
FORMAL METHODS IN SOFTWARE

ENGINEERING

Colin D. Walter

Department of Computation

UMIST

PO Box 88

Man
hester M60 1QD, UK

www.
o.umist.a
.uk

1 Introdu
tion

Formal methods in software engineering refers to the use of mathemati
s to

produ
e more reliable software, and, if ne
essary, to prove its 
orre
tness. It

is dis
rete mathemati
s, and in parti
ular mathemati
al logi
 [2℄, [7℄, whi
h is

mainly used. As in traditional engineering subje
ts where it is analogous to


ontinuous mathemati
s, its use is both in the theoreti
al foundations of the

subje
t, and appli
ations.

2 De�ning Semanti
s

On the theoreti
al side, mathemati
s is used to make quite pre
ise the meaning

of programming languages [4℄, [9℄. This is 
alled axiomati
 semanti
s, opera-

tional semanti
s, denotational semanti
s, operational semanti
s, et
., depending

on the view taken. It should in
lude a des
ription of the model of 
omputation

expe
ted on the target ma
hine and a formal treatment of ex
eption handling,

as knowledge of both of these is ne
essary to enable anything to be proved about

programs.

3 Computability & EÆ
ien
y

At a deeper level, logi
 also treats problems of 
omputability through, for ex-

ample, the study of simple but powerful models of ma
hines, su
h as Turing

ma
hines [5℄. There are tasks that we would like to be able to do using a 
om-

puter program, but 
annot. Of parti
ular interest here is the impossibility of


onstru
ting a general purpose theorem prover. More generally, the spa
e and

time eÆ
ien
y of algorithms is studied [5℄ be
ause only �nite resour
es are avail-

able for 
omputing. Part of program veri�
ation involves 
he
king that suÆ
ient

resour
es are indeed provided.



2 Con
ise En
y
lopedia of Software Engineering

4 Fun
tional Spe
i�
ation

A number of aspe
ts are involved in produ
ing reliable software but most fre-

quently the fun
tional properties are investigated �rst. This requires the use of

a spe
i�
ation language to des
ribe (i) properties required of the input, 
alled a

pre-
ondition, and (ii) relationships required between input and output, 
alled a

post-
ondition. Su
h a pair of formulae is 
alled a fun
tional spe
i�
ation. Code


an be written and maintained mu
h more su

essfully against su
h spe
i�
a-

tions than with informal des
riptions. Su
h methods should be used as widely

as possible, espe
ially on 
riti
al 
omponents of software.

5 Veri�
ation

In se
tions where reliability is paramount, the formally de�ned semanti
s of the

programming language are then used to prove the software. This requires estab-

lishing that if the input satis�es the pre-
ondition properties (i) then, provided

proper termination o

urs, output satisfying the post-
ondition properties (ii)

is obtained. This stage is 
alled partial veri�
ation. Of 
ourse, when this 
an

be done, it only establishes that the software is partially 
orre
t with respe
t

to the formal fun
tional spe
i�
ation. Some problems still remain. First, proper

termination needs to be 
he
ked. But in addition there is no guarantee that

the spe
i�
ation itself is 
orre
t; higher level des
riptions use natural languages,

with all their inherent impre
ision and ambiguity, so that 
onne
tions with the

informal requirements 
annot be given exa
tly, let alone proved.

Normally not all of the software needs to be written or maintained rigorously

against a formal spe
i�
ation, and few aspe
ts of the software need to be proved

formally in the above way. So usually the formal fun
tional spe
i�
ation whi
h

is to be 
onstru
ted need only re
e
t part of the total fun
tionality.

6 Spe
i�
ation Languages

A variety of di�erent spe
i�
ation languages has arisen be
ause of di�ering needs

and situations. The raw ingredients of pre- and post- 
onditions, whi
h are writ-

ten in notation similar to that of standard mathemati
al logi
, need to be 
om-

bined with further information, su
h as lists of external variables whose values

may be a

essed or updated, or both, in order to make the interfa
e with the rest

of the world 
omplete and pre
ise. For imperative programming languages, the

two most widely used notations are those of VDM [6℄ and Z [8℄, [11℄. For de
lar-

ative languages (fun
tional and logi
 programming languages) program s
ripts

are mu
h 
loser to the spe
i�
ations we would like to write, and the appropriate

spe
i�
ation language is obtained by doing little more than adding quanti�
a-

tion to the programming language. (This is equivalent to allowing in�nite loops,

whi
h, of 
ourse, leads to non-exe
utability.) Algebrai
 spe
i�
ation languages

are used for this [3℄. Distributed and parallel 
omputing problems may require

temporal logi
 rather than 
lassi
al logi
 for their spe
i�
ation, and use notations

su
h as CSP [6℄, CCS [10℄ or Petri nets.



