Fast Scalar Multiplication for ECC over GF(p) using Division Chains

Colin D. Walter

Royal Holloway, UK

Colin.Walter@rhul.ac.uk

Supported by European Commission grant ICT-2007-216676 ECRYPT II

Colin Walter (RHUL)

Outline

- Motivation & History
- Standard Exponentiation Algorithms
- OP-Addition Chains
- Division Chains
- Base/Digit Selection
- Implementation
- Examples
- Conclusion

Motivation

- Faster Exponentiation
- Better understanding of recoding choices
- More widely applicable methods
- Pairings with small characteristic, e.g. 3
 - The Frobenius AM means the usual weighting of squares & multiplies is inappropriate

History

- Division Chains / Double Base Repⁿ Arith 13 (1997)
 - Resource constrained environments:
 - Division chains save execution space (CDW)
 - DBNS saves storage space (Dimitrov)
- Composite ECC operations *dP+Q* (Montgomery *et al*)
 - Reduced field operation count from shared values
- Gebotys & Longa (PKC 2009)
 - Fixed algorithm for using 2P+Q, 3P and 5P.

Standard Methods

For resource-constrained environment:

- Binary Square and Multiply
 ~3/2 log₂n ×^{ve} operations for exponent n.
- Sliding Window ~4/3 $\log_2 n \times^{ve}$ operations for 2-bit window, digits ±1.
- NAF (non-adjacent form) Same as for 2-bit sliding window.
- Division chains (case of no negative digits)
 ~5/4 log₂n with expensive pre-processing of exponent.
 ~7/5 log₂n without effort

OP-Addition Chains

• Wider range of operations than just adding.

Set *OP* of binary operators (λ,μ), representing $\lambda P + \mu Q$.

An *OP*-addition chain is a sequence of quadruples

$$(a_{i}, b_{i}, k_{i}, p_{i})$$
 where
 $p_{i} = (\lambda_{i}, \mu_{i}) \in OP$ and $k_{i} = \lambda_{i}a_{i} + \mu_{i}b_{i}$
 $a_{i} = k_{s}, b_{i} = k_{t}$ for some *s*, *t* < *i*
 $(a_{0}, b_{0}, k_{0}, p_{0}) = (1, 0, 1, (1, 0))$

The standard addition chain has $a_i + b_i = k_i$ and starts (1,0,1)

Division Chains

• Location aware chains – two locations.

Restricted to previous value and initial (table) value:

 $(k_{i-1}, 1, k_i, p_i)$ where $p_i = (\lambda_i, \mu_i) \in OP$ and $k_i = \lambda_i k_{i-1} + \mu_i$

These are generated in reverse order:

From $k = k_n$, choose $p_i = (\lambda_i, \mu_i)$ where $k_i \equiv \mu_i \mod \lambda_i$ and calculate $k_{i-1} = (k_i - \mu_i) / \lambda_i$.

- Hence the name "division" chain.
- If all $\lambda_i = r$ are the same, this is the change a base algorithm and μ_i are the digits of *k* base *r*.

Change of Basis

- The rule $k_{i-1} = (k_i \mu_i)/\lambda_i$ produces $k = (((\mu_1\lambda_2 + \mu_2)\lambda_3 + ... + \mu_{n-2})\lambda_{n-1} + \mu_{n-1})\lambda_n + \mu_n$
- Rewrite this using **bases** r_i and **digits** d_i :

 $k = (((d_{n-1}r_{n-2} + d_{n-2})r_{n-3} + \dots + d_2)r_1 + d_1)r_0 + d_0$

This recoding gives a left-to-right algorithm with table values m_d and iterative step

 $m \leftarrow m^{r_i} \times m_{d_i}$

• When possible choose $d_i = 0$ to save a multiplication.

Example

$235_{10} = (((((1)3 + 0)2 + 1)5 + 4)2 + 0)3 + 1)$

- Pair (3,1) (235 1)/3= 78
- Pair (2,0) (78-0)/2 = 39
- Pair (5,4) (39-4)/5 = 7
- Pair (2,1) (7-1)/2 = 3
- Pair (3,0) (3-0)/3 = 1
- Pair (2,1) (1-1)/2 = 0

There are usually several alternatives at each point.

• Set of possible bases is usually $\mathcal{B} = \{2,3\}$ or $\mathcal{B} = \{2,3,5\}$.

Choosing the Chain

- Assign a cost $c_{d,r}$ to each operation $m \leftarrow m^r \times m_d$.
 - e.g. clock cycles if implementation is known,
 - else native word operations,
 - or ... field mult^{ns} when in ECC, perhaps.
- Simplest cost is min^{mum} length of addition chain for *r*, plus 1 if *d* ≠ 0 (i.e. the count of ×^{ve} ops.)
- Each digit/base choice affects remaining digits; the effect on cost diminishes with distance from the choice.
- Build search tree of next λ digits, say, and find cost, including average cost c for remainder of k: for each digit,

 $c_{d,r} - c \log r$

• Pick first digit of cheapest choice, and repeat for rest of *k*.

