
Abstract—Compact exponentiation algorithms are required for
resource constrained cryptographic devices. Historically, binary
windowing algorithms have been among the best, and only they
are possible in the most restricted cases. However, with minimally
more area, mixed base representations of the exponent give rise to
algorithms with competitive speeds. Implementations of them using the
same area are compared for both RSA and elliptic curve applications,
and when processing the exponent digits in either direction. Walter’s
space-preserving duality (CT-RSA 2012, [34]) simplifies the comparison
to considering one direction plus secondary space and time issues
that distinguish the two directions. The duality led to a new, compact
left-to-right exponentiation method derived from the right-to-left division
chain method (Arith 13, [28]). Here, simulation results for this method
show it to be faster in constrained environments than the traditional
table-based algorithms for mixed base representations. Overall, the
classical binary algorithms are faster for RSA, but the new mixed base
algorithm is faster for the elliptic curves under the chosen memory
restrictions.

Keywords—Scalar multiplication, multi-base representation, mixed
base representation, exponentiation, dual addition chain, division chain.
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1 INTRODUCTION

It is always useful to have machinery to generate new
algorithms and to have a wide selection of algorithms
from which to choose when there are so many differ-
ent optimisations and conflicting pressures on the tar-
get computational platform. Cryptographic groups often
have some operations which are cheaper than the basic
group operation but, as well as space and time pressures,
embedded devices may have to achieve some measure
of side channel resistance. Here the main implement-
ation choices available for these are discussed in relation
to computing platforms with essentially minimal space
resources. The simplest exponentiation method, binary
square-and-multiply, requires just two locations for stor-
ing elements of the group in which the exponentiation
is performed. This investigation looks at the case of
having three locations. A new duality [34] between left-
to-right and right-to-left exponentiation methods is used
to derive some novel ways of processing the recoded
exponents and hence speeding up and/or randomising
the computation.

There are few comparative treatments of exponentia-
tion using different schemes. Joye [14] makes a compari-
son of left-to-right (L2R) and right-to-left (R2L) methods
but in general there is rarely more detail for an individual
algorithm than the total number of group operations,
perhaps split into the number of squaring and non-
squaring operations, or a count of the underlying field
squarings and multiplications. However, in addition to
squaring being cheaper than a general group multiplica-
tion, many groups have other favoured cheap operations:
inversion, the Frobenius endomorphism and composite
multiple-and-add operations on an elliptic curve are
examples. There is a general framework in which all of
these operations can be used effectively with the greatest
efficiency, and which allows the use of all the usual
exponentiation algorithms, namely that of a mixed base
representation. These are derived from a division chain
[28], for which recoding choices are made to satisfy the
various efficiency and other requirements for the target
platform.

In most circumstances processing in one or other
direction will have useful time, space or side channel
resistance advantages. Usually the standard left-to-right
table-based m-ary or sliding window exponentiation
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method is used. However, left to right processing of
recodings with a fixed radix can be attacked through
side channel leakage because use of the table entries
may reveal the values of the corresponding digits in
the representation of the secret key [29]. This may be
possible even when the key is used only once and under
the assumption that input messages to the exponentia-
tion are blinded and therefore unknown to the attacker.
Although a table based method may have side channel
disadvantages, the table values might be put into special
forms which make group operations significantly faster.
Among these possibilities, are the recently developed
double-and-add, triple-and-add and quintuple-and-add
composite elliptic curve operations [4], [6], [9], [12], [23],
but other fast operations benefit the opposite right-to-left
direction [27].

The original purpose here had just been to compare
the two directions in terms of speed and area over their
most compact implementations. It was already known
that algorithms could be translated from one direction to
the other using the transposition method [2], [18] which
preserves “time”, i.e. there is the same count of squarings
and multiplications in either direction when the method
is applied carefully1, but the method does not treat space.
However, during the research, it turned out to be possi-
ble to modify the method to treat space considerations as
well. The resulting new duality described in [34] shows
the two directions require essentially the same time and
space, with differences arising only at a secondary level
of detail. The main such differences are catalogued here,
as they have a modest effect on the most compact cases.
In particular, as well as certain operations being faster
in one direction than the other, L2R exponentiation may
suffer a greater space overhead for storing the recoded
exponent than R2L, whereas the R2L version has more
reading and writing to memory than L2R.

The new duality also gives rise to a new L2R algo-
rithm derived from Walter’s R2L division chain recoding
technique [28]. This is investigated in more detail than
its brief mention in [34]. Classical, binary-oriented algo-
rithms are generally better for residue rings, as in RSA,
but, where there is a cheap inverse – as in elliptic curve
cryptography – this compact mixed base L2R algorithm
is faster. The overhead is small since multi-base methods

1. Knuth’s example of 70 ([18], §4.6.3) does not even achieve this
property.
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are straight-forward, with little extra development time
and almost no extra code. An added benefit is that a
randomised recoding to a mixed base is an efficient
way of imparting some side channel resistance to the
exponentiation [30], [31]. Moreover, with its much greater
flexibility in a wider range of contexts than classical
methods, the new algorithm has the potential of generat-
ing new record speeds for resource constrained devices.

2 NOTATION & MIXED BASES EXAMPLES
Here a fresh, i.e. unseen, exponent D of cryptographic
size is assumed for every exponentiation, or at least
a fresh, randomly different scheme is required for the
exponentiation in order to avoid side channel analysis.
If D were used repeatedly and side channel leakage were
not a problem, time could be spent searching for an
efficient addition chain, with the cost of this amortized
over all instances of its use. For the single instances here
it is not possible to do this and still retain the requirement
for time efficiency. For a multiplicative group G, we
wish to compute gD for some fresh, random element
g ∈ G. Thus, it is not possible to pre-compute and store
any powers of g and spread the cost over a number of
exponentiations using different values of D. This would,
moreover, contradict the desire for space efficiency.

To construct the addition chain used to express an
exponentiation scheme for gD, it appears that one is
forced to break D iteratively into two parts, the smaller
of which contributes to the addition chain, and the
larger of which is fed into the next iteration. Addition
sub-chains corresponding to the smaller parts are then
concatenated into an addition chain for D. Specifically,
in all known schemes, this appears to require D to be
broken into either i) D mod r and bD/rc where r is
selected from a limited set of non-zero integers which
are close to 0, or ii) D−R and R where R is selected
from a limited set of integers with finitely expressible
relevant properties, at least one of which is close to D.
The former is the approach taken by Walter [28] with the
mixed base representation

D = ((dn−1rn−2+dn−2)rn−3+ . . .+d1)r0+d0 (1)

The latter is the approach pursued by Dimitrov [8] in his
multi-base representation

D =

n−1∑
i=0

diRi . (2)

In these representations di ∈ D for some pre-defined
digit set D, ri ∈ R for some pre-defined radix set R of
non-zero positive integers, and Ri ∈ R∗ is a product of
elements from R. The case of R = {2}, D = {0, 1} yields
the normal binary representation used in the standard
square-and-multiply exponentiation schemes.

