FORMAL METHODS IN SOFTWARE
ENGINEERING

Colin D. Walter

Department of Computation
UMIST
PO Box 88
Manchester M60 1QD, UK

WWW.co.umist.ac.uk

1 Introduction

Formal methods in software engineering refers to the use of mathematics to
produce more reliable software, and, if necessary, to prove its correctness. It
is discrete mathematics, and in particular mathematical logic [2], [7], which is
mainly used. As in traditional engineering subjects where it is analogous to
continuous mathematics, its use is both in the theoretical foundations of the
subject, and applications.

2 Defining Semantics

On the theoretical side, mathematics is used to make quite precise the meaning
of programming languages [4], [9]. This is called axiomatic semantics, opera-
tional semantics, denotational semantics, operational semantics, etc., depending
on the view taken. It should include a description of the model of computation
expected on the target machine and a formal treatment of exception handling,
as knowledge of both of these is necessary to enable anything to be proved about
programs.

3 Computability & Efficiency

At a deeper level, logic also treats problems of computability through, for ex-
ample, the study of simple but powerful models of machines, such as Turing
machines [5]. There are tasks that we would like to be able to do using a com-
puter program, but cannot. Of particular interest here is the impossibility of
constructing a general purpose theorem prover. More generally, the space and
time efficiency of algorithms is studied [5] because only finite resources are avail-
able for computing. Part of program verification involves checking that sufficient
resources are indeed provided.



2 Concise Encyclopedia of Software Engineering

4 Functional Specification

A number of aspects are involved in producing reliable software but most fre-
quently the functional properties are investigated first. This requires the use of
a specification language to describe (i) properties required of the input, called a
pre-condition, and (ii) relationships required between input and output, called a
post-condition. Such a pair of formulae is called a functional specification. Code
can be written and maintained much more successfully against such specifica-
tions than with informal descriptions. Such methods should be used as widely
as possible, especially on critical components of software.

5 Verification

In sections where reliability is paramount, the formally defined semantics of the
programming language are then used to prove the software. This requires estab-
lishing that if the input satisfies the pre-condition properties (i) then, provided
proper termination occurs, output satisfying the post-condition properties (ii)
is obtained. This stage is called partial verification. Of course, when this can
be done, it only establishes that the software is partially correct with respect
to the formal functional specification. Some problems still remain. First, proper
termination needs to be checked. But in addition there is no guarantee that
the specification itself is correct; higher level descriptions use natural languages,
with all their inherent imprecision and ambiguity, so that connections with the
informal requirements cannot be given exactly, let alone proved.

Normally not all of the software needs to be written or maintained rigorously
against a formal specification, and few aspects of the software need to be proved
formally in the above way. So usually the formal functional specification which
is to be constructed need only reflect part of the total functionality.

6 Specification Languages

A variety of different specification languages has arisen because of differing needs
and situations. The raw ingredients of pre- and post- conditions, which are writ-
ten in notation similar to that of standard mathematical logic, need to be com-
bined with further information, such as lists of external variables whose values
may be accessed or updated, or both, in order to make the interface with the rest
of the world complete and precise. For imperative programming languages, the
two most widely used notations are those of VDM [6] and Z [8], [11]. For declar-
ative languages (functional and logic programming languages) program scripts
are much closer to the specifications we would like to write, and the appropriate
specification language is obtained by doing little more than adding quantifica-
tion to the programming language. (This is equivalent to allowing infinite loops,
which, of course, leads to non-executability.) Algebraic specification languages
are used for this [3]. Distributed and parallel computing problems may require
temporal logic rather than classical logic for their specification, and use notations
such as CSP [6], CCS [10] or Petri nets.



