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Abstract. In smartcard encryption and signature applications, randomized
algorithms can be used to increase tamper resistance against attacks based
on averaging data-dependent power or EMR variations. Recently, Oswald
and Aigner described such an algorithm suitable for point multiplication in
elliptic curve cryptography (ECC). With the assumption that an attacker
can identify additions and doublings and distinguish them from each other
during a single point multiplication, it is shown that the algorithm is insecure
for repeated use of the same secret key without blinding of that key. This
scotches hopes that the expense of such blinding might be avoided by using
the algorithm unless the differences between point additions and doublings
can be obscured successfully.
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1 Introduction

Major progress in the theory and practice of side channel attacks [6, 7] on embedded
cryptographic systems shows that substantial data about secret keys can leak from
a single application of a cryptographic function through data-dependent power vari-
ation and electro-magnetic radiation [12, 13]. This is particularly true for the more
computationally intensive functions such as exponentiation, which is a major pro-
cess in many crypto-systems such as RSA, ECC and Diffie-Hellman. Initial attacks
of this type required averaging over a number of exponentiations [9] to extract
meaningful data, but improved techniques mean that single exponentiations using
traditional algorithms are no longer safe. In particular, it should be assumed that
the pattern of squares and multiplies can be extracted fairly accurately from side
channel leakage. If the standard binary “square-and-multiply” algorithm is used,
this pattern reveals the secret exponent immediately. More generally, operand re-
use might be determined as well and this used to extract the secret key when sliding
windows are employed [16]. Deterministic re-coding does little to improve matters
[11].

In this context, Oswald and Aigner proposed a randomized point multiplication
algorithm [10] for which there is no bijection between scalar key values and sequences
of curve operations. They randomly switch to an alternative procedure for which
multiplications occur for zero bits but not for one bits, and they allow other non-zero
digits than 1; 1̄ for example. This alternative corresponds to a standard recoding
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of the input bits to remove long sequences of 1s. On the one hand, the pattern
of squares and multiplications is no longer fixed, so that averaging power traces
from several exponentiations does not make sense, and, on the other hand, there is
ambiguity about which digit value is associated with each multiplication.

This article analyses the set of randomized traces that would be generated by
repeated re-use of the same unblinded key k. By aligning corresponding doublings
in a number of traces, the possible operation sequences associated with bit pairs
and bit triples of the secret key k can be extracted. With only a few traces (10 or
so) this provides enough information to determine most bits of k unequivocally, and
most of the rest with a high degree of certainty.

Previous work in this area includes [11] and [14]. Oswald [11] takes a similar
but deterministic algorithm and shows how to determine a space of possible keys
from one sequence of curve operations, but not how to combine such results from
different sequences. Here the freedom afforded by the randomization minimises the
inter-dependence between consecutive operations and so it is unclear whether or not
her techniques would lead to an intractable amount of computing. Okeya & Sakurai
[14] treat the simple version of the randomized algorithm and succeed in combining
results from different multiplications by the same key. They require the key k to be
re-used 100+ log2 k times. Here we treat the more complex version of the algorithm,
one which is also slightly extended in order to increase security against side channel
attacks. The analysis of Okeya & Sakurai is inapplicable in this more general case
because it depends on a fixed finite automaton state occuring after processing a zero
bit. However, using new methods we find that a) measurements from only O(10)
uses of the secret key reveal the key by applying theory which considers pairs of
bits at a time, b) software which considers longer sequences of bits can process just
two uses to obtain the key in O(log k) time, and c) for standard key lengths and
perfect identification of adds and doubles, a single use will disclose the key in a
tractable amount of time. In addition, our attack seems less susceptible to error:
bits are deduced in parallel so that incorrect deductions of some bits affect at most
the neighboring one or two bits. In comparison, the attack of Okeya & Sakurai
recovers bits sequentially, making recovery from errors more complex.

Although only one algorithm is studied here, a similar overall approach can be
used to break most randomized recoding procedures under the same conditions.
The two main properties required are: i) after a given sequence of point operations,
the unprocessed part k′ of the key can only have one of a small, bounded number
of possible values (determined from k by the length of the operation sequence but
independent of other choices); and ii) it is possible to identify an associated subset
of trace suffixes for which all members correspond to the same value of k′. These
also hold for the algorithm proposed by Liardet & Smart [8], which uses a sliding
window of random, variable width. They seem to be the key properties required
in [20] to demonstrate similar weaknesses in that algorithm also. Two alternatives,
Mist [18] and overlapping windows [3], provide a much wider range of values for
the unprocessed parts k′ of keys. Without property (i) holding, they appear to be
safer, particularly when keys are re-used.

Several counter-measures exist for reducing the quantity of data that leaks in
this way. For elliptic curve cryptography (ECC), the likelihood of distinguishing
between point additions and doublings can be reduced by making each follow the
same pattern of field (and other) operations. Several solutions have been proposed
[4, 2, 1], but squares and multiplications in the field behave differently [15] and so
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there is no reason to believe that such recoding will necessarily hide the distinction
between additions and doublings completely.