Knuth [18] and Gordon [11] provide coverage of the
most important classical scalable exponentiation meth-
ods, and all relevant algorithms follow the mixed base

pattern (1) above. As well as the usual binary square-
and-multiply method (processing exponent bits in ei-
ther direction), there are its generalisations to the left-
to-right table-based m-ary method of Brauer [3] and
its dual, namely the right-to-left m-ary method of Yao
[36]. These arise by taking R = {m} and D any
set which contains at least a complete set of residues
modulo m, such as, typically, D = {0, 1, . . . ,m−1} or
D = {d−(m−1)/2e, . . . ,−1, 0, 1, . . . , d(m−1)/2e}. The
sliding window versions of both these algorithms [19]
correspond to R = {2,m} where m = 2w is a 2-
power, and non-zero odd digits being removed from
D. There is also the non-adjacent form (NAF) recod-
ing [16], [1] which yields two algorithms, one to pro-
cess the digits in each of the two directions. It uses
an extended digit set to allow the redundancy which
enables any pair of consecutive digits to include 0.
The tableless R2L method of Walter [28] takes, inter
alia, R = {2, 3, 5, 17, 33, 49, 65, 97, 129, 257, 513, 1025, . . .},
whereas that of Dimitrov [7] uses, inter alia, R =
{2, 3, . . .} with di = 0 if ri 6= 2. Gebotys & Longa
[21] deliberately select the mixed base representations
of [7] in order to make use of composite elliptic curve
operations which are cheaper than the sum of the costs of
their constituent group operations. Dimitrov et al. [9], [23]
previously used such operations to provide speed-ups
for the multi-base representation (2). Such applications
are among those of greatest pertinence here.

There are specialised mixed base recodings for improv-
ing side-channel resistance. Some simply reduce data-
dependent variation by performing a multiplication at
every conditional step in the loop body of algorithms
such as those in Figs. 1 and 2. This may be a dummy
multiplication whose result is discarded when di = 0. It
becomes part of the exponentiation as a result of how the
base/digit pair (ri, di) is translated into an addition sub-
chain. Alternatively, a digit set D may be chosen which
does not contain 0. Other counter-measures include a
random input to vary the recoding unpredictably. This
may allow limited re-use of the same exponent. Most
random recodings use a fixed power of 2 as the base;
some have a variable power of 2. They include those
of Liardet & Smart [20], Oswald & Aigner [26] and
Itoh et al. [13], among many. Those using a radix set
containing more than powers of 2 are restricted to the
MIST algorithm [30] where the choice of bases is random,
typically with R = {2, 3} or R = {2, 3, 5}. In such cases,
(1) is called a randomary representation.

3 RECODING TO A MIXED BASE OR MULTI-
BASE REPRESENTATION
Exponentiation is a two stage process. In the first stage, a
recoding is used to convert the exponent into an addition
chain [18] which provides rules for constructing powers
of the input in order to obtain the required output. In
the second, which may be executed in parallel with
the first, those addition chain rules are applied to the
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given group element to raise it to the required exponent.
With the space constraints here, the addition chain must
be annotated with register details which show how to
perform the computation in the space available.

Derivation of a mixed base form (1) is straight-forward
using the usual change-of-base algorithm with the (possi-
bly variable) base ri to generate the digits di from least to
most significant. Suppose Di is the value of D remaining
after generating the digits d0, d1, ..., di−1. The iterative
step starts by using a simple finite automaton to select a
base ri ∈ R. It applies some suitable rule such as exact
divisibility of Di by ri. Next, digit di ∈ D is chosen from
the residue class Di mod ri using some appropriate rule,
such as that of least absolute value, that of least non-
negative value, making Di+1 a multiple of 2, or a random
selection. The step is then repeated on Di+1 = (Di−di)/ri
until eventually Dn = 0 for some n. The recoding time
is usually quadratic in log(D) as it involves a “short”
division of the number Di−di with average size

√
D

by the base ri which has length O(1)2. In most of the
expected applications, a product in the group G will
also take quadratic time, so that the recoding will take
time equivalent to a very small constant number of
group operations whereas exponentiation in G will take
O(log(D)3) time. Recoding time can then be ignored
except for the smallest values of log(D) for which it is,
in any case, insignificant.

The detail of the finite automaton driving the recoding
(1) depends on device requirements, such as speed,
space or side channel resistance. For efficiency, a choice
giving di = 0 usually saves a multiplication in the
exponentiation, and taking ri as a power of 2 increases
the proportion of squarings, which are cheaper than
multiplications. Choosing the appropriate value for ri
may allow a Frobenius map to be applied, i.e. raising
to a power equal to the characteristic of the underlying
finite field. The cost of inversion or division in G will
determine whether negative digits can be employed.
Cheap double-and-add, triple-and-add and quintuple-
and-add composite elliptic curve operations [4], [6], [9],
[12], [23] could be employed when, for example, (ri, di)
can be chosen to be (2,±1), (3,±1) or (5,±1) respectively,
but this has slight detrimental repercussions on the code
area of the device. More precise recoding details for this
and how to optimise the choices are described in [33].

The multi-base approach (2) is difficult to put into
practice without imposing additional structure such as
that given in the mixed base representation (1) [7]. Digits
are generated from most to least significant, but the
choice of Ri is problematic. The main exception is when
every Ri is a power of the radix r in which D is presented
but, strictly speaking, that generates a single base rep-

2. The finite automaton chooses a digit in O(1) time, there are n =
O(logD) digits and each division Di+1 = (Di−di)/ri normally takes
O(logD) time. However, if every ri divides a power of the radix used
in the initial presentation of D then this division just requires moving
a pointer to the representation of D, which takes O(1) time and makes
the recoding algorithm linear in log(D).

resentation rather than a multi-base representation, and
this is of type (1). A left-to-right windowing algorithm
is the simplest non-trivial example of such a multi-base
recoding, whereas the right-to-left windowing algorithm
illustrates a mixed base recoding.

4 THE EXPONENTIATION
The second phase in an exponentiation is to apply an
addition chain corresponding to the recoding of D to
g ∈ G in order to compute gD. This is performed in
one of several ways. First, an algorithm specification is
required to show how results for individual base/digit
pairs (ri, di) are combined to yield gD. The standard
left-to-right (L2R) and right-to-left (R2L) choices are il-
lustrated in Figs. 1 and 2 respectively. These include
Brauer’s m-ary algorithm [3] and its dual by Yao [36] as
special cases. Secondly, a process must be described for
converting base/digit pairs into an addition chain which
is annotated with the memory locations used for each
operation. Specifically, for Figs. 1 and 2 this would mean
prescribing how to raise group elements to the powers
ri and d.

It is now apparent that the recoding and exponentia-
tion processes can often be run in parallel, as in sliding
windows [19]. Then the recoding generates the elements
of the addition chain just before use and in the same
order as that in which they are consumed. However, the
recoding process may have to generate the digits in the
opposite order from consumption, in which case the two
processes must run sequentially. In particular, this would
also require storing the recoding.

Large tables in Figs. 1 and 2 would be too expensive
for most embedded systems, and the speed-up they give
is negligible beyond two or three entries. If maximising
throughput for a given area is the objective, it is normally
better to implement several exponentiators with very
small tables. Hence the greatest interest in exponentiation
methods falls naturally on the most compact cases. The
binary square-and-multiply algorithm (in either direc-
tion) is the only sensible choice when the minimum
number of locations, viz. 2, are available for storing
elements of G. The main interest here is therefore in
algorithms which use three such locations. So the target
device has:

i) space for the recoded representation of the expo-
nent D (if necessary);

ii) two places T0, T1 (say) for group elements, used
for temporary storage or table elements;

iii) space P for the partially computed value of gD;
and

iv) any additional temporary working space required
for performing a group operation.

The recoding space (i) is discussed in more detail in §6.9.
Only one of the three locations T0, T1, P might technically
be a register and the other two somewhere in memory,
with values possibly only read or stored one word at
a time. By performing a word-by-word swap between
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Inputs: g ∈ G, D = ((dn−1rn−2+dn−2)rn−3+ . . .
+d1)r0+d0 ∈ N, where di ∈ D, ri ∈ R.

Output: gD
————————————————————————–
1 Initialise table: T [d]← gd for all d ∈ D \ {0}.
2 P ← 1G
3 for i← n−1 downto 0 do {
3b if i 6= n−1 then P ← P ri

3a if di 6= 0 then P ← P×T [di] }
4 return P

Figure 1. Left-to-Right (L2R) m-ary, Sliding Window or
Mixed Base Exponentiation

Inputs: g ∈ G, D = ((dn−1rn−2+dn−2)rn−3+ . . .
+d1)r0+d0 ∈ N, where di ∈ D, ri ∈ R.