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 135-138 3

7 Appli
ation of Logi


Veri�
ation is done by using an appropriate logi
 
ontaining axioms and inferen
e

rules to dedu
e the post-
ondition from the pre-
ondition [2℄. For ea
h 
onstru
t

in the programming language the logi
 in
ludes an inferen
e rule whi
h de�nes

its semanti
s. The meaning of the whole 
onstru
t is determined in terms of

the semanti
s of its 
onstituent 
onstru
ts by means of pre- and post 
onditions

for ea
h of the 
onstru
ts involved. Appli
ation of these inferen
e rules is often

subje
t to the satisfa
tion of a property, 
alled a veri�
ation 
ondition, whi
h

relates some of the pre- and post- 
onditions.

8 Veri�
ation Conditions

Program provers are expe
ted automati
ally to redu
e a statement that 
ertain


ode satis�es a given spe
i�
ation to the 
laim that a parti
ular logi
al formula

holds. This is done by a veri�
ation 
ondition generator and depends on the 
ode

being annotated suÆ
iently with pre- and post- 
onditions and formulae 
alled

loop invariants. The inferen
e rules for a 
onstru
t do not always enable one to

dedu
e the pre-and post- 
onditions needed for all the 
onstituent parts in order

for the whole 
onstru
t to behave as desired. Those formulae whi
h 
annot be

dedu
ed must be supplied. As noted above, some inferen
e rules also involve a

veri�
ation 
ondition that must be satis�ed. Combining these yields a logi
al

formula upon whi
h the 
orre
t fun
tioning of the software depends.

9 Theorem Provers

A program prover must now invoke a theorem prover to show that the remaining

logi
al formula is always true. G�odel showed in the '30s that there is no algo-

rithm that will always establish the validity or otherwise of any formula. Hen
e

the theorem prover must either fail o

asionally or require human intera
tion.

A number of theorem provers are on the market, and they are the 
entre of

mu
h resear
h, not just be
ause of their appli
ation to proving partial 
orre
t-

ness of programs, but also be
ause the 
an be used to dedu
e information from

databases. Indeed a Prolog system is really just a theorem prover.

10 Termination and Convergen
e

The des
ription of fun
tional spe
i�
ation and veri�
ation above assumed that

the 
ode eventually terminated with some output rather than be
oming stu
k

in an in�nite loop or produ
ing an error 
ondition. Proving the boundedness of

loops involves showing that su

essive states at some exit point from the loop


onverge to a state satisfying the exit 
ondition. When using 
omplete number

systems su
h as the reals R, this may require appli
ation of the usual de�nitions

in mathemati
al analysis of 
ontinuity and 
onvergen
e under the appropriate



4 Con
ise En
y
lopedia of Software Engineering

topology. When working with �nite sets of the integers, this usually involves a

well-ordering of the su

essive states, whi
h e�e
tively means asso
iating those

states with a stri
tly de
reasing sequen
e of natural numbers � su
h a sequen
e

must be �nite. All looping 
onstru
ts have to be 
he
ked, in
luding re
ursion, and


are must be taken to avoid unexpe
ted 
ir
uits in linked data stru
tures. Careful

programming makes this, and indeed the whole veri�
ation pro
ess, easier.

11 Con
urrent Programming

The use of a number of pro
essors in distributed or parallel 
omputing raises

a number of subtle problems to do with 
onvergen
e and termination (see [1℄)

whi
h do not arise, or are simple, in the sequential 
ase. Thus, pro
esses 
om-

peting for the same resour
es 
ould result in deadlo
k through mutual ex
lusion,


ausing some requested outputs not to be 
omputed. Liveness is the property

that anything that is supposed to happen eventually does so. This is the proper

generalisation for 
on
urrent pro
essing of 
he
king termination in a sequential

system. Verifying the liveness of a system is part of applying formal methods.

Not only is the 
omplete deadlo
k of the system to be avoided, but also the

lo
kout of any individual pro
ess.

Another important 
orre
tness property here is that of safety, whi
h in this


ontext is the generalisation of partial 
orre
tness for a sequential pro
ess. As

well as ea
h pro
essor performing 
orre
tly with respe
t to its fun
tional spe
i�-


ation there are syn
hronisation requirements to satisfy, with 
onsumers having

to wait for input to be
ome available, and 
onsuming all input in order.

12 Che
king Resour
es

We have dealt with non-termination above, and now turn to improper termina-

tion through the raising of ex
eptions. This arises from what may be regarded as

run-time type errors. Typi
ally, suÆ
ient resour
es may not be available. Thus,

the implementations of the reals or integers or the memory may be assumed

in�nite for the partial veri�
ation pro
ess des
ribed above, whereas in reality

they are not: multipli
ation of two over-large numbers gives a result outside the

implemented type Integer. However, if we ensure that the model of 
omputation

used in the partial veri�
ation really mat
hes in all respe
ts the resour
es avail-

able on the target ma
hine, then this kind of type 
he
king is already done as

part of the veri�
ation pro
ess above. In pra
ti
e, though, it is often useful to

ta
kle these problems separately, espe
ially if run-time errors are a

eptable.

