necessary, the textual order meta-rule was used to resolve conflict due
to overlapping patterns.  However, we explained how any other meta-rule could easily be
implemented.

Unlike Gräf [9], we explain how the pattern-matching method is used in the context of a
reduction strategy.  In fact, we showed that with minor changes to the abstract machine
transition rule, any strategy can be accommodated.  We outlined the three most popular
rewriting strategies, namely the leftmost-innermost, the leftmost-outermost and the adaptive
strategy, the last of which respects the semantics of prioritised equation systems.  We
described the compile-time analysis of rule right-hand sides that could speed-up the evaluation
process, although the advantage gained is heavily dependent upon the choice of evaluation
strategy.  An important consequence of this compile-time analysis is, that the redex graph may
not need to be checked completely each time a pattern-match operation is attempted.
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Moreover, we explained how the construction of some terms could be avoided using new
templates generated by the analysis procedure.

Finally, in Section 6, results from an implementation have been given.  These results show
a substantial improvement in some evaluation times for the version that includes right-hand
side analysis relative to that which does not.
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