Output: gD
————————————————————————–
1 Initialise table: T [d]← 1G for all d ∈ D \ {0}.
2 P ← g
3 for i← 0 to n−1 do {
3a if di 6= 0 then T [di]← T [di]×P
3b if i 6= n−1 then P ← P ri }
4 return

∏
d∈D\{0} T [d]

d

Figure 2. Right-to-Left (R2L) m-ary, Sliding Window or
Mixed Base Exponentiation

locations, we can survive with very little register space
and with only one location being accessible to write
results into during a group operation. This means that
the read and write costs of different locations need to be
accounted for when assigning weights to each base/digit
choice in the recoding. It also means that copy and swap
operations are required in the set of operations available
for manipulating group elements.

The working space (iv) is necessarily rather ill-defined.
For some groups it may be possible to discard input
words once they have been used and use the released
space to store the output words as they are computed,
thereby saving space. It may also be possible to use
part of the output register as working space until it is
needed for the computed output. This level of detail is
beyond the scope of the investigation, although we flag
the differences between algorithms where this may be an
issue that affects fair comparison.

5 BINARY ALGORITHMS
Suppose D were to contain only powers of 2. In this case,
the step P ← P ri in Fig. 1 or 2 would not require space
to store an extra group element while another group
operation was being computed. Hence both T0 and T1
can be used to store digit-related “table” values.

Suppose m is the largest power of 2 in D and 2
itself is also in D. We might expect to need a complete
set of residues modulo m in any recoding. However,

with a sliding window, digit di = 0 is chosen with
base ri = 2 whenever Di ≡ 0 mod 2 in the recoding
algorithm. Hence only odd non-zero digits are required.
This reduces the table size to at most m/2.

A further half of the table space may be saved
if division in the group G has essentially the
same cost as multiplication. Then the complete set
{1−m/2, 3−m/2, . . . ,m/1−3,m/2−1} of odd residues re-
quires a supporting table with entries only for the pos-
itive odd residues 1, 3, . . . ,m/2−1. Its size is just m/4.
The multiplication in step (3b) of Fig. 1 is then replaced
by the division P ← P/T [−di] when the digit di is
negative. Similarly the multiplication in step (3a) of Fig. 2
is replaced by T [−di] ← T [−di]/P when di is negative,
and the final product is, of course, only taken over the
digits represented in the table T .

This extra halving of the table size occurs for elliptic
curves since point additions and point subtractions have
similar costs, but not for RSA as modular division is
much more expensive than modular multiplication. So
it is now apparent that the limit of 2 on the table
size translates into a maximum base m = 8 for ECC
applications and m = 4 for RSA applications if m is
a base for which all non-zero residue classes are to be
represented by digit values.

5.1 Time – Recoding Choices
With two table locations available, the usual binary
square-and-multiply algorithm does not make full use
of the given resources, and is consequently slower than
what could be achieved: neglecting end issues, this bi-
nary method requires asymptotically one squaring and
half a multiplication per exponent bit in either direction.

However, the table is large enough to use a base 4 slid-
ing window with R = {2, 4} and digit set D = {0, 1, 3}.
Recoding is most easily done from the least significant
end, but can be done in the opposite direction [16], [1].
On average, half the base choices have base ri = 2 and
so half the choices have base ri = 4. The digit is 0
for ri = 2 and non-zero for ri = 4. Thus one third
of bits are consumed by loop iterations involving one
squaring and no multiplication, whereas the other two
thirds of bits are consumed by loop iterations involving
two squarings and one multiplication. So in addition to
the one squaring per bit there is on average only 1

3 rd
of a multiplication per bit. This is faster than the binary
square-and-multiply.

When division is feasible, the recoding can use a 3-
bit window with R = {2, 8} and D = {−3,−1, 0, 1, 3}.
The table T again contains elements indexed by the digit
subset {1, 3}. With a similar argument to that above, base
choices 2 and 8 are equally likely, and so one quarter
of bits are consumed by loop iterations involving one
squaring and no multiplication, whereas the other three
quarters of bits are consumed by loop iterations involv-
ing three squarings and one multiplication or division. So
in addition to the one squaring per bit there is on average
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only 1
8 th of a multiplication and 1

8 th of a division per bit
– a total of 5

4 operations per bit. This is cheaper than the
base 4 sliding window with only non-negative digits if
the cost of one division is less than 5

3 rds the cost of a
multiplication.

Finally, the w-NAF recoding has R = {2, 2w} and
D = {d : |d| < 2w, d odd}, with base 2 always hav-
ing digit 0, and adjacent digits not being both non-
zero. The recoding chooses di = Di mod 2w or di =
(Di mod 2w)−2w to make Di+1 even when Di is odd.
Pairing each non-zero digit with the following zero digit
gives a window of w+1 bits. Hence w-NAF is the same as
the base 2w+1 sliding window recoding described above
for which R = {2, 2w+1} but taking D as for w-NAF.
Thus, it does not provide a distinct method to be added
to those already under consideration.

5.2 Time – Direction Issues
Still considering only radix choices which are powers of
2, with a bit of care, the same number of squarings and
(non-squaring) multiplications should occur between
both the algorithms of Figures 1 and 2. Clearly, most
loop iterations corresponding to the same digit/base pair
will require the same number of squarings and multipli-
cations. So, for the two algorithms, we will count how
many extra operations are required over and above those
expected for the loop iterations, assuming t tabulated
digits 1, 3, 5, . . . , 2t−1. Without loss of generality, assume
that dn−1 6= 0 since any optimisation should adjust n to
make this true.

In the L2R algorithm, initialisation should involve one
squaring to obtain g2 (temporarily stored in P , say) and
t−1 multiplications to obtain the powers 3, 5, . . . , 2t−1
of g. In the first loop iteration, one multiplication is
saved by using an initialisation when P is first updated
from 1G. This totals one squaring and t−2 multiplications
more than what is naı̈vely expected from the loop.

In the finalisation step of the R2L algorithm, the return
value R is accumulated in the space used by T [2t−1]
to avoid using extra space, and an auxiliary product is
constructed in P :

P ← T [2t−1]
R← P ;
for i← t−1 downto 1 do
{ P ← P×T [2i−1]

if i = 1 then R← R×R
R← R×P

}
At the end of iteration i > 1 this has created
T [2i−1]× . . .×T [2t−1] in P and T [2i−1]1×T [2i+1]2×
. . .×T [2t−1]t+1−i in R. So it outputs the value R =
T [1]1×T [3]3×T [5]5× . . .×T [2t−1]2t−1, as required. The
code performs one squaring and 2t−2 multiplications.
However, there are t iterations of the main R2L loop
in which the table values are updated from 1 to a
non-trivial value. If these are replaced by initialisations

directly to the required values, then the number of extra
multiplications drops to t−2.

Thus both algorithms use the same number of multi-
plications and squarings. This becomes automatic when
the duality mechanism of [34] is applied (see §6.4)3. That
mechanism even changes the appropriate loop multipli-
cations in one direction into initialisations in the other.
The equality in operation counts means that the most
significant time differences between the two processing
directions is in
• the use of special forms for group elements and

group operations;
• reading and writing data to and from memory.

In the L2R version time could be spent putting the
table elements gd into a special form which makes the
multiplications by T [d] more efficient. Similarly, in the
R2L version there may be a special form that can be used
for P that is preserved under squaring and which speeds
up the squaring or the multiplication of T [d]. Both these
possibilities would normally reduce the overall time by a
small linear factor. Examples include the double-and-add
operation [10], [4].