Digit Choice (1)

- Let $\pi_{\mathcal{B}} = \operatorname{lcm} \{ r \in \mathcal{B} \}$ for $\mathcal{B} = \operatorname{set} of possible bases.$
- If $k \equiv k' \mod \pi_{\mathcal{B}}^{\lambda}$ then k, k' generate the same costs for each of next λ base/digit choices.
- So next digit is determined by $k \mod \pi_{\mathcal{B}}^{\lambda}$ & cost function c
- Ideally maximize λ . In practice consider $k \mod \pi$ for one of the largest practical factors π of $\pi_{\mathcal{B}}^{\lambda}$.
 - If r = 2, say, is particularly cheap, preferentially increase the power of 2 in π so choice of π reflects greater likelihood of 2.
- For each set of λ choices $(r_1, d_1), \dots, (r_{\lambda}, d_{\lambda})$ and $\rho = r_1 r_2 \dots r_{\lambda}$, $(\dots((k - r_1)/d_1 - r_2)/d_2 \dots - r_{\lambda})/d_{\lambda} \mod \pi/\rho$

still contains some infoⁿ which should be included in cost.

Digit Choice (2)

- For cheapest (r₁,d₁),...,(r_λ,d_λ) for k mod π, choose (r₁,d₁) as the next digit/base pair for k. This gives a recoding table mod π.
- The recoding is a Markov process. The states are residues mod π. So asymptotic cost per key bit can be calculated. (Monte Carlo simulation.)
- During recoding, the residues k_i mod π are not distributed uniformly for random keys k. So costs for digit choices may have been slightly inaccurate.
 - Make local changes to the table, calculate new cost per bit, and update table if new average cost is cheaper.

Implementation

• The table generally has good structure and can be easily translated into a simple set of rules, e.g.

```
if k \equiv 0 \mod 2 then r = 2, d = 0
else if k \equiv 0 \mod 5 then r = 5, d = 0
else ...
```

- There may be a few deeply nested, rarely occurring rules which can be safely deleted without much effect.
- The result is a space and time efficient recoding scheme, tailored to any required constrained environment.
- Including a base 3 or 5, say, as well as 2 makes it faster than binary algorithms if the recoding process is cheap enough.

Example 1

Digits $D = \{0, \pm 1, \pm 3, ..., \pm 15\}$, bases $B = \{2,3\}$, $OP = B \times D$, $\pi = 2^6 3^2$

If k = 0 mod 9 and k \neq 0 mod 4 then r \leftarrow 3, d \leftarrow 0 else if k = 0 mod 2 then r \leftarrow 2, d \leftarrow 0 else if k = 0 mod 3 and 18 < (k mod 64) < 46 and ((k mod 64) - 32) \neq 0 mod 3 then r \leftarrow 3, d \leftarrow 0 else r \leftarrow 2, d \leftarrow ((k+16) mod 32) - 16

- This is faster than the "record" algorithm in PKC 2009 (using Jacobi Quartic coordinates) but rather space hungry.
- About 1200 field multiplications for 160-bit key (~7.5 per bit).
 WISA 2010 Colin Walter (RHUL) 14/16

Example 2

Digits $D = \{0, \pm 1, \pm 3, \pm 5, \pm 7\}$, bases $B = \{2,3\}$, $OP = B \times D$, $\pi = 2^8 3^2$

```
If k = 0 mod 9 and k \neq 0 mod 4
and (16 < (k mod 256) < 240) then
r \leftarrow 3, d \leftarrow 0
else if k = 0 mod 2 then
r \leftarrow 2, d \leftarrow 0
else if k = 0 mod 3 and 8 < (k mod 32) < 24
and ((k mod 32) - 16) \neq 0 mod 3 then
r \leftarrow 3, d \leftarrow 0
else r \leftarrow 2, d \leftarrow ((k+8) mod 16) - 8
```

- The pre-computed table has effectively just 4 elements.
- This is only 1/2% slower than Example 1
- 2% faster than $\mathcal{B} = \{2\}$; easily enough to cover the recoding. WISA 2010 Colin Walter (RHUL) 15/16

Results & Conclusions

- A technique for generating fast algorithms for scalar multiplication in a wide variety of environments.
- Uses a multibase representation and can make use of efficient composite elliptic curve operations.
- Faster than binary-based methods, but small recoding overhead.
- Can benefit from cheap Frobenius operation.
- Takes advantage of the available space resources.
- Unbeatable?