The attack here depends on the same key being reused on each occasion. One
standard counter-measure to frustrate averaging the traces of many exponentiations
is to modify the secret exponent each time from e to e+rg where r is a random
number, typically 32-bits, and g is the order of the (multiplicative) group in which
the exponentiation is performed [6]. Then property (i) above cannot hold. Although
this blinding results in a different exponentiation every time, for ECC it adds 20% to
the number of point operations for a typical key of 160 bits. It had been hoped that
randomized algorithms might avoid this extra cost. This is no longer seems to be
the case unless code for adds and doubles can be made to execute indistinguishably.

2 The Oswald-Aigner Exponentiation Algorithm

This section contains a brief outline of the Oswald-Aigner algorithm [10]. It is
written in terms of the additive group of points on an elliptic curve E defined over
a field F with identity element O. Field elements and rational integers are written in
lowercase while points on the curve are written in capitals. The algorithm computes
the point Q = kP for a given positive integer k (the secret key) and a given point
P on E.
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Fig. 1. Finite automaton for an extension of the algorithm. rb is a random bit.

The algorithm randomly introduces alternative re-codings to the representation
of k. It can be viewed as pre-processing bits of k from right to left into a new
digit set {−1, 0,+1,+2}. Then the resulting scheme for point multiplication can
be performed in either direction. The conversion uses a carry bit set initially to
0. When this bit is summed with the current bit of k, the result 0, 1 or 2 can be



4 Published at eprint.iacr.org

re-coded in different ways: 0 always gives a new digit 0 with carry 0; 1 can give
either new digit 1 and carry 0 or new digit 1̄ with carry 1; and 2 gives either new
digit 0 and carry 1, or new digit 2 and carry 0.

Fig. 1 illustrates this as a finite automaton for an inconsequential extension of
the original algorithm. It has 4 states, numbered 0 to 3 with the carry being 1 if, and
only if, the state is 2. For the transition from state 2 to state 1, the normal order of
doubling and adding is reversed. This achieves the processing for digit value 2. The
extension here allows a new transition from state 0 to state 2; the original algorithm
is the special case in which the random bit rb = 1 always for state 0. Rather than
taking a uniform distribution in every case, we will also allow the random bits to
be explicitly biased. However, if the same distribution of random bits is used for
each of the states 0, 1 and 3, the automaton can be simplified to consist of just two
states, obtained by merging states 0, 1 and 3.

Figure 2 provides equivalent code for the associated right-to-left point multi-
plication. A left-to-right version is also possible, and can be attacked in the same
way.

Q ← O ;

State ← 0 ;

While k > 0 do

{

If (k mod 2) = 0 then

case State of

{

0,1,3 : Q ← 2Q ; State ← 0 ;

2 : P ← P+Q ; Q ← 2Q ; State ← 3 ;

}

else

case State of

{

0,1,3 : If rb = 0 then /* rb is a Random Bit */
{ P ← P-Q ; Q ← 2Q ; State ← 2 }

else

{ P ← P+Q ; Q ← 2Q ; State ← 1 } ;

2 : If rb = 0 then /* rb is a Random Bit */
{ Q ← 2Q ; P ← P+Q ; State ← 1 }

else

{ Q ← 2Q } ;

} ;

k ← k div 2 ;

} ;

If State = 2 then P ← P+Q ;

Fig. 2. Oswald & Aigner’s randomized signed binary exponentiation (extended).
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3 Efficiency Considerations

Although the algorithm appears to be fully described, there are still some details
to decide. Specifically, the choice of the random bits rb can be skewed to favour
certain transitions. As we shall see, this affects both efficiency and security.

Every bit of the key k is associated with a corresponding doubling operation.
This means that the number of doublings is fixed, and time efficiency depends only
on the total number of additions and subtractions. We will assume that, for security
reasons, point subtractions have been made indistinguishable from point additions
as far as is possible. Then efficiency depends entirely on the total number of such
operations, which we will henceforth always refer to as additions.

Definition 1. Let α, β, γ and δ be the chosen probabilities that the random bit rb
is 1 when the current state is 0, 1, 2 or 3 respectively.

Then, for a key k whose bits are selected independently and at random from a
uniform distribution, the matrix of transition probabilities between states of the
automaton is
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Lemma 1. The transition matrix has an eigen-vector (1
2
−µ, 1

2
−2µ, 2µ, µ) where

µ = 2−α−β
12−2α−4β−4γ+2δ

and this contains, as elements, the probabilities associated

with each state. Moreover, 0 ≤ µ ≤ 1
4
.

This is an easy exercise for the reader. Taking the dot product of this with the
vector (1

2
, 1
2
, 1−1

2
γ, 1

2
) of average additions associated with each state provides the

expected number of additions per bit: 1
2
+(1−γ)µ. Similarly, taking the dot product

with the corresponding vector (1, 1, 1, 1) for doublings provides 1 as the expected
number of doublings per bit.