For each operation, reading/writing is effectively lin-
ear in the size of the group elements whereas the oper-
ations themselves are typically quadratic in the element
size. Hence the overall difference in speed arising from
this will be negligible once cryptographic lengths are
reached. It is worth observing, though, that in the main
loop the L2R version writes only to P and only reads
from T whereas the R2L version reads from and writes
to both. This means potentially more data movement in
the R2L case.

5.3 Integrating Recoding with Exponentiation
The binary recoding algorithms of §5.1 are usually ap-
plied to D from least to most significant digit. Hence, for
the R2L direction, the recoding can be done in parallel
with the exponentiation and there is no need to store the
recoding. This is also true for the L2R direction if D is
presented in binary. Avanzi [1] shows how to generate
from left to right a sliding window recoding of similar
efficiency and resource characteristics to the above R2L
recodings. This is as follows.

Suppose division is expensive, so that no negative
digits are to be chosen. Then the digit set can again be
taken to be D = {0, 1, 3, 5, . . . ,m−3,m−1}, which con-
sists of 0 and all the odd numbers less than m, but take
R = {2, 4, 8, . . . ,m}. If D′ is the remaining unrecoded
suffix if D, then the recoding algorithm chooses base
r = 2 and digit d = 0 when the leading bit of D′ is
0. Otherwise, let d′ (6= 0) be the value of the leading
w = log2m bits of D′ and suppose 2s||d′ where ‘||’
denotes the highest power giving exact division. Then
take base r = 2−sm and digit d = 2−sd′. So, as d is odd,

3. This explains why the total counts in Möller’s Tables 1 and 2 [24]
are equal.
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d ∈ D. This is then repeated on the rest of D. As the
next s bits of D are 0, the next s choices would be of
base 2 with digit 0. Once fewer than w bits remain, the
same procedure is applied with w equal to the number
of remaining bits.

On the other hand, if division is relatively cheap
then negative digits are employed and the digit set
can be taken as D = {0,±1,±3, . . . ,±(m/2−1)}. Again,
R = {2, 4, 8, . . . ,m}. At any point in the L2R recoding,
suppose D′ is the unrecoded suffix of D and D′ the com-
plementary recoded prefix. So D = D′||D′. Suppose the
recoded digits generated so far have value D′+b′ where
b′ is the leading bit of D′. (This is an integer addition,
not a concatenation of binary strings interpreted as an
integer.) A 0 bit is prepended to D if necessary so that
this holds initially when no digits have been generated.
Suppose D′ = b′||D′′ and b′′ is the leading bit of D′′. If
b′ = b′′ then base r = 2 and digit d = 0 are chosen.
The generated digits then have value r(D′+b′)+d =
D′′+b′′ where D′′ is the prefix complementary to suffix
D′′. So our required loop invariant is preserved in this
case. Otherwise, suppose d′′ is the value of the leading
w = log2m bits of D′, D′′ is the remaining suffix of D′
with complement D′′, and D′′ has leading bit b′′. Then
D′ = d′′||D′′ as strings and mD′+d′′ = D′′ as values.
Define d′ = d′′−b′m+b′′. Then 0 ≤ d′ ≤ m/2 if b′ = 0,
whereas −m/2 ≤ d′ ≤ 0 if b′ = 1. So d′ ∈ D when d′ is
odd or zero. In this case choose base r = m and digit
d = d′. Then the digits generated so far have the value
r(D′+b′)+d = D′′+b′′ so that the required loop invariant
holds again. If d′ is even and 2s||d′ then d′ is split up as
before into an odd digit d′2−s with base m2−s followed
by s digits 0 with base 2. After this the loop invariant
holds as before.

Thus the main binary recoding algorithms can, with
only minor differences, be performed digit by digit in
either direction.

5.4 Side Channel Leakage
Implementation weakness arises because when the table
element is fetched, used, or written there is a dan-
ger that enough of its Hamming weight, address or
other identifying information will leak through power
variation or electromagnetic waves for an adversary to
determine which exponent digits are equal, and thereby
recover the secret key D. For L2R, the table elements
and their Hamming weights are fixed throughout the
computation, whereas for R2L, although there is more
movement of “table” data, only the addresses are fixed.
Countermeasures might blind this information leakage,
but R2L has a clear advantage without such blinding.
R2L can use random relocation of the data as a cheap
and easy way of blinding the addresses, whereas data
blinding for L2R is much more expensive.

We ignore the leakage problems of executing different
code for zero digits. This is common to both directions
and can be avoided by minor, judicious recoding (such as

Inputs: g ∈ G, D = ((dn−1rn−2+dn−2)rn−3+ . . .
+d1)r0+d0 ∈ N, where di ∈ D, ri ∈ R.

Output: gD
————————————————————————–

1 T ← 1G
2 P ← g
3 for i← 0 to n−1 do in parallel {
3a if di 6= 0 then T ← T×P di

3b P ← P ri }
4 return T

Figure 3. Compact Right-to-Left (R2L) Mixed Base Expo-
nentiation [28]

dummy multiplications) and perhaps the cost of another
register as well as more time if zero were excluded from
D [15]4. Indeed, one rather weak solution is to include
T [0] initialised to the identity element 1G, and remove the
conditional restriction in the main loop so that multipli-
cations by/of T [0] are performed. However, if different
non-zero digits cannot be distinguished in a cost effective
way by the attacker, then knowing the positions of zero
digits is probably insufficient in many cases to reduce
the search space for a secret key to a computationally
feasible size. Specifically, in our target platform there is
a table of two elements, representing two or four digits.
The attacker has to distinguish correctly which one is
used in each multiplication in order to discover the secret
exponent. This is extremely difficult even with strong
leakage which distinguishes individual digits [32].

6 MIXED BASE EXPONENTIATION

Let us now consider using a set R of bases which are
not all powers of 2. There has been recent research
to develop efficient composite double-and-add, triple-
and-add, quintuple-and-add, etc. operations for elliptic
curve cryptography. These can be used in a left-to-
right evaluation when the exponent D has a mixed
base representation which includes the bases 2, 3 and 5
respectively, e.g. [9], [23], [21]. Usually the best strategy
is to select a radix r for which the digit is 0 since it saves
a multiplication, and otherwise take r = 2. So di = 0 if
ri 6= 2 and odd or zero digits di for ri = 2 such that
|di| < 2t for the table size t = |T |. Within the restrictions
imposed by availability of digits, this re-coding was used
for the L2R and R2L results in Table 2 and it is close to
that of [21].

Figures 1 and 2 are presented in a form which shows
how to apply the recoding to perform exponentiation.
(We discuss these in more detail below.) However, there
is also a more compact tableless form given in Figure
3 in which there are only two quantities being stored
or updated: the usual cumulative product in T and a

4. Another register would be needed if a digit were to be added to
D to compensate for the loss of 0.
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digit-independent power gi = gRi for the radix product
Ri =

∏i−1
j=0 rj in location P . The iterative step forms

gi+1 = grii in P , sharing as much as possible of the
calculation with that for gdi

i , and multiplies the latter
onto T when formed. To avoid extra multiplications it
is best if the only digits allowed are those that appear
naturally when raising to the power ri (§6.1). They
need to appear in an addition chain for ri, ideally of
minimal length. In §6.2 the dual compact L2R mixed
base algorithm is constructed. It has a table of just one
element, corresponding to T in the R2L form, and, in a
similar way to there, the underlying addition chains for
ri simulate having a much larger table. By using dual
addition chains, the exponentiation has the same cost
in terms of multiplications and squarings for the two
directions.

