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Abstract. Implementations of Montgomery’s modular multiplication
algorithm (MMM) typically make conditional subtractions in order to
keep the output within register or modulus bounds. For some standard
exponentiation algorithms such as m-ary, it has been shown that this
yields enough information to deduce the value of the exponent. This has
serious implications for revealing the secret key in cryptographic applica-
tions without adequate counter-measures. Much more detail is provided
here about the distribution of output values from MMM when the output
is only reduced to keep it within register bounds, about how implement-
ations of sliding windows can be attacked, and about handling errors.
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1 Introduction

Side-channel leakage occurs through data dependent variation in the use of
resources such as time and hardware. The former results from branching in
the code or compiler optimisation [4], and the latter from data causing gate
switching in the circuitry. Both manifest themselves measurably through overall
current variation as well as local or global electro-magnetic radiation (EMR)
[5–7]. Information leaking in these ways might be used by an attacker to deduce
secret cryptographic keys which are contained securely inside a smart card.

Timing variation can be measured using overall delay during decryption or
signing [1, 4, 11, 13]. However, for successful attacks on keys with limited lifespans
for which only a bounded number of decryptions with the same key is allowed,
some finer detail may become necessary, such as the time variations for executing
component procedures. This detail can be seen by observing delays between the
characteristic power consumption wave form for loading instructions and data
at the start of the procedure. Here this is applied to the version of Montgomery
modular multiplication [9] which contains a final conditional subtraction for
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reducing the output by only enough to fit within register bounds. The aim is
to recover a secret RSA [10] exponent from deductions of whether or not this
conditional subtraction occurs.

An essential assumption is that there is no blinding of the exponent or ran-
domisation in the exponentiation algorithm so that the same type of multiplica-
tive operations are performed (but with different data) every time the key is used.
This enables an attacker to capture the collection of instances of the extra final
subtraction for each individual operation. We will show how to determine expo-
nent digits from this data, recover from any errors, and hence obtain the secret
key even if the input text (the base of the exponentiation) has been blinded.

The results emphasise the need for care in the implementation of RSA. In-
deed, similar results apply to elliptic curve cryptography (ECC) [8] and other
crypto-systems based on modular arithmetic. In all cases where a key is re-
used, some counter-measures should be employed to ensure that the conditional
subtraction is removed, or at least hidden, and that the same sequence of key-
dependent operations is not re-used for each exponentiation. In elliptic curve
cryptography, standard key blinding adds about 20% to the cost of a point
multiplication. The temptation to avoid this overhead should be resisted.

Montgomery modular multiplication [9] is arguably the preferred method for
hardware implementation. We treat this algorithm here, but equivalent results
should hold for any method for which there are correlations between the data
and the multiplication time. The generic timing attack methodology which we
adopt was first described in [16]. This approach established the feasibility of
recovering the key within its lifetime and also gave the theoretical justification
behind the different frequencies of final subtractions observed between squarings
and multiplications.

A closer study of such distributions reduces the number of exponentiations
required to recover the key. This was done for various settings in [11–13] when the
final reduction yields output less than the modulus. However, reducing output
only as far as the same length as the modulus is more efficient, and is the
case studied here. The mathematics is more involved and so requires numerical
approximation methods, but this is easy for an attacker. In addition, more detail
is given concerning the recovery of the key when sliding windows exponentiation
is employed.

2 The Computational Model

In order to clarify the precise conditions of the attack, each assumption is num-
bered. First, the computational model requires several assumptions, namely:

i) secret keys are unblinded in each exponentiation;
ii) Montgomery Modular Multiplication (MMM) is used with a conditional sub-

traction which reduces the output to the word length of the modulus;
iii) the most significant bit of the modulus lies on a word boundary; and
iv) exponentiation is performed using the m-ary sliding windows method [2, 3].



W. Schindler & C. D. Walter, A Combined Timing & Power Attack 247

Exponent blinding might be deemed an unnecessary expense if other counter-
measures are in place. So we still need better knowledge of how much data leaks
out under the first assumption. For a sample of one exponentiation this partic-
ular assumption is irrelevant, but then, with data leaked from other sources, the
techniques here might be just sufficient to make a search for the key computa-
tionally feasible.

As shown below, efficiency is good justification for the second hypothesis. The
word length referred to there is the size of inputs to the hardware multiplier,
typically 8-, 16- or 32-bit. However, standards tend to specify key lengths which
are multiples of a large power of 2, such as 768, 1024, 1536 and 2048 bits. So the
third hypothesis is almost certainly the case.