In order to minimise the total number of additions and hence the addition chain
length, we need to pick (1−γ)µ = 0, i.e. (1−γ)(2−α−β) = 0, i.e. either never take
the transition from state 2 back to state 1, or never take either of the transitions
from states 0 and 1 to state 2. Of course, one might back away from these extremes
to retain greater randomness in the chains. In particular, α and/or β should be
kept away from 1 so that states 2 and 3 are reachable. In the limit as αβγδ→1
(which optimises efficiency), on average there is half an addition per bit of k. Thus,
a typical addition chain has a little over 1

2
log2 k additions (or subtractions). Even

a modest bias towards efficiency, such as taking α = β = γ = δ ≥ 3
4
, changes this

by just 2% or less.
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4 The Attack

4.1 Introduction & Initial Hypotheses

The purpose of randomized exponentiation algorithms is to frustrate side chan-
nel analysis by an attacker. In particular, they are counter-measures against using
knowledge of the exponentiation process to extract the secret key k. Several dif-
ferent levels of leakage are possible, depending on the resources of the attacker.
A poor signal-to-noise ratio (SNR) means that many samples have to be taken,
and averaging the side channel leakage is one way of improving the SNR. So a
critical parameter is whether or not the attacker’s equipment is good enough for
him to extract sufficient meaningful data from the side channel trace of a single
scalar multiplication. If it is, then the standard key blinding described earlier sud-
denly fails to provide the data hiding protection afforded by averaging away local
data dependencies. Improved equipment and laboratory techniques mean that this
barrier can now be breached without too much expenditure [12, 13].

The categories of leakage which could be considered include the following: i)
individual point operations can be observed on power, EM or other side channel
traces; ii) point doublings and point additions can be distinguished from each other;
iii) re-use of operands can be observed; and iv) operand addresses can be deduced.
Point (i) may hold simply because program instructions and data need to be fetched
at the start of each point operation, and these cause different effects on the side
channels than field operations. Point (ii) may then hold as a result of different
patterns of field operations for point additions than for point doublings. Properties
(iii) and (iv) might hold as a result of being able to deduce Hamming weights of
data and address words travelling along the bus.

Randomization prevents the obvious averaging of the traces of many point multi-
plications which was used in initial power analysis attacks on the binary “square-
and-multiply” algorithm. There are no longer any corresponding doublings which
can be aligned since every point multiplication determines a different sequence of
doublings and additions. With matched code for additions and doublings [1, 2, 4,
8], averaging may hide the difference between the two operations because they are
no longer separated in time, but in current implementations such averaging will
certainly reveal the start and end of the individual point operations which make up
the scalar multiplication.

The attack described here requires the SNR to be good enough to extract some
useful data from single point multiplications on the curve. Specifically, initially we
assume that:

– Adds and doublings can always be identified correctly and distinguished from
each other using traces obtained from side channel leakage for a single point
multiplication; and

– A number of traces are available corresponding to the same secret key value
applied to independent scalar multiplications.

The insistence on “always” in the first hypothesis can be relaxed to provide a more
realistic scenario. It is a convenience that allows us to provide a more accurate
assessment of the strength of the attack. If doublings and additions can be dis-
tinguished successfully with a known probability, then the calculations below can
easily be modified appropriately to yield similar results.
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4.2 Overview of the Attack & Notation

The outline of the attack is as follows. For simplicity, by the first hypothesis,

– every trace tr is viewed as a word over the alphabet {A,D}

where A denotes the occurrence of an addition and D the occurrence of a doubling.
As usual, the trace is written with time increasing from left to right. However, this
is the opposite of the binary representation of the secret key k which is processed
from right to left, least significant bit first. Consequently, the two face in opposite
directions. In particular, if the machine were to cycle round only states 0 and 1
giving the sequence of operations for square-and-multiply exponentiation, then the
trace would be essentially the same as the binary, but reversed: every occurrence of
0 would appear as D, and every occurrence of 1 would appear as AD. The binary
representation 11001 would then generate the trace ADDDADAD. There is one D
for every bit, and we index them similarly:

Definition 2. The position of an instance of D in a trace is the number of occur-
rences of D to its left.

Thus, the first (leftmost) D of ADDDADAD has position 0 and arises from pro-
cessing the last (rightmost) bit of 11001, which has index 0.

It is readily verified that the only transition which places D before rather than
after an associated occurrence of A is the transition (21). Hence, every occurrence of
the substring DAAD in a trace tr corresponds to the processing path traversing the
transitions (21) then (12) or (11) in the finite automaton. This substring splits the
trace between the As into a prefix and a suffix. There is a corresponding splitting
of the binary representation of the secret key k into a least significant part and a
most significant part. Since the key and trace are processed in opposite directions
with one doubling per transition, i.e. per bit, the least significant part of k has a
number of bits equal to the number of Ds in the associated prefix of tr.

Every occurrence of the triplet 111 in k enables the pair AA to occur in some
traces (according to the values of the random bits) when processing the second
and third least significant bits. Even with a small number of independent traces,
almost all triples 111 can be found using these relatively frequent occurrences. It
will be shown that similar properties for the distributions of substrings associated
with each possible bit pair enable most other bits to be recovered. Since every bit
is determined essentially independently of the others, the uncertainties due to noise
and errors do not grow unreasonably, and so the attack is feasible in practice.

4.3 Properties of Traces

Lemma 2. Suppose trace tr is given. If 11 occurs at some point in the binary repre-
sentation of k then the probability of the left-hand 1 being represented by transition
(21) in tr is π = 4µ(1−γ).