6.1 Digit Availability
For this section it is assumed that not all bases are
powers of 2. So extra memory has to be available for
storing intermediate powers of g ∈ G when raising to
non-2-power exponent r. The space for this is normally
equivalent to one table entry, say P ′, and represents the
first major hidden space difference between binary and
properly mixed base exponentiations. So let P and P ′

denote the two registers (or other memory) used for
constructing and storing the rth powers and, as before,
let T be an array, indexed by a subset of digits, for
holding the digit-related table or accumulating products.
When T holds just one element then this satisfies the
space restrictions permitted in §4 for the target platform.
One is apparently therefore restricted to only the digit
values D = {0, 1} or D = {0,±1}, the latter when
inversion is cheap. However, the table entry can be
multiplied in at any time during step (3b) of the three
figures so far rather than as a separate step (3a) before
or after. This turns out to be equivalent to having more
digits available.

Several minimal length addition chains are of particu-
lar interest: 1+1 = 2 for base 2, 1+1 = 2, 1+2 = 3 for base
3 and 1+1 = 2, 1+2 = 3, 2+3 = 5 or 1+1 = 2, 2+2 = 4,
1+4 = 5 for base 5. These show that any digit power P d

can be constructed en route to the radix power P r and at
no further extra expense when 0 ≤ d < r and r ∈ {2, 3, 5}.
Once P d is obtained in Fig. 3, it is multiplied onto T
without incurring any space penalty because it requires
no extra resources beyond what are already required for
the next multiplication in forming P r. For digit powers
created in this way, the number of group operations
required to evaluate corresponding loop iterations will
be the same for the exponentiation schemes of Figs. 1,
2 and 3. This number is just that required for step (3b),
plus one when the digit is non-zero. Moreover, the cost
will still be the same even if we differentiate between
squaring and non-squaring operations.

However, for bases larger than 5 there may be digits
which are not in a shortest addition chain for the chosen

base. In any of the exponentiation algorithms, digits
not included in the table or obtained when raising to
the power r can be assigned an extra cost, such as the
number of extra group operations required to obtain the
requisite power using a longer addition chain – perhaps
∞ if there is insufficient space for its computation. For
example, in the L2R algorithm of Fig. 1, once the rth
power has been created in P , the working space P ′

becomes available for constructing any gd: the usual
binary algorithm can be used, holding the product in P ′

and multiplying in g from T when necessary. For the R2L
algorithms of Figs. 2 and 3 a similar process is possible.
Specifically, for h ∈ G initially in P , any hd can be created
in P ′ using the binary algorithm while retaining h in P .
This is then multiplied into T and subsequently hr is
created in P . Thus, every digit is available, although not
necessarily at an acceptable price.

The need for such costly extra digits can often be
avoided without incurring any penalty simply by a better
recoding. For example, any digits d larger than the base
r could be replaced by d−r and a carry of 1 generated to
the next digit up. In this way, the extra group operations
needed for creating these digit powers are used instead
to multiply their more naturally occurring constituent
components directly into T .

6.2 A Location-Specific Matrix Representation for
Addition Chains
As noted above, the addition chains for 2, 3 and 5
automatically yield the digit powers between 0 and the
radix choice r. The required value is multiplied into T
when created in the compact R2L scheme of Fig. 3. Hence
there is no extra cost for allowing certain digits although
table entries for them may not exist. Similarly, in an L2R
scheme, if g1 in T [1] is multiplied into P at the right time,
it gives rise to gd at the end of the loop iteration, and
so is equivalent to having a pre-calculated table value
gd. For example, with base 5, digit 4 and h initially in
P , the multiplications to perform are: P×T [1] → P ′,
P ′×P ′ → P ′, P ′×P ′ → P ′, P×P ′ → P . Although this
creates the desired h5g4 in P , it is unclear what digit
powers could be obtained in this way. In fact, all that is
needed is to take the dual of an addition chain for (r, d).

There appears to be no concept of location-aware
dual addition chains prior to [34]5. A register-specific
description is required to determine that a dual process
uses similar execution space as well as time. Suppose t
registers are available for computing powers of g ∈ G.
Then addition chain operations are defined more pre-
cisely by corresponding t×t matrices indexed by the
registers. These provide additional location information
by specifying where the group elements are read from
and written to. They act on a row or column vector
containing the exponents of the powers of g in those

5. There is a well-known transposition method which reverses edges
in the computational di-graph [18]. If done carefully, time can be
preserved, but it fails to address any space issues.
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registers. Suppose Mn−1,Mn−2, . . .,M1,M0 are matrices
representing the addition chain operations. (They may
represent more complex group operations than simple
multiplications.) For convenience, these are written in the
same order as the recoding of D so that M0 will normally
denote the start of the chain and be part of the sub-chain
for creating the least significant digit. Let the row vector
v, indexed by the registers, represent the values stored
initially in the registers. For the right-to-left (R2L) view
the matrices are applied in right-to-left order on the left
to vector vT to evaluate Mn−1. . .M1M0v

T and yield the
values in the registers at the end of the computation.
For the left-to-right (L2R) interpretation the matrices are
applied in left-to-right order to the right of v to evaluate
vMn−1. . .M1M0.

For example, suppose ga and gb are initially in P and
P ′ respectively. Then, in the R2L view, the addition chain
operations corresponding to the multiplication P×P ′ →
P and the squaring P×P → P are represented using
matrices and vectors indexed by (P, P ′) as, respectively,(

a+b
b

)
=

(
1 1
0 1

)(
a
b

)
and (

2a
b

)
=

(
2 0
0 1

)(
a
b

)
In Fig. 3 the contents of P and P ′ are entirely given

by applying a sequence of such matrices. At some point
during a loop iteration the required digit power hd of the
initial value h appears in P , say, with he, say, in P ′ (or vice
versa). Then, at the end of the iteration, hr appears in P
and some other unwanted value h∗ in P ′. Without loss of
generality, the matrices representing these addition sub-
chains have the forms(

d 0
e 0

)
and

(
r 0
∗ 0

)
=

(
i j
∗ ∗

)(
d 0
e 0

)
respectively, where the matrix with row (i j) corresponds
to the part of the addition chain after d is generated. So
r = id+je. After applying the addition chain correspond-
ing to the matrix with column (d e)T, the element in
register P is multiplied into T and the process continues
with the addition chain corresponding to the other ma-
trix. We would need to move up to 3×3 matrices indexed
by (P, P ′, T ) to represent this action. For the L2R dual,
the components of the same matrix product are applied
from left to right on a row vector, say (a 0). So, once

(a 0)

(
i j
∗ ∗

)
= (ai aj)

has been formed by applying the left hand factor to
the row, the element g1 in T is multiplied into P to
yield (ai+1 aj). For convenience, we skip the 3×3 matrix
view necessary to illustrate this. Then application of the
second factor creates

(ai+1 aj)

(
d 0
e 0

)
= ((ai+1)d+aje 0) = (ar+d 0) .

This is exactly how P needs to be updated by a loop
iteration in Fig. 1. In both directions this creates the
illusion of having a table element for digit d.

6.3 The Dual Addition Chain
Ideally, the dual addition chain would be that specified
by applying the matrices for each addition step in left
to right order to a row vector instead of right to left
on the corresponding column vector (or vice versa). Un-
fortunately, not every matrix which behaves as a multi-
plication in one direction behaves as a multiplication in
the other direction. So some extra care is necessary. For

example, in the R2L direction, matrix
(

0 2
0 1

)
acting

on a column vector represents the operation of squaring
the value in one register and writing the result into
the other register. However, this becomes a composite
square-and-multiply operation (or double-and-add) with
an initialisation when applied in the opposite direction,
i.e. to a row vector. So the permitted atomic addition
chain operations are restricted to exclude such cases; they
are replaced by compositions of simpler operations. If
the target device cannot perform every allowed atomic
operation – such as writing an output to the location
of an input – then the individual operations can be
combined into composite ones which the device can
execute.

