
Fast Scalar Multiplication
for ECC over GF(p) using

Division Chains

WISA 2010 Colin Walter (RHUL) 1/16

Division Chains

Colin D. WalterColin D. Walter

Royal Holloway, UK
Colin.Walter@rhul.ac.uk

Supported by European Commission grant ICT-2007-216676 ECRYPT II

Outline

• Motivation & History

• Standard Exponentiation Algorithms

• OP-Addition Chains

• Division Chains

WISA 2010 Colin Walter (RHUL) 2/16

• Division Chains

• Base/Digit Selection

• Implementation

• Examples

• Conclusion

Motivation

• Faster Exponentiation

• Better understanding of recoding choices

• More widely applicable methods

WISA 2010 Colin Walter (RHUL) 3/16

• Pairings with small characteristic, e.g. 3

– The Frobenius AM means the usual weighting of
squares & multiplies is inappropriate

History

• Division Chains / Double Base Repn – Arith 13 (1997)

– Resource constrained environments:

– Division chains save execution space (CDW)

– DBNS saves storage space (Dimitrov)

• Composite ECC operations dP+Q (Montgomery et al)

WISA 2010 Colin Walter (RHUL) 4/16

• Composite ECC operations dP+Q (Montgomery et al)

– Reduced field operation count from shared values

• Gebotys & Longa (PKC 2009)

– Fixed algorithm for using 2P+Q, 3P and 5P.

Standard Methods

For resource-constrained environment:

• Binary Square and Multiply

~3/2 log2n ×ve operations for exponent n.

• Sliding Window

WISA 2010 Colin Walter (RHUL) 5/16

~4/3 log2n ×ve operations for 2-bit window, digits ±1.

• NAF (non-adjacent form)

Same as for 2-bit sliding window.

• Division chains (case of no negative digits)

~5/4 log2n with expensive pre-processing of exponent.

~7/5 log2n without effort

OP-Addition Chains

• Wider range of operations than just adding.

Set OP of binary operators (λ,µ), representing λP+µQ.

An OP OP OP OP -addition chain is a sequence of quadruples

(a , b , k , p) where

WISA 2010 Colin Walter (RHUL) 6/16

(ai, bi, ki, pi) where

pi = (λλλλi,µµµµi) ∈∈∈∈ OP OP OP OP and ki = λλλλiai + µµµµibi

ai = ks , bi = kt for some s, t < i

(a0,b0,k0,p0) = (1,0,1,(1,0))

The standard addition chain has ai+bi = ki and starts (1,0,1)

Division Chains

• Location aware chains – two locations.

Restricted to previous value and initial (table) value:

(ki–1, 1, ki, pi) where

pi = (λi,µi) ∈ OP and ki = λiki–1 + µi

WISA 2010 Colin Walter (RHUL) 7/16

i i i OP i i i–1 i

These are generated in reverse order:

From k = kn, choose pi = (λi,µi) where ki ≡ µi mod λi and

calculate ki–1 = (ki – µi) / λi .

• Hence the name “division” chain.

• If all λi = r are the same, this is the change a base

algorithm and µi are the digits of k base r.

Change of Basis

• The rule ki–1 = (ki – µi)/λi produces

k = (((µ1λ2 + µ2)λ3 +…+ µn –2)λn –1 + µn –1)λn + µn

• Rewrite this using bases ri and digits di :

k = (((dn –1rn –2 + dn –2)rn –3 +…+ d2)r1 + d1)r0 + d0

WISA 2010 Colin Walter (RHUL) 8/16

k = (((dn –1rn –2 + dn –2)rn –3 +…+ d2)r1 + d1)r0 + d0

• This recoding gives a left-to-right algorithm with table

values md and iterative step

m ← mri × mdi

• When possible choose di = 0 to save a multiplication.

Example

23510 = (((((1)3 + 0)2 + 1)5 + 4)2 + 0)3 + 1

• Pair (3,1) (235 – 1)/3= 78

• Pair (2,0) (78 – 0)/2 = 39

• Pair (5,4) (39 – 4)/5 = 7

WISA 2010 Colin Walter (RHUL) 9/16

• Pair (2,1) (7 – 1)/2 = 3

• Pair (3,0) (3 – 0)/3 = 1

• Pair (2,1) (1 – 1)/2 = 0

There are usually several alternatives at each point.

• Set of possible bases is usually B = {2,3} or B = {2,3,5}.

Choosing the Chain

• Assign a cost cd,r to each operation m ← mr × md .
– e.g. clock cycles if implementation is known,

– else native word operations,

– or ... field multns when in ECC, perhaps.