Proof. 4µ is the probability of being in state 2 as a result of the right-hand 1 and
1−γ is the probability of selecting transition (21) next. ⊓⊔

Transition (21) leads to the characteristic pattern DAAD for 111 with which
this attack starts. Although there may be other measures to take into account,
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as a first approximation we should expect to have to decrease occurrences of this
transition in order to maximise security. Over the ranges 0 to 1 for each variable,
the probability of the transition is a decreasing function for each of α, β, γ and δ.
Hence, to maximise efficiency and security, it would probably be best to choose all
of these ≈ 1. This will make DAAD appear only rarely. Of course, choosing α = 1
as in the original machine [10] and taking β = 1 makes states 2 and 3 unreachable,
so that all randomization is lost and hence also any security that might accrue from
use of the algorithm.

Typically, one might choose all the variables equal to 3
4
, say. This gives the

transition (21) a probability of π = 1
12
. With this usefully high probability of the

associated pattern DAAD in a trace tr, it can reasonably be assumed that almost
every occurrence of 111 in k will be recognised from a small set of traces for typical
key lengths. For n traces, the probability of not observing DAAD at a given point
where 111 occurs is (1−π)n. So, to determine 90% of the substrings 111 with these
parameter choices, we just need a sample of 27 traces in which the adds and doubles
are obtained correctly. If all four variables default to 1

2
, then π = 1

4
and so only 8

traces would enable a similar percentage of the 111s to be established.

In the case of ambiguities or errors in distinguishing additions from doublings,
it may be helpful to determine which operations belong to which transition or bit of
k. There is one doubling D per bit, but an addition A between consecutive Ds may
belong to the transition of either the first bit or the second. Figure 3 lists all possible
combinations of transitions for consecutive pairs of bits. Clearly DAAD must split
as DA.AD since each transition applies at most one addition. DA only occurs for
the transition (21) and so must arise from bit 1. From the available options at state
1 of the automaton, the next bit processed is 1 if, and only if the DA is followed
by AD. Otherwise, for the pair 11, the first bit processed is represented by D or
AD, and so we know that the D marks the end of processing for that transition.
Figure 3 shows all these choices for the bit pair 11. Thus, occurrences of DAAD in
some traces enable all traces to be split correctly at the point corresponding to the
middle of DAAD.

To summarize, since DA arises on a single transition only after a preceding 1
has enabled state 2 to be reached,

Lemma 3. Every occurrence of DAAD corresponds to 111 in the secret key k and
enables all traces to be split at the same point. If the middle 1 has index i then the
subtraces corresponding to the bits from index 0 to i are given by all characters up
to and including the D at position i, plus the next A when two As occur (but no
additional A otherwise).

To recover more of k, we look next at other pairs of bits, and see how many As
can and do appear in traces between the two Ds corresponding to the bits. As just
noted, there can be up to 2 intervening As between consecutive Ds.

Lemma 4. i) For a given trace, if the Ds in positions i and i+1 are not separated
by any As, then the bit pair ki+1ki is 00 with probability (2−2µ(1−γ))−1, which
exceeds 1

2
. If the Ds are separated by one or more As in any trace, then the bit pair

is certainly not 00.
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ii) For a given trace, if the Ds in positions i and i+1 are separated by one A, then
the bit pair ki+1ki is 10 with probability 1

2
. If the Ds are separated by no As or two

As in any trace, then the bit pair is certainly not 10.
iii) For a given trace, if the Ds in positions i and i+1 are separated by two As, then
the bit pair ki+1ki is certainly 11. The probability of two As when the bit pair is 11
is 2µ(1−γ), assuming bit ki−1 is unknown.
iv) For a set of n traces, suppose the Ds in positions i and i+1 are separated by no
As in some cases, by one A in some cases, and by two As in no cases. Then the bit
pair ki+1ki is 01 with probability (1+(1−2µ(1−γ))n)−1.

Proof. i) First, by inspection of the finite automaton, we see that the only possible
operation sequences for 00 are ADD and DD. So the Ds are always adjacent. The
intervention of an A will prove that the bit pair is not 00.

Bit Operation State Probabilities,

Pair Patterns Sequences given the bit pair

00 D.D 000, 100, 300 1−2µ
AD.D 230 2µ

10 D.AD 001, 002 1

2
−µ

D.AD 101, 102 1

2
−2µ

AD.AD 231, 232 2µ
D.AD 301, 302 µ

01 AD.D, AD.AD 010, 023 ( 1
2
−µ)α, ( 1

2
−µ)(1−α)

AD.D, AD.AD 110, 123 ( 1
2
−2µ)β, ( 1

2
−2µ)(1−β)

DA.D, D.AD 210, 223 2µ(1−γ), 2µγ
AD.D, AD.AD 310, 323 µδ, µ(1−δ)

11 AD.AD, AD.AD 011, 012 ( 1
2
−µ)αβ, ( 1

2
−µ)α(1−β)

AD.DA, AD.D 021, 022 ( 1
2
−µ)(1−α)(1−γ), ( 1

2
−µ)(1−α)γ

AD.AD, AD.AD 111, 112 ( 1
2
−2µ)β2, ( 1

2
−2µ)β(1−β)

AD.DA, AD.D 121, 122 ( 1
2
−2µ)(1−β)(1−γ), ( 1

2
−2µ)(1−β)γ

DA.AD, DA.AD 211, 212 2µ(1−γ)β, 2µ(1−γ)(1−β)
D.DA, D.D 221, 222 2µγ(1−γ), 2µγ2

AD.AD, AD.AD 311, 312 µδβ, µδ(1−β)
AD.DA, AD.D 321, 322 µ(1−δ)(1−γ), µ(1−δ)γ

Fig. 3. All possible operation sequences for all bit pairs, and probabilities given the bit
pair occurs. (The bit pairs are processed right to left.)