Because of its small memory requirements and greater safety if an attacker
can distinguish squares from multiplications, a sliding window version of 4-ary
exponentiation is the usual algorithm employed in smartcards. The exponent is
re-coded from least to most significant bit. When a bit 0 occurs, it is re-coded
as digit 0 with base 2 and when a bit 1 occurs, this bit and the next one are
recoded as digit 1 or 3 with base 4 in the obvious way. This representation is
then processed left to right, with a single modular squaring of the accumulating
result for digit 0, and two modular squarings plus a modular multiplication for
digits 1 and 3. According to the digit, the first or pre-computed third power of
the initial input is used as the other operand in the multiplications.

An attacker can recover the secret exponent if he can i) distinguish squarings
from multiplications, and ii) determine whether the first or third power was used
as an operand in the multiplications. The classical square-and-multiply or binary
algorithm (m = 2) is less secure against this type of attack as the second task
is omitted. The attack here treats any m, and applies equally well when the
Chinese Remainder Theorem (CRT) is used.

3 Initial Notation

Let R be the so-called “Montgomery factor” associated with an n-bit RSA
modulus M . Then the implementation of Montgomery’s algorithm satisfies the
following specification [15]:

v) For inputs 0≤A, B <R, MMM generates output P ≡A∗B∗R−1 mod M sat-
isfying ABR−1 ≤ P < M+ABR−1 before any final, conditional subtraction.

Clearly this specifies P uniquely. The division by R is the result of shifting
the accumulating product down by the multiplier word length for a number of
iterations equal to the number of words in A. Since A, B and M will all have
the same word length for the applications here, hypothesis (iii) yields

vi) M < R < 2M

i.e. R is the smallest power of 2 which exceeds M .
The output bound P < M+R implied by (v) means that any overflow into

the next word above the most significant of M has value at most 1. When
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this overflow bit is 1, the conditional subtraction can be called to reduce the
output to less than R without fear of a negative result. Hence that bit can be
used efficiently to produce an output which satisfies the pre-conditions of (v) for
further applications of MMM. This is the case of MMM that is considered here.

Alternatively, the condition P < M is often used to control the final sub-
traction. This is the standard version, but the test requires evaluating the sign
of P−M , which is more expensive than just using the overflow bit. This case
of MMM was discussed in [12]. A constant time version of MMM is possible
by computing and storing both P and P−M , and then selecting one or other
according to the sign of the latter. However, the subtraction can be avoided
entirely if the inputs satisfy A,B < 2M and R satisfies 4M < R. This, too, is
more expensive [15].

As usual, the private and public exponents are denoted d and e. For decipher-
ing (or signing), ciphertext C is converted to plaintext Cd mod M . The m-ary
sliding windows exponentiation algorithm using MMM requires pre-computation
of a table containing C(i) ≡ CiR mod M for each odd i with 1 ≤ i < m. This
is done using MMM to form C(1) from C and R2 mod M , C(2) from C(1), and
then iteratively C(i+2) from C(i) and C(2). By our assumptions, the word length
of each C(i) is the same as that of M , but it may not be the least non-negative
residue. We also define b = log2m and assume it to be integral.

4 The Threat Model

The security threat model is simply that:

vii) an attacker can observe and record every occurrence of the MMM conditional
subtraction over a number of exponentiations with the same key.

Section 1 provided the justification for this. The attack still works, although
less efficiently, if manufacturers’ counter-measures reduce certainty about the
occurrence or not of the subtraction.

Unlike many attacks in the past, we make no assumptions about the attacker
having control or knowledge of input to, or output from, the exponentiation.
Although he may have access to the ciphertext input or plaintext output of a
decryption, random nonces and masking should be employed to obscure such
knowledge so that he is unable to use occurrences of the conditional subtraction
to determine whether a square or multiply occurred. It is therefore assumed that

viii) the attacker can neither choose the input nor read either input or output.

Indeed, even without masking this is bound to be the case for exponentiations
when the Chinese Remainder Theorem has been used. Lastly, as the attacker
may have legitimate access to the public key {M, e}, it is assumed that

ix) the correctness of a proposed value for the private exponent d can be checked.
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The assumptions so far mean that the same sequence of multiplicative opera-
tions is carried out for every decryption. So, from a sample of N decryptions with
the same key, the attacker can construct an array Q = (qi,j) whose elements are
1 or 0 depending on whether or not the ith MMM of the jth decryption includes
the conditional subtraction. The elements qi,j are called extra reduction or er-
values. Similarly, initialisation gives a matrix Q′ = (q′i,j): if Cj is the input to
the jth decryption then the er-value q′i,j is associated with the calculation of

C
(i)
j ≡ Cj

iR mod M for the digit i.