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 135-138 3

7 Application of Logic

Verification is done by using an appropriate logic containing axioms and inference
rules to deduce the post-condition from the pre-condition [2]. For each construct
in the programming language the logic includes an inference rule which defines
its semantics. The meaning of the whole construct is determined in terms of
the semantics of its constituent constructs by means of pre- and post conditions
for each of the constructs involved. Application of these inference rules is often
subject to the satisfaction of a property, called a wverification condition, which
relates some of the pre- and post- conditions.

8 Verification Conditions

Program provers are expected automatically to reduce a statement that certain
code satisfies a given specification to the claim that a particular logical formula
holds. This is done by a verification condition generator and depends on the code
being annotated sufficiently with pre- and post- conditions and formulae called
loop invariants. The inference rules for a construct do not always enable one to
deduce the pre-and post- conditions needed for all the constituent parts in order
for the whole construct to behave as desired. Those formulae which cannot be
deduced must be supplied. As noted above, some inference rules also involve a
verification condition that must be satisfied. Combining these yields a logical
formula upon which the correct functioning of the software depends.

9 Theorem Provers

A program prover must now invoke a theorem prover to show that the remaining
logical formula is always true. Gédel showed in the ’30s that there is no algo-
rithm that will always establish the validity or otherwise of any formula. Hence
the theorem prover must either fail occasionally or require human interaction.
A number of theorem provers are on the market, and they are the centre of
much research, not just because of their application to proving partial correct-
ness of programs, but also because the can be used to deduce information from
databases. Indeed a Prolog system is really just a theorem prover.

10 Termination and Convergence

The description of functional specification and verification above assumed that
the code eventually terminated with some output rather than becoming stuck
in an infinite loop or producing an error condition. Proving the boundedness of
loops involves showing that successive states at some exit point from the loop
converge to a state satisfying the exit condition. When using complete number
systems such as the reals R, this may require application of the usual definitions
in mathematical analysis of continuity and convergence under the appropriate



4 Concise Encyclopedia of Software Engineering

topology. When working with finite sets of the integers, this usually involves a
well-ordering of the successive states, which effectively means associating those
states with a strictly decreasing sequence of natural numbers — such a sequence
must be finite. All looping constructs have to be checked, including recursion, and
care must be taken to avoid unexpected circuits in linked data structures. Careful
programming makes this, and indeed the whole verification process, easier.

11 Concurrent Programming

The use of a number of processors in distributed or parallel computing raises
a number of subtle problems to do with convergence and termination (see [1])
which do not arise, or are simple, in the sequential case. Thus, processes com-
peting for the same resources could result in deadlock through mutual exclusion,
causing some requested outputs not to be computed. Liveness is the property
that anything that is supposed to happen eventually does so. This is the proper
generalisation for concurrent processing of checking termination in a sequential
system. Verifying the liveness of a system is part of applying formal methods.
Not only is the complete deadlock of the system to be avoided, but also the
lockout of any individual process.

Another important correctness property here is that of safety, which in this
context is the generalisation of partial correctness for a sequential process. As
well as each processor performing correctly with respect to its functional specifi-
cation there are synchronisation requirements to satisfy, with consumers having
to wait for input to become available, and consuming all input in order.

12 Checking Resources

We have dealt with non-termination above, and now turn to improper termina-
tion through the raising of exceptions. This arises from what may be regarded as
run-time type errors. Typically, sufficient resources may not be available. Thus,
the implementations of the reals or integers or the memory may be assumed
infinite for the partial verification process described above, whereas in reality
they are not: multiplication of two over-large numbers gives a result outside the
implemented type Integer. However, if we ensure that the model of computation
used in the partial verification really matches in all respects the resources avail-
able on the target machine, then this kind of type checking is already done as
part of the verification process above. In practice, though, it is often useful to
tackle these problems separately, especially if run-time errors are acceptable.
However, what cannot be checked at that stage are the properties required
of external objects, such as files to which a program may wish access. One is
then forced to verify the whole environment, or be content with the possibility of
run-time errors from this source. In particular, in this wider context, it usually
has to be assumed that the software is compiled correctly, and runs on correct
hardware under a correct operating system. Clearly, verified software can still



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 135-138 5

produce undesirable output if these assumptions about the correctness of the
environment are not met. Indeed, even the verification process can be faulty.