Figure 3 shows the operation sequences which can occur for each bit pair. It
includes the probability of each, assuming that the bit pair occurs and that the initial
states have the probabilities determined by Lemma 1. Knowledge of neighbouring
bits would require these values to be modified.

Suppose there is no intervening A between the two specified Ds. If the bit pair
is 00 then the probability of this is π00 = 1; if the bit pair is 10 then the probability
is π10 = 0; if the bit pair is 01 then the probability is π01 = (1

2
−µ)α+(1

2
−2µ)β+µδ;

and if the bit pair is 11 then the probability is π11 = (1
2
−µ)(1−α)+(1

2
−2µ)(1−β)+

2µγ+µ(1−δ). Thus, the correct deduction of 00 is made with probability
π00/(π00+π10+π01+π11) = 1/(2−2µ(1−γ)).
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ii) From the table or the automaton, we can see that the bit pair 10 must always
include the operation A once between the two occurrences of D, but this is not the
case for any other bit pair. Thus the absence of an A, or the presence of two As,
guarantees the bit pair is not 01. However, suppose there is exactly one A between
the specified Ds. If the bit pair is 00 then the probability of this is π′

00 = 1−π00 = 0;
if the bit pair is 10 then the probability is π′

10 = 1−π10 = 1; if the bit pair is 01
then the probability is π′

01 = 1−π01; and if the bit pair is 11 then the probability is
π′

11 = 1−π11−2µ(1−γ). Thus, the correct deduction of 10 is made with probability
π′

10/(π
′

00+π′

10+π′

01+π′

11) =
1
2
.

iii) This part is clear from the table in Figure 3.
iv) Finally, by parts (i) and (ii), a bit pair which includes both the possibilities of
no As and of one A between the specified Ds cannot be 00 or 10; it must be 01 or
11. The probability of not having two As in any trace when the digit pair is 01 is
1, of course. The probability of not having two As in any of the n traces when the
digit pair is 11 is πn = (1−2µ(1−γ))n. Hence the probability of the pair being 01
rather than 11 is 1/(1+πn). ⊓⊔

We must be careful in the application of this lemma. Each part assumes no
knowledge of bit ki−1. Knowing it changes the probabilities. In most cases, the
differences are small enough to be considered negligible; for accurate figures the
table can be used to select just the cases starting in states 0 or 3 when the preceding
processed bit is 0, and the cases starting in states 1 or 2 when that bit is 1. The
only case where a qualitative difference occurs is for 11 when AA only occurs if
ki−1 = 1. In the case of ki−1 = 0 this means we cannot distinguish 01 from 11 so
easily. However, no use has yet been made of the distribution of characters adjacent
to, or between, the two Ds of interest: for example, using the relative probabilities,
one could distinguish correctly between the pairs 01 and 11 with a better than evens
chance on the basis of the proportion of As which occur between the Ds. This pre-
supposes knowledge of the values of the parameters α, β, γ and δ, but, if necessary,
these can be deduced with sufficient accuracy from the relative frequencies of various
patterns in the traces. We will not go into detail here since the aim is to establish
the feasibility of the attack, rather than the minimal number of traces required for a
given chance of success. This last is, in any case, dependent on the counter-measures
employed by the crypto-system and the quality of the techniques and monitoring
equipment used by the attacker.

4.4 Reconstructing the Key

From parts (i) and (ii) of Lemma 4, we can establish every occurrence of the bit pairs
00 and 10 with any desired degree of confidence if a sufficiency of independently
generated traces for the same key is available.

The probability that a 1 bit belongs to one of these pairs 00 or 10 is 1
2
because

a 1 has 50% chance of being followed by a 0 to give 10. Also, the probability that
a 0 bit belongs to one of the pairs 00 or 10 is 1 because it must be preceded by a
0 or a 1 to produce 00 or 10 respectively. Hence, with enough traces, 3

4
of the bits

of k will be established easily and correctly using Lemma 4, (i) or (ii). Half of all
bits belong to exactly one of these pairs, and a quarter of all bits belong to two
such pairs (namely, in the latter case, the central bit of triplets of the form ∗00).
On average, half of all bit pair positions are used to determine these bits of k using
the first two parts of the lemma.
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For isolated bit pairs 00 and 10, i.e. those which do not overlap with another bit
pair of the same type, the lemma shows that n traces would lead to less than one
error per 2n deductions of the pair. However, for those bits belonging to a longer
sequence of overlapping such bit pairs, the probability of a correct deduction is
much higher. Such sequences are maximal substrings of the form 10i if no errors
have been made. In an infinitely long sequence of independent random bits, 1

4
of 0s

would belong to a sequence 101, so about 1
4
of the bits of k are determined as isolated

pairs. The other 3
4
of 0s and 1

4
of 1s belong to longer sequences of overlapping pairs.