5 Some Limiting Distributions

The timing attack here was first reported in [16], but precise MMM output
bounds now allow a much more accurate treatment of the probabilities and
hence more reliable results. More exact figures should make it easier to deter-
mine the precise strength of an implementation against the attack. Important
first aims are to determine the probability of extra reductions and to establish
the probability distribution function for the MMM outputs P . To this end two
reasonable assumptions are made about such distributions:

x) The ciphertext inputs C behave as realizations of independent random vari-
ables which are uniformly distributed over [0,M).

xi) For inputs A and B to MMM during an exponentiation, the output prior
to the conditional subtraction is uniformly distributed over the interval
[ABR−1,M+ABR−1).

Assumption (x) is fulfilled if, for example, the ciphertext is randomly chosen
(typical for RSA key exchange) or message blinding has been performed as pro-
posed in [4]. Here it is also a convenient simplification. In fact, there may be
some initial non-uniformity (with respect to the Euclidean metric) which might
arise as a result of content or formatting, such as with constant prefix padding.
We return to this topic in Remark 1.

In (xi), the multiples of M subtracted from the partial product P during the
execution of MMM are certainly influenced by all bits of A, B and M . However,
the probability for the final conditional subtraction is essentially determined by
the topmost bits of the arguments.

Before the formal treatment we illustrate the limit behaviour of the distribu-
tions which will be considered and provide the informal reasoning behind their
construction. In order to exhibit the difference between squares and multiplica-
tions software was written to graph the probability of the extra subtraction in
the limit of three cases, namely the distribution of outputs after a long sequence
of i) squarings of a random input, ii) multiplications of independent random
inputs, and iii) multiplications of a random input by the same fixed constant A.
The result is illustrated in Figure 1. In the second case, two independent values
are chosen from the kth distribution in the sequence. They are used as the inputs
to MMM and the output generates the k+1st distribution. In all three cases the
convergence is very rapid, with little perceptible change after 10 or so iterations.
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Fig. 1. Probability (vertical axis) of output in the range 0..R−1 (horizontal axis) after
a number of squarings, independent multiplications or multiplications by a constant A
for the case M = 0.525R and A = 1.5M .

The density functions have three distinct sections which correspond to the out-
put belonging to one of the intervals [0, R−M), [R−M,M) or [M,R). This is
because outputs with a residue in [R−M,M) have only one representative in
[0, R) and so, under hypothesis (xi), they occur in [R−M,M) with probability
M−1 whereas outputs with a residue in [0, R−M) have two representatives in
[0, R) with combined probability M−1. Note the discontinuities in the functions
at R−M and that probabilities tend to 0 as the output approaches 0.

Because M is large, the discrete probabilities are approximated accurately by
the density functions of continuous random variables. If f is the limiting density
function of a sequence of independent multiplications, then

1)
∫ R
0
f(x)dx = 1

2) f(x) = 0 for x < 0 and R < x
3) f(x) = M−1 for R−M ≤ x ≤M
4) f(x)+f(x+M) = M−1 for 0 ≤ x ≤ R−M
5) f(x) = 1

M

∫ x
0
f(y)dy + 1

M

∫ R
x

∫ Rx/y
0

f(y)f(z)dz dy for 0 ≤ x ≤ R−M

Properties 1 to 4 are already clear, and apparent in the figure. Property 5 en-
capsulates the restrictions imposed by MMM. To establish it, consider outputs
x in the interval [0, R−M). These do not involve a final conditional subtract-
ion, and so, by (xi), they are derived from MMM inputs y and z for which
[yzR−1,M+yzR−1) contains x. As the distribution is assumed to be uniform on
this interval, there is a 1 in M chance of obtaining x if yzR−1 ≤ x < M+yzR−1,
i.e. if R(x−M)/y < z ≤ Rx/y. Since R(x−M)/y ≤ R(R−2M)/y < 0, the lower
bound on feasible z is 0 and the upper bound is min{R,Rx/y}. Thus,

f(x) = 1
M

∫ R
0

∫min{R,Rx/y}
0

f(y)f(z)dz dy.

The integral over y can be split into the sub-intervals [0, x] and [x,R] in order
to separate the cases of the upper limit on z being R or Rx/y. This yields

f(x) = 1
M

∫ x
0

∫ R
0
f(y)f(z)dz dy + 1

M

∫ R
x

∫ Rx/y
0

f(y)f(z)dz dy
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in which the first integral simplifies to give the expression in property 5.
These properties determine f completely. Although an algebraic solution does

not exist, numerical approximations are easy to obtain. The other two density
functions satisfy the same properties 1 to 4. The analogues to property 5 are:

5′) f(x) = 1
M

∫√Rx
0

f(y)dy for 0 ≤ x ≤ R−M
for the limit of consecutive squarings, and

5′′) a) f(x) = 1
M

∫ Rx/A
0

f(y)dy for 0 ≤ x ≤ A ≤ R−M
b) f(x) = 1

M for A ≤ x ≤ R−M
for the limit of consecutive multiplications by a constant A.