It is worth mentioning also that some resources may vary with time — such
as changing diskettes, operating systems, compilers or even the whole machine,
available memory, or power to operate. These can vary over anything from very
short to very long periods, and any verification is only valid as long as its pre-
suppositions about those resources are satisfied.

13 Cost and Limitations

The brief overview of formal methods here shows that some of it requires consid-
erable expertise although much is straightforward, some can be mechanised but
much cannot, and it is essentially impossible to guarantee expected behaviour
without verifying the complete system including all other software and hardware.
Formal methods are valuable; the more that is checked the greater confidence
there is in the product. However, most systems will be very much larger than
can be completely verified in a reasonable time, and there are so many sources of
error in verification, just as in writing software, that testing will always be part
of the validation process. Formal methods provide further tools for increasing
the reliability of software and hardware, and have the potential for providing
everything that is required, although such thoroughness is only at great cost.
They can be applied to investigate as many properties as desired, becoming
most cost-effective for safety-critical requirements, for financial aspects and for
heavily used items. Assuming the formal specification is correct, it is true that
almost without limit, more and more money can be spent to obtain an ever more
reliable product through formal methods.

14 Related Topics

There are several closely related items in this volume, most of which provide
greater width than has been possible here, describing other areas where formal-
ity is required to guarantee correctness against an all-inclusive specification. In
particular, the reader is referred to the articles on

Software Safety and Security

Software Specification & Verification

Software: The Role of Validation

Specification Languages

System Specification Languages for Hardware Description
Translation, Verification and Synthesis: A Comparison
Validation and Verification of Real Time Software

Of these Software Specification € Verification provides greater depth by expand-
ing some of the detail in this article. It includes examples of formally specified



Concise Encyclopedia of Software Engineering

software using a couple of specification languages, and the axiomatic semantics
of one or two program constructs. Hardware description languages are usually
sufficiently similar to programming languages for much of the verification process
to be done as for software. If the described hardware is then correctly translated
automatically into circuit diagrams, correct hardware should result.

References

1.

2.

10.

11.

M. Ben-Ari, Principles of Concurrent Programming, Prentice/Hall International,
1982, ISBN 0-13-701078-8.

R. Dowsing, V. Rayward-Smith, C.D. Walter, A First Course in Formal Logic
and its Applications in Computer Science, Blackwell Scientific, 1986, ISBN 0-632-
01308-7.

H.Ehrig, B.Mahr, Fundamentals of Algebraic Specification Vols 1,2, Springer-
Verlag, 1985, ISBN 3-540-13718-1, and 1990, ISBN 3-540-51799-5.

M.J.C. Gordon, The denotational Description of Programming Languages,
Springer-Verlag, 1979, ISBN 3-540-90433-6.

D. Harel, Algorithmics — the Spirit of Computing, Addison-Wesley, 1987, ISBN
0-201-19240-3.

C. A. R. Hoare, Communicating Sequential Processes, Prentice/Hall International,
1985, ISBN 0-13-153271-5.

D. C. Ince, An Introduction to Discrete Mathematics and Formal System Specifi-
cation, Oxford University Press, 1988, ISBN 0-19-859664-2.

C.B. Jones, Systematic Software Development using VDM, (2nd Edition) Pren-
tice/Hall International, 1990, ISBN 0-13-880733-7.

E.G.Manes, M.A.Arbib, Algebraic Approaches to Program Semantics, Springer-
Verlag, 1986, ISBN 3-540-96324-3.

R. Milner, Communication and Concurrency, Prentice/Hall International, 1989,
ISBN 0-13-115007-3.

M. Spivey, The Z Notation — A Reference Manual, Prentice Hall, 1989.