This increases the probability of correct deductions for half the bits of k because of
the need for consistency where pairs overlap. We might expect fewer than 1 error
in 22n for these bits, i.e. half of all bits of k are determined with almost complete
certainty. This could be established by extending Figure 3 and Lemma 4 from pairs
to triples of bits, but this level of detail is unnecessary to prove the feasibility of
the attack.

Overall, for a standard 192-bit key k, an average of 96 bit pair positions would
have trace operations which determine the values of 144 bits. So, with only 10 traces,
we can expect every such pair to be determined correctly because substantially less
than one error per 210 pairs should be made. Thus, all determined bits will be
correct for at least 9 out of every 10 keys which are attacked.

A quarter of the bits now remain to be determined. The number of traces re-
quired to establish these with a given probability depends much more on the choice
of the parameters α to δ than was the case for the previous bits. To determine them,
we consider sequences of 1s rather than 0s. i(1

2
)i+1 of 1 bits belong to maximal se-

quences of exactly i consecutive 1 bits, i.e. to subsequences 01i0. Hence 1
2
of all 1

bits belong to sequences of 3 or more 1 bits. Lemma 2 enables us to determine these
bits with a known probability for a given number of traces. Default values for the
parameters α to δ would mean that around 90% of triples 111 would be detected
using just 8 traces, whatever the key length. For convenience, assume the choice
of parameters and number of traces allow this percentage to be determined. Since
some of the triples will overlap, well over 90% of the 1s in such triples should be
identified. In fact, 1

4
of all 1s lie at the ends of sequences of 3 or more 1 bits, 1

4
of

all 1s lie within such sequences, and 1
16

of all 1s are the central bit of a subsequence
01110. Hence 3

16
of all 1s are internal 1s which belong to at least two triples 111,

and so at least 99% of these will be determined correctly. Another 5
16

of all 1s lie in
a single triple 111, and, by assumption, 90% of them are determined as a result of
this. None of the initial or internal 1s in a subsequence 01i0 (i≥3) were considered
in the previous paragraphs since they are not contained in either of the pairs 00 or
10. So these 1 bits add almost another 1

16
+1

8
to the fraction of all bits determined

so far. On average 10% of these 1s will be undetermined because DAAD does not
occur in any trace. So about one of these bits will fail to be spotted in a 192-bit
key.

This leaves unconsidered only those 1
16
th of all bits which are the initial 1s of

sequences 0110. In a sequence of the form 0∗10, the component 0s are determined
as above, as is the constituent pair 10. If the remaining bit ∗ were a 0 then the
subsequence 00 would occur, it would be identified, and so ∗ determined as a 0.
Since ∗ is not so determined, ∗ must be 1. So all bits are now determined except
for some of those which belong to the triples 111 that failed to exhibit a substring
DAAD in any trace. Thus,
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Theorem 1. Suppose elliptic curve adds and doubles can be distinguished accu-
rately on a side channel. If the Oswald-Aigner exponentiation algorithm is used
with the same unblinded 192-bit ECC key k for 10 point multiplications then all of a
known set of about 3

4
of the bits can be determined correctly with probability exceed-

ing 9
10
. With a uniform distribution of random bits for choosing the re-coding, all

but about one or two of the remaining bits can be determined with at least similar
confidence. The undetermined bits are in known positions.

This theorem says that a standard 192-bit key can usually be broken on a first
attempt using a dozen traces with essentially no computational effort beyond ex-
tracting the add and double patterns from each trace. By considering all possibili-
ties, the few undetermined bits lead to a very small set of possible keys, of which
the correct one can surely be established by decrypting some ciphertext. Identical
working shows that a similar theorem holds for keys of any length. In all cases the
number of traces needed to achieve a very high, specified degree of confidence in
the determined bits is O(log log k).

4.5 Secure Parameter Choices?

Varying the parameters may increase the difficulty of determining the quarter of
bits not covered by (i) and (ii) of Lemma 4. The probability of the sequence DAAD
has to be decreased for this. This requires µ → 0 or γ → 1.

For the first of these, the probability of states 2 and 3 falls towards 0. Then the
traces closely match the pattern of operations for square-and-multiply. So, roughly
speaking, bits are determined according to the whether many or few traces have
A before the corresponding D. With Lemma 4 determining most occurrences of 00
and 10, the only outstanding problem is to distinguish between 01 and 11. This is
easily resolved by considering the average number of As between the relevant pair
of Ds: µ is very small, so α and β are close to 1 and therefore 01 has no As almost
always whereas 11 has one A with the same probability, i.e. almost always, if no
AAs appear. Thus µ ≈ 0 is not a secure option.