However, what 
annot be 
he
ked at that stage are the properties required

of external obje
ts, su
h as �les to whi
h a program may wish a

ess. One is

then for
ed to verify the whole environment, or be 
ontent with the possibility of

run-time errors from this sour
e. In parti
ular, in this wider 
ontext, it usually

has to be assumed that the software is 
ompiled 
orre
tly, and runs on 
orre
t

hardware under a 
orre
t operating system. Clearly, veri�ed software 
an still



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 135-138 5

produ
e undesirable output if these assumptions about the 
orre
tness of the

environment are not met. Indeed, even the veri�
ation pro
ess 
an be faulty.

It is worth mentioning also that some resour
es may vary with time � su
h

as 
hanging diskettes, operating systems, 
ompilers or even the whole ma
hine,

available memory, or power to operate. These 
an vary over anything from very

short to very long periods, and any veri�
ation is only valid as long as its pre-

suppositions about those resour
es are satis�ed.

13 Cost and Limitations

The brief overview of formal methods here shows that some of it requires 
onsid-

erable expertise although mu
h is straightforward, some 
an be me
hanised but

mu
h 
annot, and it is essentially impossible to guarantee expe
ted behaviour

without verifying the 
omplete system in
luding all other software and hardware.

Formal methods are valuable; the more that is 
he
ked the greater 
on�den
e

there is in the produ
t. However, most systems will be very mu
h larger than


an be 
ompletely veri�ed in a reasonable time, and there are so many sour
es of

error in veri�
ation, just as in writing software, that testing will always be part

of the validation pro
ess. Formal methods provide further tools for in
reasing

the reliability of software and hardware, and have the potential for providing

everything that is required, although su
h thoroughness is only at great 
ost.

They 
an be applied to investigate as many properties as desired, be
oming

most 
ost-e�e
tive for safety-
riti
al requirements, for �nan
ial aspe
ts and for

heavily used items. Assuming the formal spe
i�
ation is 
orre
t, it is true that

almost without limit, more and more money 
an be spent to obtain an ever more

reliable produ
t through formal methods.

14 Related Topi
s

There are several 
losely related items in this volume, most of whi
h provide

greater width than has been possible here, des
ribing other areas where formal-

ity is required to guarantee 
orre
tness against an all-in
lusive spe
i�
ation. In

parti
ular, the reader is referred to the arti
les on

Software Safety and Se
urity

Software Spe
i�
ation & Veri�
ation

Software: The Role of Validation

Spe
i�
ation Languages

System Spe
i�
ation Languages for Hardware Des
ription

Translation, Veri�
ation and Synthesis: A Comparison

Validation and Veri�
ation of Real Time Software

Of these Software Spe
i�
ation & Veri�
ation provides greater depth by expand-

ing some of the detail in this arti
le. It in
ludes examples of formally spe
i�ed



6 Con
ise En
y
lopedia of Software Engineering

software using a 
ouple of spe
i�
ation languages, and the axiomati
 semanti
s

of one or two program 
onstru
ts. Hardware des
ription languages are usually

suÆ
iently similar to programming languages for mu
h of the veri�
ation pro
ess

to be done as for software. If the des
ribed hardware is then 
orre
tly translated

automati
ally into 
ir
uit diagrams, 
orre
t hardware should result.

Referen
es

1. M. Ben-Ari, Prin
iples of Con
urrent Programming, Prenti
e/Hall International,

1982, ISBN 0-13-701078-8.

2. R. Dowsing, V. Rayward-Smith, C.D. Walter, A First Course in Formal Logi


and its Appli
ations in Computer S
ien
e, Bla
kwell S
ienti�
, 1986, ISBN 0-632-

01308-7.

3. H.Ehrig, B.Mahr, Fundamentals of Algebrai
 Spe
i�
ation Vols 1,2, Springer-

Verlag, 1985, ISBN 3-540-13718-1, and 1990, ISBN 3-540-51799-5.

4. M.J.C. Gordon, The denotational Des
ription of Programming Languages,

Springer-Verlag, 1979, ISBN 3-540-90433-6.

5. D. Harel, Algorithmi
s � the Spirit of Computing, Addison-Wesley, 1987, ISBN

0-201-19240-3.

6. C. A. R. Hoare, Communi
ating Sequential Pro
esses, Prenti
e/Hall International,

1985, ISBN 0-13-153271-5.

7. D. C. In
e, An Introdu
tion to Dis
rete Mathemati
s and Formal System Spe
i�-


ation, Oxford University Press, 1988, ISBN 0-19-859664-2.

8. C.B. Jones, Systemati
 Software Development using VDM, (2nd Edition) Pren-

ti
e/Hall International, 1990, ISBN 0-13-880733-7.

9. E.G.Manes, M.A.Arbib, Algebrai
 Approa
hes to Program Semanti
s, Springer-

Verlag, 1986, ISBN 3-540-96324-3.

10. R. Milner, Communi
ation and Con
urren
y, Prenti
e/Hall International, 1989,

ISBN 0-13-115007-3.

11. M. Spivey, The Z Notation � A Referen
e Manual, Prenti
e Hall, 1989.