• Simplest cost is minmum length of addition chain for r,

plus 1 if d ≠ 0 (i.e. the count of ×ve ops.)

WISA 2010 Colin Walter (RHUL) 10/16

plus 1 if d ≠ 0 (i.e. the count of ×ve ops.)

• Each digit/base choice affects remaining digits; the effect

on cost diminishes with distance from the choice.

• Build search tree of next λ digits, say, and find cost,

including average cost c for remainder of k: for each digit,

cd,r – c log r

• Pick first digit of cheapest choice, and repeat for rest of k.

Digit Choice (1)

• Let πB = lcm {r ∈ B} for B = set of possible bases.

• If k ≡ k' mod πB
λ then k, k' generate the same costs

for each of next λ base/digit choices.

• So next digit is determined by k mod πB
λ & cost function c

λ π

WISA 2010 Colin Walter (RHUL) 11/16

• Ideally maximize λ. In practice consider k mod π
for one of the largest practical factors π of πB

λ.

– If r = 2, say, is particularly cheap, preferentially increase the

power of 2 in π so choice of π reflects greater likelihood of 2.

• For each set of λ choices (r1,d1),...,(rλ,dλ) and ρ = r1r2...rλ ,

(...((k – r1)/d1 – r2)/d2 ...– rλ)/dλ mod π/ρ

still contains some infon which should be included in cost.

Digit Choice (2)

• For cheapest (r1,d1),...,(rλ,dλ) for k mod π,

choose (r1,d1) as the next digit/base pair for k.

This gives a recoding table mod π.

• The recoding is a Markov process. The states are residues

mod π. So asymptotic cost per key bit can be calculated.

WISA 2010 Colin Walter (RHUL) 12/16

(Monte Carlo simulation.)

• During recoding, the residues ki mod π are not distributed

uniformly for random keys k. So costs for digit choices

may have been slightly inaccurate.

– Make local changes to the table, calculate new cost per bit,

and update table if new average cost is cheaper.

Implementation

• The table generally has good structure and can be easily

translated into a simple set of rules, e.g.

if k ≡ 0 mod 2 then r = 2, d = 0

else if k ≡ 0 mod 5 then r = 5, d = 0

else ...

• There may be a few deeply nested, rarely occurring rules

WISA 2010 Colin Walter (RHUL) 13/16

• There may be a few deeply nested, rarely occurring rules

which can be safely deleted without much effect.

• The result is a space and time efficient recoding scheme,

tailored to any required constrained environment.

• Including a base 3 or 5, say, as well as 2

makes it faster than binary algorithms

if the recoding process is cheap enough.

Example 1

Digits D = {0,±1,±3,...,±15}, bases B = {2,3}, OP = B×D, π = 2632

If k = 0 mod 9 and k ≠ 0 mod 4 then

r ← 3, d ← 0

else if k = 0 mod 2 then

r ← 2, d ← 0

WISA 2010 Colin Walter (RHUL) 14/16

else if k = 0 mod 3 and 18 < (k mod 64) < 46

and ((k mod 64) – 32) ≠ 0 mod 3 then

r ← 3, d ← 0

else r ← 2, d ← ((k+16) mod 32) – 16

• This is faster than the “record” algorithm in PKC 2009

(using Jacobi Quartic coordinates) but rather space hungry.

• About 1200 field multiplications for 160-bit key (~7.5 per bit).

Example 2

Digits D = {0,±1,±3,±5,±7}, bases B = {2,3}, OP = B×D, π = 2832

If k = 0 mod 9 and k ≠ 0 mod 4
and (16 < (k mod 256) < 240) then

r ← 3, d ← 0
else if k = 0 mod 2 then

r ← 2, d ← 0

WISA 2010 Colin Walter (RHUL) 15/16

r ← 2, d ← 0
else if k = 0 mod 3 and 8 < (k mod 32) < 24

and ((k mod 32) – 16) ≠ 0 mod 3 then
r ← 3, d ← 0

else r ← 2, d ← ((k+8) mod 16) – 8

• The pre-computed table has effectively just 4 elements.

• This is only ½% slower than Example 1

• 2% faster than B = {2}; easily enough to cover the recoding.

Results & Conclusions

• A technique for generating fast algorithms for scalar

multiplication in a wide variety of environments.

• Uses a multibase representation and can make

use of efficient composite elliptic curve operations.

WISA 2010 Colin Walter (RHUL) 16/16

• Faster than binary-based methods,

but small recoding overhead.

• Can benefit from cheap Frobenius operation.

• Takes advantage of the available space resources.

• Unbeatable?