Bit Operation Probabilities,

Pair Patterns given the bit pair

00 D.D 1−2µ
AD.D 2µ

10 D.AD 1−2µ
AD.AD 2µ

01 AD.D ( 1
2
−µ)α+( 1

2
−2µ)β+µδ

AD.AD ( 1
2
−µ)(1−α)+( 1

2
−2µ)(1−β)+µ(1−δ)

D.AD 2µ

11 AD.AD ( 1
2
−µ)α+( 1

2
−2µ)β+µδ

AD.D ( 1
2
−µ)(1−α)+( 1

2
−2µ)(1−β)+µ(1−δ)

D.D 2µ

Fig. 4. Operation sequences and probabilities for bit pairs when γ = 1.
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Alternatively, we must take γ ≈ 1. Then the table of Fig. 3 reduces to that of Fig.
4. Unless the probablities are carefully chosen, each bit pair will be distinguishable
from the others by the occurrences of fixed or variable numbers of As between
the corresponding Ds: 00 contains no As, 10 contains one A, and the other two
have instances of both no A and one A between the Ds. As in the previous case,
01 and 11 will be distinguishable because they will have different, complementary
probabilities for the occurrences of no As. Hence, in order to retain some ambiguity,
it is necessary to force 01 and 11 to have fixed numbers of As between their Ds (so
they are indistinguishable from 00 or 10) or for them to have variable numbers which
occur with equal probability 1

2
(so they are indistinguishable from each other).

By assumption, µ is not close to 0. Hence the last case in Fig. 4 for each of 01
and 11 is non-negligible. Thus 01 and 11 could only demonstrate a fixed number of
As over the set of traces if their first cases were to occur with negligible probability.
Since 0 < µ ≤ 1

4
, this would require α ≈ δ ≈ 0, which makes µ ≈ 1

4
. Then 00 and

11 may be confused, as may 01 and 10. However, the traces can now be used to
determine the parity of one bit from that of its neighbour – either equal parity or
opposite parity. Since the leading bit is 1, the parity of every bit is determined, and
so the secret key k can be recovered. If there is an error, it must arise from confusing
As with Ds and vice versa. However, such errors can be determined simply by taking
several traces: if the number of As varies between two Ds, there must be an error.
In fact, as long as A and D can be obtained correctly with greater probability than
by guessing, it just requires enough traces to determine with any required certitude
whether the two bits of the pair are equal or not. Hence, neither is this a secure
solution.

The last possible way for perhaps keeping some ambiguity is by picking the
probabilities so that 01 and 11 are confused. This requires the first case of each in
Fig. 4 to have the same probability as that of the combination of the second and third
cases, namely 1

2
each. Choosing γ ≈ 1 effectively removes the transition from state 2

to state 1. Thus DA will not occur for any bit. This means that every A belongs to
the following D. Thus, every trace can be correctly parsed into substrings D or AD
which correspond to whole transitions. In particular, this means that all characters
of the operation patterns listed in Fig. 4 are known, not just those between the
Ds. So 01 and 11 can be distinguished from each other using the occurrences of
D.AD and D.D unless µ is close to 0. However, µ ≈ 0 has already been rejected as
a possibility. That choice would make the algorithm revert to square-and-multiply:
01 and 11 could be distinguished by the different probabilities of .D and .AD in
Fig. 4, corresponding to the first bit being 0 or 1 respectively. In fact, µ = 0 forces
α = β = 1, so that the .AD has probability 0 for 01 and probability 1 for 11.

It is now clear that any choice of parameters produces sufficient differences
between the sub-traces associated with pairs of bits for every pair to be identified
correctly when enough traces are provided. Whenever the parameters are chosen
to remove one distinguishing feature, another feature appears, enabling them to
be distinguished again. In this way all the bit pairs are determined with a known
certainty. This certainty is amplified by the fact that each bit pair overlaps two
other bit pairs and the determinations must be consistent with each other.

Lack of space precludes full details, but the outline feasibility proof for these
exceptional cases with reasonable key lengths is as follows. As in the proof of The-
orem 1, each trace determines each bit (or bit pair) correctly with a given proba-
bility greater than some non-zero ǫ. As above, by selecting suitable criteria which



14 Published at eprint.iacr.org

depend on the choice of parameters, ǫ can be made noticably larger than 0 in all
cases. Indeed, from Lemma 4, it is 1 in some cases and above 1

2
for many others.

With n independently generated traces, each bit will be known with probability at
least 1−ǭn. To ensure an average of at most c = O(1) bits are incorrect, n must be
picked large enough to satisfy 1−ǭn > 1− c

log k
, and this requires n to be O(log log k).

However, we can reasonably assume that it is computationally feasible to check all
possibilities for every set of c ≤ 3.5 bits which might be in error: it requires checking
O((1

4
log k)2

c

) keys because essentially three quarters of the bits are already known.
Thus,

Theorem 2. No choice of algorithm parameters is secure for a reasonable key
length under the above attack if O(log log k) traces are available from point multi-
plications using the same unblinded key.

