Fast Scalar Multiplication for ECC over GF(p) using Division Chains

Colin D. Walter

Royal Holloway, UK
Colin.Walter@rhul.ac.uk

Supported by European Commission grant ICT-2007-216676 ECRYPT II

Outline

- Motivation \& History
- Standard Exponentiation Algorithms
- op-Addition Chains
- Division Chains
- Base/Digit Selection
- Implementation
- Examples
- Conclusion

Motivation

- Faster Exponentiation
- Better understanding of recoding choices
- More widely applicable methods
- Pairings with small characteristic, e.g. 3
- The Frobenius AM means the usual weighting of squares \& multiplies is inappropriate

History

- Division Chains / Double Base Rep ${ }^{\text {n }}$ - Arith 13 (1997)
- Resource constrained environments:
- Division chains save execution space (CDW)
- DBNS saves storage space (Dimitrov)
- Composite ECC operations $d P+Q$ (Montgomery et al)
- Reduced field operation count from shared values
- Gebotys \& Longa (PKC 2009)
- Fixed algorithm for using $2 P+Q, 3 P$ and $5 P$.

Standard Methods

For resource-constrained environment:

- Binary Square and Multiply
$\sim 3 / 2 \log _{2} n \times{ }^{v e}$ operations for exponent n.
- Sliding Window
$\sim 4 / 3 \log _{2} n \times v e$ operations for 2 -bit window, digits ± 1.
- NAF (non-adjacent form)

Same as for 2-bit sliding window.

- Division chains (case of no negative digits)
$\sim 5 / 4 \log _{2} n$ with expensive pre-processing of exponent.
$\sim 7 / 5 \log _{2} n$ without effort

or-Addition Chains

- Wider range of operations than just adding.

Set $O \mathscr{P}$ of binary operators (λ, μ), representing $\lambda P+\mu Q$.
An $O \mathscr{P}$-addition chain is a sequence of quadruples
$\left(a_{i}, b_{i}, k_{i}, p_{i}\right)$ where

$$
\begin{aligned}
& p_{i}=\left(\lambda_{i}, \mu_{i}\right) \in O P \text { and } k_{i}=\lambda_{i} a_{i}+\mu_{i} b_{i} \\
& a_{i}=k_{s}, b_{i}=k_{t} \text { for some } s, t<i \\
& \left(a_{0}, b_{0}, k_{0}, p_{0}\right)=(1,0,1,(1,0))
\end{aligned}
$$

The standard addition chain has $a_{i}+b_{i}=k_{i}$ and starts $(1,0,1)$

Division Chains

- Location aware chains - two locations.

Restricted to previous value and initial (table) value:

$$
\begin{aligned}
& \left(k_{i-1}, 1, k_{i}, p_{i}\right) \text { where } \\
& p_{i}=\left(\lambda_{i}, \mu_{i}\right) \in O P \text { and } k_{i}=\lambda_{i} k_{i-1}+\mu_{i}
\end{aligned}
$$

These are generated in reverse order:
From $k=k_{n}$, choose $p_{i}=\left(\lambda_{i}, \mu_{i}\right)$ where $k_{i} \equiv \mu_{i} \bmod \lambda_{i}$ and calculate $k_{i-1}=\left(k_{i}-\mu_{i}\right) / \lambda_{i}$.

- Hence the name "division" chain.
- If all $\lambda_{i}=r$ are the same, this is the change a base algorithm and μ_{i} are the digits of k base r.

Change of Basis

- The rule $k_{i-1}=\left(k_{i}-\mu_{i}\right) / \lambda_{i}$ produces

$$
k=\left(\left(\left(\mu_{1} \lambda_{2}+\mu_{2}\right) \lambda_{3}+\ldots+\mu_{n-2}\right) \lambda_{n-1}+\mu_{n-1}\right) \lambda_{n}+\mu_{n}
$$

- Rewrite this using bases r_{i} and digits d_{i} :

$$
k=\left(\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{2}\right) r_{1}+d_{1}\right) r_{0}+d_{0}
$$

- This recoding gives a left-to-right algorithm with table values m_{d} and iterative step

$$
m \leftarrow m^{r_{i}} \times m_{d_{i}}
$$

- When possible choose $d_{i}=0$ to save a multiplication.

Example

$$
235_{10}=(((((1) 3+0) 2+1) 5+4) 2+0) 3+1
$$

- Pair $(3,1)(235-1) / 3=78$
- Pair $(2,0) \quad(78-0) / 2=39$
- Pair $(5,4)(39-4) / 5=7$
- Pair $(2,1)(7-1) / 2=3$
- Pair $(3,0)(3-0) / 3=1$
- Pair $(2,1)(1-1) / 2=0$

There are usually several alternatives at each point.

- Set of possible bases is usually $\mathcal{B}=\{2,3\}$ or $\mathcal{B}=\{2,3,5\}$.

Choosing the Chain

- Assign a cost $c_{d, r}$ to each operation $m \leftarrow m^{r} \times m_{d}$.
- e.g. clock cycles if implementation is known,
- else native word operations,
- or ... field mult ${ }^{\text {ns }}$ when in ECC, perhaps.
- Simplest cost is min ${ }^{\text {mum }}$ length of addition chain for r, plus 1 if $d \neq 0$ (i.e. the count of \times ve ops.)
- Each digit/base choice affects remaining digits; the effect on cost diminishes with distance from the choice.
- Build search tree of next λ digits, say, and find cost, including average cost c for remainder of k : for each digit,

$$
c_{d, r}-c \log r
$$

- Pick first digit of cheapest choice, and repeat for rest of k.