Since the location of values is important, some extra
operations are required to move data around as well
as the usual ones for squaring and multiplication. Al-
together,

Definition 1: (cf [34], Def. 2) Seven classes of atomic
operations are allowed in location-aware addition chains:
• Copying one register to another;
• Copying one register to another & then initialising

the source register;
• Swapping the values of two registers;
• Inverting the value in one register;
• In-place squaring of the contents of one register;
• Multiplying two different registers into one of the

input registers;
• Multiplying two different registers into one of the

input registers, & then initialising the other input.
These operations do not change the values of any regist-
ers other than those mentioned. �

Any addition chain can be written using only the
above operations whatever registers are prescribed for
reading and writing. For example, if an operation, such
as multiplication or squaring, needs to write to a register
P ′′ which is not an input to the operation, then one of
its inputs is simply copied into P ′′ first and then the
operation performed using that copy. If multiplications
or squarings can only be performed on and to certain lo-
cations, then swaps of arguments and results can be used
to provide operations of greater generality. However, for
convenience, in the following it is assumed that there
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are no restrictions beyond those specified above. Includ-
ing an inversion operation enables addition-subtraction
chains to be represented and dualised as well. No initial-
isation only operation is required because it is incorpo-
rated when necessary into other operations. If desired,
the squaring and inversion classes might be extended
to include other unary powering operations such as a
Frobenius map.

For a device with two locations, R2L examples of each
class are, respectively,(

1 0
1 0

)
,

(
0 0
1 0

)
,

(
0 1
1 0

)
,

(
−1 0
0 1

)
,(

2 0
0 1

)
,

(
1 1
0 1

)
, and

(
1 1
0 0

)
.

This set is closed under transposition, and so the L2R
interpretations of them are also atomic operations. If
we define a location-aware addition chain as being a
sequence of such matrices then the transpose provides a
well-defined dual chain. Alternatively, a dual is obtained
by applying the matrices in the opposite order to a
column vector instead of a row vector of locations, or
vice versa. Of course, independently of the matrix repre-
sentations, the operators have transposes which enable
the dual to be defined. Removing the location details
and the copying operations leaves a classical addition
chain consisting of only squaring and multiplication
operations. So a dual for the classical addition chain is
obtained.

6.4 Counting Multiplications in the Dual Chain
Ideally we would like to have the same number of
multiplications and squarings in an addition chain and
its dual. This requires some restrictions on the allowable
location-aware chains to make them normalised. The form
is achieved by repeatedly applying the following to a
chain of atomic operations until none applies (cf [34]
Defn. 6):

i) any operation with 1G as an input should be
replaced by a simpler one which does not require
that argument;

ii) any operation with an argument which is not used
subsequently should be replaced by an equivalent
one that re-initialises that argument; and

iii) any operation whose result is unused must be
deleted.

Note that none of these modifications changes the num-
ber or type of the multiplicative operations, nor the
overall output. One more condition is imposed, namely,

iv) the number of inputs to the chain is the same as
the number of outputs from the chain.

So, if the same registers are used for output as for input,
there is a complementary set of non-I/O locations used
solely for intermediate calculations.

Theorem 1: [34] Using the above construction for
location-aware addition or addition-subtraction chains,

the number of squarings and the number of multiplic-
ations is the same for a normalised chain and its dual.
�
This is easily proved by counting the number of oper-
ations which initialise a location to 1G and equating it
to the number of operations which overwrite a location
containing 1G.

Removing the location details yields a corollary for the
classical addition chain:

Theorem 2: A normalised addition chain and its dual
have the same length. �

When the normalised chain computes only the value
gD, the matrix representing its action has a single non-
zero value, namely D. So the dual also computes gD

(providing the reading and writing locations are inter-
changed). However, if the chain computes several values
– a multi-exponentiation – then its dual may compute
different values. Clearly, if inputs and outputs are to be
via the same locations for a chain and its dual, then the
two chains compute the same values if, and only if, the
matrix representing the action of one is symmetric, i.e.
equal to its transpose.

6.5 Some Duality Examples
Suppose a device has locations R0, R1 and R2 with
R1 used for I/O. Let ←I denote assignments which
include initialisation of any input location which is not
the location being assigned to. Then the following is a
location-aware chain which outputs g3 in R1 if g ∈ G is
initially in R1. It follows the construction rules provided
in the previous section.

R2← R1; R2← R1+R2; R0←I R1;

R1←I R2; R1←I R0+R1;

This includes two multiplications and no squarings.
The R2L matrix equivalent acting on the column vector
(R0, R1, R2)T is(

0 0 0
1 1 0
0 0 1

)(
1 0 0
0 0 1
0 0 0

)(
0 1 0
0 0 0
0 0 1

)(
1 0 0
0 1 0
0 1 1

)

×

(
1 0 0
0 1 0
0 1 0

)
=

(
0 0 0
0 3 0
0 0 0

)
.

Applying this L2R on a row vector (R0, R1, R2) gives the
dual location-aware chain

R0← R1; R2←I R1; R1←I R0;

R1← R1+R2; R1←I R1+R2;

which also has two multiplications and no squarings.
As a second example, the classical addition chain

1+1=2, 2+2=4, 4+1=5 shows roughly how to implement
the base/digit pair (5, 4) in the R2L algorithm of Fig. 3.
Adding the location information for registers T, P, P ′
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gives
P ′ ← P ; P ← 2P ; P ← 2P ; T ← T+P ; P ←I P+P

′;

This has two I/O registers, namely T and P . It acts on
(g, h, ∗) to produce (gh4, h5, 1G) using two squarings
and one multiplication. The dual of the chain is
P ′ ← P ; P ← T+P ; P ← 2P ;P ← 2P ; P ←I P+P

′;

which acts on (g, h, ∗) to produce (g, h5g4, 1G), also using
two squarings and one multiplication. This is the updat-
ing required for a left-to-right algorithm.

6.6 The Montgomery Powering Ladder
Constructing a dual for the Montgomery Powering
Ladder [25], [17], [35] illustrates some of the subtleties of
normalisation which, if ignored, may lead to a different
number of some types of operation in the dual.

A slightly modified version of the original algorithm
is given in Fig. 4. Taking the transpose yields the re-
markedly similar algorithm of Fig. 5 which computes the
same value. The correctness proof for the L2R version
simply involves checking that T [0] = gDi , T [1] = gDi+1

where Di =
∑n−1

j=i dj2
j at the end of the loop iteration

using di. That for the R2L version involves checking that
T [0] = g2

i−Di
′
, T [1] = gDi

′
where Di

′ =
∑i−1

j=0 dj2
j at the

end of the loop iteration using di−1.
The usual requirement for dn−1 = 1 has been dropped

and the initialisation simplified in Fig. 4 to give a more
uniform presentation. Those conditions would need to
be restored to ensure that each loop iteration consisted
of a non-trivial multiplication followed by a non-trivial
squaring. However, the main problem for normalising
the usual version of the Ladder is the redundant opera-
tion on T [1] in the last loop iteration – the final value of
T [1] remains unused.

Observe that if D ≡ 0 mod 2a then the last a+1
loop iterations have non-trivial, unused multiplications
in step (2a) of Fig. 4, whereas the corresponding first
a+1 loop iterations in Fig. 5 have trivial multiplications
by 1G in step (2a). The cost of the two algorithms
is therefore different unless there are extra conditions.
Here, requiring d0 6= 0 and, dually, dn−1 6= 0 for both
algorithms limits the trivial and superfluous operations
at each end of the algorithms so that the numbers of
squarings and multiplications could be equated. Under
these extra conditions the initialisation and finalisation
could be easily modified to include the first and last loop
iterations and yield normalised, regular algorithms.