4.6 Counter-Measures

In the absence of a secure set of parameter choices, further counter-measures are
required. The most obvious counter-measure is to restore key blinding. A small
number of blinding bits might still result in the attacker’s desired 10 or so traces for
the same key eventually becoming available. These might be identified easily within
a much larger set of traces by the large number of shared characters between their
traces. So, to avoid such duplication, the size of the random number used in blinding
cannot reasonably be much less than the maximum lifespan of the key in terms of
the maximum number of point multiplications it is used for. Thus 16 or more bits
are needed, and this will add 10% or more to the cost of point multiplication.

Identical formulae for additions and doublings are increasingly efficient and ap-
plicable to wider classes of elliptic curves. We single out those of Brier and Joye [1]
in particular. However, the potential to deduce Hamming weights of bus data from
side channel leakage may still enable attackers to discriminate adds and doubles
from address or data loading cycles.

Another favoured counter-measure is the add-and-always-double approach which
is applied tom-ary exponentiation. Then each occurrence ofDD has an add inserted
to yield the pattern DAD, but the add output is discarded without having been
used. This should also be done for the Oswald-Aigner algorithm. In addition, an
extra double needs to be performed to convert each DAAD into DADAD, and the
double’s output is likewise ignored.

Alternatives randomized algorithms exist. Standard m-ary exponentiation [5]
is not subject to this type of attack, but re-use of operands might be detected
[16], making that method unsuitable even with key blinding in place. The MIST

algorithm [17–19] and an overlapping windows method [3] currently seem to be the
most robust choices under these types of attack.

5 Overview

The introduction presented an overview of two algorithm properties which appear
to be necessary for the above type of attack. Here, and in the attacks of [14] and
[20], the randomized algorithms always process the key through a subset of a small,
fixed set of values: after each iteration of the key processing algorithm, the scalar
which still needs processing is simply a prefix of the binary representation of the key
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plus a small carry. Thus, at any given point in the processing, the corresponding
sub-traces must all correspond to the same key bits plus the carry. Consequently,
unless perhaps the algorithm is extremely well-designed, it can be assumed that
the different frequencies of the various trace patterns will reveal the correct key
bit pattern with a confidence which increases with the number of traces. No cases
require more thanO(10) traces to recover the key. Thus, such randomized algorithms
are probably best used only for ephemeral keys unless there is confidence in the
efficacy of other counter-measures.

6 One Trace

It is interesting to speculate on how much data leaks from a single point multi-
plication since this may now be the main context for the algorithm. Oswald [10]
noted that for some deterministic re-coding algorithms in which several non-zero
digits generate indistinguishable As, the operation patterns resulting from numbers
of up to 12 bits could only represent at most 3 keys. By breaking a standard ECC
key into 12 bit sections, this means very few keys actually generate an observed
patterns of operations. Moreover, these can be ordered according to their liklihood
of occurrence, and this considerably reduces the average search time for the correct
key. Hence the key can be recovered quite easily.

She also writes that the same attack is possible on randomized algorithms with
weaker results, but provides no detail. Randomized algorithms have much weaker
inter-dependencies between adjacent operation patterns. This should substantially
increase the number of keys which match a specific pattern of point operations. The
key Lemma 4 above does not provide much certainty for any bits unless a number of
traces are available; only the infrequent instances of AA allow definite determination
of any bits. Of course, an analysis of subsequences of more than two bits is possible,
as in [14], but, besides better probabilities, this gives no further insight. Instead,
software was written to enumerate all the keys which could represent a given string.
On average, for the extended version of the algorithm, the trend up to 16-bit keys
indicates clearly that a little over O(

4
√
k) keys will match a given pattern – under

20 match a given 16-bit pattern. This would appear to ensure the strength of the
algorithm when a key is used just once but only if the key has at least 28 bits or
there is considerable ambiguity in the side channel about whether the operations
are adds or doubles. The original algorithm has fewer random choices, and so has
even fewer keys matching a given pattern.

With only two traces available for the same key, an attacker can use occurrences
of D to partition the traces into small corresponding sections which represent the
same key bits. From the two sets of matching key values for each section, he selects
pairs which differ only by the possible carry values at each end of the section. Then,
choosing the cases where the carry values match between sections, he concatenates
the possible bit strings for each section to recover the whole key. This is most likely
to produce a very small number of possible keys, and certainly a tractable number
for reasonable key lengths.
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7 Conclusion

One of several, similar, randomized exponentiation algorithms has been investigated
to assess its strength against a side channel attack which can differentiate between
point additions and point doublings. Straightforward theory shows that at most
O(10) uses of the same unblinded key will enable the secret key to be recovered
easily in a computationally feasible time. No choice of parameters improves security
enough to alter this conclusion. Using longer bit sequences than the theory, it is also
clear that software can search successfully for keys when just 2 side channel traces,
and perhaps only one, are available. However, this number may need increasing if
adds and doubles might be confused or standards for key lengths are increased.

The main property which is common to algorithms which can be attacked in this
way seems to be that the next subsequence of operations at a given point in the
processing of the key must be chosen from a small, bounded set of possibilities which
is derived from the key and the position, but is independent of previous choices.
Hence, our overall conclusion is that such algorithms should be avoided for repeated
use of the same unblinded key if adds and doubles can be differentiated with any
degree of certainty. Furthermore, for typical ECC key lengths, a single use may be
sufficient to disclose the key when adds and doubles are accurately distinguishable.
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