Digit Choice (1)

- Let $\pi_{\mathcal{B}}=\operatorname{lcm}\{r \in \mathbb{B}\}$ for $\mathcal{B}=$ set of possible bases.
- If $k \equiv k^{\prime} \bmod \pi_{\mathbb{B}}^{\lambda}$ then k, k^{\prime} generate the same costs for each of next λ base/digit choices.
- So next digit is determined by $k \bmod \pi_{\beta}{ }^{\lambda}$ \& cost function c
- Ideally maximize λ. In practice consider $k \bmod \pi$ for one of the largest practical factors π of $\pi_{\mathcal{B}}{ }^{\lambda}$.
- If $r=2$, say, is particularly cheap, preferentially increase the power of 2 in π so choice of π reflects greater likelihood of 2 .
- For each set of λ choices $\left(r_{1}, d_{1}\right), \ldots,\left(r_{\lambda}, d_{\lambda}\right)$ and $\rho=r_{1} r_{2} \ldots r_{\lambda}$,

$$
\left(\ldots\left(\left(k-r_{1}\right) / d_{1}-r_{2}\right) / d_{2} \ldots-r_{\lambda}\right) / d_{\lambda} \bmod \pi / \rho
$$

still contains some info ${ }^{n}$ which should be included in cost.

Digit Choice (2)

- For cheapest $\left(r_{1}, d_{1}\right), \ldots,\left(r_{\lambda}, d_{\lambda}\right)$ for $k \bmod \pi$, choose $\left(r_{1}, d_{1}\right)$ as the next digit/base pair for k. This gives a recoding table mod π.
- The recoding is a Markov process. The states are residues $\bmod \pi$. So asymptotic cost per key bit can be calculated. (Monte Carlo simulation.)
- During recoding, the residues k_{i} mod π are not distributed uniformly for random keys k. So costs for digit choices may have been slightly inaccurate.
- Make local changes to the table, calculate new cost per bit, and update table if new average cost is cheaper.

Implementation

- The table generally has good structure and can be easily translated into a simple set of rules, e.g.

$$
\text { if } k \equiv 0 \bmod 2 \text { then } r=2, d=0
$$

else if $k \equiv 0 \bmod 5$ then $r=5, d=0$
else ...

- There may be a few deeply nested, rarely occurring rules which can be safely deleted without much effect.
- The result is a space and time efficient recoding scheme, tailored to any required constrained environment.
- Including a base 3 or 5 , say, as well as 2 makes it faster than binary algorithms if the recoding process is cheap enough.

Example 1

Digits $\mathcal{D}=\{0, \pm 1, \pm 3, \ldots, \pm 15\}$, bases $\mathcal{B}=\{2,3\}, O \mathcal{P}=\mathcal{B} \times \mathcal{D}, \pi=2^{6} 3^{2}$

$$
\begin{aligned}
& \text { If } k=0 \bmod 9 \text { and } k \neq 0 \bmod 4 \text { then } \\
& \qquad \begin{array}{l}
r \leftarrow 3, d \leftarrow 0 \\
\text { else if } k=0 \bmod 2 \text { then } \\
\quad r \leftarrow 2, d \leftarrow 0 \\
\text { else if } k=0 \bmod 3 \text { and } 18<(k \bmod 64)<46 \\
\text { and }((k \bmod 64)-32) \neq 0 \bmod 3 \text { then } \\
\\
r \leftarrow 3, d \leftarrow 0 \\
\text { else } r \leftarrow 2, d \leftarrow((k+16) \bmod 32)-16
\end{array}
\end{aligned}
$$

- This is faster than the "record" algorithm in PKC 2009 (using Jacobi Quartic coordinates) but rather space hungry.
- About 1200 field multiplications for 160-bit key (~ 7.5 per bit).

Example 2

Digits $\mathcal{D}=\{0, \pm 1, \pm 3, \pm 5, \pm 7\}$, bases $\mathcal{B}=\{2,3\}, O \mathcal{P}=\mathcal{B} \times \mathcal{D}, \pi=2^{8} 3^{2}$

$$
\text { If } k=0 \bmod 9 \text { and } k \neq 0 \bmod 4
$$

$$
\text { and }(16<(k \bmod 256)<240) \text { then }
$$

$$
\mathrm{r} \leftarrow 3, \mathrm{~d} \leftarrow 0
$$

else if $k=0 \bmod 2$ then

$$
\mathrm{r} \leftarrow 2, \mathrm{~d} \leftarrow 0
$$

else if $k=0 \bmod 3$ and $8<(k \bmod 32)<24$ and $((k \bmod 32)-16) \neq 0 \bmod 3$ then
$r \leftarrow 3, d \leftarrow 0$
else $r \leftarrow 2, \mathrm{~d} \leftarrow((\mathrm{k}+8) \bmod 16)-8$

- The pre-computed table has effectively just 4 elements.
- This is only $1 / 2 \%$ slower than Example 1
- 2% faster than $\mathcal{B}=\{2\}$; easily enough to cover the recoding.

Results \& Conclusions

- A technique for generating fast algorithms for scalar multiplication in a wide variety of environments.
- Uses a multibase representation and can make use of efficient composite elliptic curve operations.
- Faster than binary-based methods, but small recoding overhead.
- Can benefit from cheap Frobenius operation.
- Takes advantage of the available space resources.
- Unbeatable?