An interesting difference between the algorithms is
that the loop operations in the L2R version can be
computed in parallel whilst those in the dual can not.
On the other hand the dual version can use a more
efficient double-and-add operation on an elliptic curve.
The left-to-right version can also compute gD on an
elliptic curve using only the x- and z- projective coor-
dinates using the known coordinates of T [0], T [1] and
T [1]/T [0] = g to recover the y-coordinate. Unfortunately,

Inputs: g ∈ G, D =
∑n−1

i=0 di2
i

where di ∈ {0, 1} for 0 ≤ i < n− 1.
Output: gD
————————————————————————–

1a T [0]← 1G
1b T [1]← g
2 for i← n−1 downto 0 do {
2a T [1−di]← T [0]×T [1]
2b T [di] ← T [di]

2 }
3 return T [0]

Figure 4. Left-to-Right (L2R) Montgomery Powering
Ladder [17]

Inputs: g ∈ G, D =
∑n−1

i=0 di2
i

where di ∈ {0, 1} for 0 ≤ i < n− 1.
Output: gD
————————————————————————–

1a T [0]← g
1b T [1]← 1G
2 for i← 0 to n−1 do {
2b T [di]← T [di]

2

2a T [di]← T [0]×T [1] }
3 return T [1]

Figure 5. Quasi-Dual Right-to-Left (R2L) Montgomery
Powering Ladder

this is not possible in the dual version as the coordinates
of T [1]/T [0] = g2

n−1

are unknown. This example of
duality only uses two locations, however, and so falls
outside the main scope of this study.

6.7 The New Compact L2R Mixed Base Algorithm
For any given base r it is relatively straight-forward to
generate addition chains for r and see which digit values
d are produced by each chain. When register information
is added, these enable the R2L division chain algorithm
of Fig. 3 to be executed. The construction of the dual
location-aware addition chain enables the algorithm to
process the digits in the opposite L2R order with the
same space resources and the same numbers of squarings
and multiplications. Moreover, all the digits available for
the R2L direction are also available for the L2R direction.
The resulting new compact L2R algorithm achieves the
same results at the end of each loop iteration as the
algorithm of Fig. 1, but requires a table T containing only
the initial g ∈ G, not every digit power. The algorithm,
first given in [34], is outlined in Fig. 6 and the loop
iteration detail is provided by using a dual chain for the
base/digit pair, as illustrated in §6.5.

For completeness, Table 1 provides the L2R register-
level instructions suitable for the most common
base/digit pairs (r, d), d ≤ 5. The notation for the
operation sequences on the three registers T , P , P ′ is
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Inputs: g ∈ G, D = ((dn−1rn−2+dn−2)rn−3+ . . .
+d1)r0+d0 ∈ N, where di ∈ D, ri ∈ R.

Output: gD
————————————————————————–

1 T ← g
2 P ← 1G
3 for i← n−1 downto 0 do
3a P ← P ri×T di

4 return P

Figure 6. Compact Left-to-Right (L2R) Mixed Base Expo-
nentiation [34]

self-explanatory. All initialisations have been removed
because none has practical value except when taking the
dual. The last column indicates one way of assigning the
operation types, including double-and-add (DA), triple-
and-add (TA) and quintuple-and-add (QA) composite
operations. (Following the elliptic curve context in which
efficient implementations of these may be available, ad-
ditive notation has been used to describe them rather
than multiplicative notation.) Since there may be time to
put the table element in a special form (such as affine
rather than projective coordinates), multiplication by the
table element may be faster than multiplication by a
random element. This is denoted by A rather than A.
If the digit range includes negative digits and division
costs the same as multiplication, then more of the loop
iterations could make use of this special form with the
cheaper operation A.

(r, d) Operation Sequence Operations

(2,0) 2P → P ; D
(2,1) 2P → P ; T+P → P ; DA
(3,0) P → P′; 2P′ → P′; P+P′ → P ; T
(3,1) P → P′; 2P′ → P′; P+P′ → P ; TA

P+T → P ;
(3,2) P → P′; T+P′ → P′; 2P′ → P′; A, DA

P+P′ → P ;
(5,0) P → P′; 2P′ → P′; 2P′ → P′; Q

P+P′ → P ;
(5,1) P → P′; 2P′ → P′; 2P′ → P′; QA

P+P′ → P ; P+T → P ;
(5,2) P → P′; 2P′ → P′; T+P′ → P′; DA, DA

2P′ → P′; P+P′ → P ;
(5,3) P → P′; T+P′ → P′; P+P′ → P ; A, A, A, A

P+P′ → P′; P+P′ → P ;
(5,4) P → P′; T+P′ → P′; 2P′ → P′; A, D, DA

2P′ → P′; P+P′ → P ;

TABLE 1
Register Instructions for Loop Iteration in the L2R

Compact Mixed Base Exponentiation

It is, of course, always possible to include a larger table
T in the compact L2R algorithm. For example, including
g3 in the table would allow a cheaper implementation
of base 4 with digit 3. However, the space limitation to

three registers makes this impossible on the target device.
Space permitting, the dual R2L algorithm to this would
also have a larger T used in a way similar to that in
Fig. 2.

6.8 Recoding Time
Some mixed base recoding algorithms are presented
in [7], [28], [30] and above. Generally, the algorithm
decides the ith base/digit pair (ri, di) using the value
of Di mod π where π is divisible by every element in B.
This value may enable several digits, say j, to be decided
at one go if π is increased sufficiently, ideally to just
less than the maximum value of a machine word. Then
determining Di mod π, base/digit pairs i to i+j−1, and
Di+j uses the school book short division algorithm and
will typically require between 2ni and 4ni word×word
divisions or multiplications where Di is ni words long,
plus a similar number of additive operations. It will also
make Di+j around half a word or so shorter than Di, say,
the actual amount depending on how fussy the recoding
algorithm is, i.e. how large π must be to decide one
digit, and therefore how many digits can be decided with
the chosen π. On average ni is half the word length of
D, and so the total number of word operations for the
recoding should be no more than that for around half
a dozen multiplications of integers the size of D – very
comparable with the cost of a single elliptic curve point
addition. This cost is the main time penalty for using a
mixed base representation rather than a purely base 2
sliding window which requires at most a partitioning of
the exponent bits. However, if D is already represented
in base π, then much of this cost can be saved.

This method for the recoding clearly has a word oper-
ation complexity of O(n2) where n = O(logD) is the key
length, i.e. the number of digits in D. A multiplication
in G is also typically O(n2), so that the exponentia-
tion has a word complexity of O(n3). Consequently, for
cryptographic key lengths the recoding cost should be a
relatively insignificant part of the whole computation.

6.9 Recoding & Other Space Issues
Given a binary representation of D, the mixed base
representation can only be generated from left to right,
forcing the storage of the recoding if an L2R expon-
entiation method is used. The space required depends
on the recoding function, but is generally under about
3 log2D. Since

∏n−1
i=0 ri ≈ D, the binary representations

for the sequence r0, r1, . . . will take about log2D bits,
and, if there are at most r digit choices for base r
then the sequence d0, d1, . . . takes another log2D bits,
approximately. Another log2D bits or so may be used
to mark the start of each base/digit pair.

In practice some simple compression may reduce this
considerably. For R = {2, 3} and digits in the range 0
to r−1, a single bit could be used for the base, one bit
for a base 2 digit, and two bits for a base 3 digit. If
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every base choice were 2, then the space taken would be
2dlog2De bits. If every base choice were 3, then the space
taken would be 3dlog3De ≈ 3 log3 2 log2D < 2 log2D.
Whatever the ratio of choosing base 2 against base 3, the
total will be between these limits, and therefore bounded
by 2dlog2De bits.

Another typical choice might be R = {2, 3, 5} with the
digit set {0,±1} for base 2 and only digit 0 for bases
3 and 5. One bit would indicate whether base 2 was
chosen. In the case of base 2, two further bits would
indicate the digit choice. Otherwise, one extra bit would
be used to indicate the choice of base 3 or 5. Then
there would be an upper bound of 3dlog2De bits for the
recoding space. This could be reduced if every non-zero
digit had to be followed by a digit 0.

When the recoding is generated on-the-fly for R2L
methods, the only extra storage requirement is that for
the value of Di, which is the same as that for D. So L2R
requires more space than R2L if elements of R are not all
powers of a single number. However, in many protocols
the exponent is random, and might be generated on-the-
fly in mixed base form. In this case the space required
by a recoding of D can be ignored, making L2R and R2L
space requirements identical.

Finally on space issues, unlike the binary case with
D given in binary, D is destroyed by the mixed base
recoding. Hence, for both directions, extra space may be
required in the mixed base case to store the initial value
of D. Also, unlike the L2R cases, the input “message”
g∈G is destroyed by all the R2L methods, and so further
space may be required to preserve it.

6.10 Composite Elliptic Curve Operations
The duality between L2R and R2L suggests speeds
should be almost identical. However, particularly with
reference to the group of points on an elliptic curve, the
pre-computed L2R table entries might be manipulated
into special forms (such as affine rather than projective
coordinates [5]) which may make all the multiplications6

by the digit powers in T cheaper in the L2R direction
than the R2L direction [9], [23], [21]. Here “cheaper” may
mean less space (e.g. two coordinates instead of three)
and/or faster (e.g. from specialised mixed coordinate
operations). Indeed, one might save up to 5 of 16 field
operations in the point additions (Jacobian coords) [22].
On the other hand, for R2L every operation bar that
involving T is a powering of P and there are faster
methods also for those cases [12], [27], [14]. In general
one can expect some composite operations in the group
G to be cheaper than the sum of the costs of their con-
stituent operations. How well these can be applied seems
to determine whether R2L or L2R will be faster since
duality shows that the same number of multiplications

6. The reader is reminded that the group G is being represented
multiplicatively. So, on an elliptic curve, ‘’multiplication” here (and in
Table 2) means what is more usually described as ‘’point addition” and
‘’squaring” means ‘’point doubling”.

and squarings occur in either direction. A more efficient
Frobenius operation (raising to a power equal to the
underlying field characteristic) applies equally well in
either direction, and is something that may be taken
advantage of in a recoding which favours such powers
for either digit or radix.

7 SIMULATION RESULTS

Sections 5 and 6 describe the best binary and mixed
base exponentiation algorithms when only three memory
locations are available for storing powers of the input
element g. This section compares the approaches. Since
the mixed base recoding for an L2R algorithm typically
occupies space equal to another element of G, the com-
parison also includes binary algorithms with an extra
location, i.e. four in total, so that the L2R versions can
be compared more fairly.

Mixed base recoding is a Markov process with a tran-
sition matrix determined by the residue of Di modulo
the lowest common multiple of the base choices. For
any recoding algorithm it is therefore straightforward
to determine the asymptotic relative frequencies of the
various base/digit pairs, and hence the average numbers
of squarings, multiplications or any composite operation
per exponent bit. The results are given in Table 2 for
base set B = {2, 3} and the recoding given in the
first paragraph of §6. A better recoding is possible, but
improves the speed only marginally. The #Multns column
combines the numbers of squarings and multiplications
for several likely ratios Sq/Mu of their relative costs. The
cost of table and other initialisation (such as recoding) is
omitted.

The results are divided into two sets according to
whether or not inversion is essentially free in the group.
This allows application of the conclusions to both the
RSA and elliptic curve cases. The speed of the left-to-
right compact mixed base algorithm (Compact) is com-
pared to the normal table-based mixed base version for
a table of size 1 (MB Table), as it occupies the same
space. The sliding window algorithm of equivalent space
has a table of between two and three elements (SWin2
and SWin3 resp.), depending on whether or not space is
needed for the mixed base recoding of D.

The table shows that sliding windows gives the best
speed for slightly less space when there is no cheap
inversion. However, the compact mixed base algorithm
is fastest when inversion is free. Being new7, it should
enable new records to be set for elliptic curve point
multiplication on the smallest devices by using combined
double-and-add or triple-and-add formulae as described
by Longa and Gebotys [21] who only used the traditional
table-based version for their record.

7. At the time of writing, the more detailed account in [34] had not
appeared.
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log2D = 160, with inversion log2D = 1024, without inversion
Sq/Mu Method #Mults Sq/Mu Method #Mults

1.0 MB Table 203.9 1.0 MB Table 1415.2
1.0 Compact 190.5 1.0 Compact 1388.7
1.0 SWin2 200.0 1.0 SWin2 1365.3
1.0 SWin3 195.6 1.0 SWin3 1316.6
0.8 MB Table 173.4 0.8 MB Table 1220.6
0.8 Compact 159.6 0.8 Compact 1196.0
0.8 SWin2 168.0 0.8 SWin2 1160.5
0.8 SWin3 163.6 0.8 SWin3 1111.8
0.5 MB Table 126.7 0.5 MB Table 936.7
0.5 Compact 113.2 0.5 Compact 907.2
0.5 SWin2 120.0 0.5 SWin2 853.3
0.5 SWin3 115.6 0.5 SWin3 804.6

TABLE 2
Comparative Speeds for Sliding Window and Mixed Base

Exponentiation

8 CONCLUSION
The most compact versions of mixed base exponentiation
have been studied and compared to binary algorithms
which use the same space. The comparison was sim-
plified by applying a recent space-preserving duality
between left-to-right and right-to-left algorithms which
shows that, to a first order, the two directions have
the same speed when given the same area. The main
differences were identified, namely the space for the
recoded exponent and preserving copies of the original
exponent and input message, the time reading from and
writing to memory, and differential costs for composite
group operations in the two directions. Even taking into
account the cost of recoding, the mixed base algorithms
were shown to be faster where inversion is essentially
free, such as in elliptic curve applications. So, in the
presence of side channel leakage, the arguably more
secure right-to-left direction of exponentiation may be
used with little or no speed or area penalty, and perhaps
even with some performance gain from not having to
store the recoding. The duality gives rise to a compact,
left-to-right mixed base algorithm which makes use of
efficient composite curve operations and is a few per
cent faster than that used recently by Longa and Gebotys
[21] to obtain record speeds for scalar multiplication on
elliptic curves. The ability to tune the recoding algorithm
to make maximal use of cheap composite operations such
the Frobenius map means that mixed base algorithms can
provide better results in much wider contexts than the
classical binary-based exponentiation algorithms.
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[10] K. Eisenträger, K. Lauter & P. L. Montgomery, Fast Elliptic Curve
Arithmetic and Improved Weil Pairing Evaluation, CT-RSA 2003,
LNCS 2612, Sringer-Verlag 2003, pp. 343–354.

[11] D. M. Gordon, A Survey of Fast Exponentiation Algorithms, Journal
of Algorithms, 27, 1998, pp. 129–146.

[12] J. Guajardo & C. Paar, Efficient Algorithms for Elliptic Curve
Cryptosystems, CRYPTO ’97, LNCS 1294, Springer-Verlag, 1997,
pp. 342–356.

[13] K. Itoh, J. Yajima, M. Takenaka & N. Torii, DPA Countermeasures by
Improving the Window Method, CHES 2002, LNCS 2523, Springer-
Verlag 2002, pp. 303–317.

[14] M. Joye, Fast Point Multiplication on Elliptic Curves Without Precom-
putation, WAIFI 2008, LNCS 5130, Springer-Verlag, 2008, pp. 36–
46.

[15] M. Joye, Highly Regular m-ary Powering Ladders Selected Areas
in Cryptography (SAC 2009), LNCS 5867, Springer-Verlag, 2009,
pp. 350–363.

[16] M. Joye & S.-M. Yen, Optimal Left-to-Right Binary Signed Digit
Recoding, IEEE Trans. Comp. 49(7), 2000, pp. 740–748.

[17] M. Joye & S.-M. Yen, The Montgomery Powering Ladder,
Proc. CHES 2002, B.S. Kaliski Jr., Ç. Koç & C. Paar, (editors),
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