Although there are differences between the distributions for squaring and
multiplication, they are substantially the same. Figure 1 illustrates the largest
possible differences, which occur for M close to 1

2R. For M close to R they are
essentially all equal to the same uniform distribution. The distributions which
lead to these limiting cases are considered in more detail in the next section.

6 Conditional Probabilities

As before, a prime ′ is used on quantities relating to the initialisation phase,
and unprimed identifiers relate to the computation stage. The attacker wants to
estimate the types of the Montgomery multiplications in the computation phase
on basis of the observed extra reduction (er-) values q′j,k and qj,k within the
initialization and computation phases respectively. These types will be denoted
using the text characters of the set T :={‘S’, ‘M1’, . . . , ‘Mm−1’} where ‘S’ corre-
sponds to a square, and ‘Mi’ to multiplication by the precomputed table entry
C(i) associated with digit i of the re-coded exponent. In this section we derive ex-
plicit formulas for the probabilities of these events given the observed er-values.
We begin with some definitions. It is convenient to normalise the residues mod
M to the unit interval through scaling by a factor M .

Definition 1. A realization of a random variable X is a value assumed by X.
For sample number k, the er-values q′j,k and qj,k are defined by q′j,k := 1 if

computation of table entry Ck
(j) in the initialisation phase requires an extra

reduction (this includes both q′1,k and q′2,k), and similarly qj,k := 1 if the jth
Montgomery multiplication in the computation phase requires an extra reduction.
Otherwise q′j,k := 0 and qj,k := 0. As abbreviations, let q′k := (q′1,k, . . . , q

′
m−1,k)

and qi,...,i+f−1;k := (qi,k, . . . , qi+f−1,k). For A ⊆ B the indicator or character-
istic function 1A:B → IR is defined by 1A(x) := 1 if x ∈ A and 0 otherwise.
Further, for γ := M/R, let χ: [0, 1 + γ−1) → [0, γ−1) be given by χ(x) := x if
x < γ−1 and χ(x) := x − 1 otherwise; that is, χ(x) := x − 1x≥γ−1 . Lebesgue
measure is denoted by λ.

Lemma 1. (i) MMM(A,B)
M = χ

(
A
M

B
M

M
R + ABM∗(mod R)

R

)
where M∗ = (−M)−1(mod R).

(ii) The extra reduction in MMM is necessary exactly when −1 is subtracted
by the application of χ.
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This lemma follows immediately from the definition of Montgomery’s multiplic-
ation algorithm. Assertion (xi) is equivalent to saying that the second summand
in the right-hand side of Lemma 1(i) is uniformly distributed on the unit inter-
val [0, 1). For a formal justification, the ideas from the proof of Lemma A.3(iii)
in [13] can be adjusted in a straightforward way. To formulate a mathematical
model we need further definitions which mirror the operations which comprise
the exponentiation:

Definition 2. Assume T (i) ∈ T , i = 1, 2, . . . , describes the sequence of multi-
plicative operations in the exponentiation. Let F := {i | 1 ≤ i ≤ m−1, i odd}.
Suppose the random variables V ′i (i ∈ F ∪ {2}) and V1, V2, . . . are independent
and equidistributed on the unit interval [0, 1). Define the random variables S′i
(i ∈ F ∪ {0, 2}) so that S′0 assumes values in [0, 1) and

S′1 := χ
(
S′0(R2 (modM)/M)γ + V ′1

)
(1)

S′2 := χ
(
S′1

2
γ + V ′2

)
(2)

S′2i−1 := χ
(
S′2i−3S

′
2γ + V ′2i−1

)
for 1 < i ≤ m

2
(3)

Similarly, define S0 := S′r where r ∈ F is the left-most digit of the secret exponent
d after recoding (cf. Sect. 2) and, for i ≥ 1, let

Si :=

{
χ
(
S2
i−1γ + Vi

)
if T (i) = ‘S’

χ
(
Si−1S

′
jγ + Vi

)
if T (i) = ‘Mj ’

(4)

Lastly, define {0, 1}-valued random variables W ′1, . . . ,W
′
m−1 and W1,W2,. . . by

W ′1 := 1S′1<S′0(R2 ( mod M)/M)γ (5)

W ′2 := 1S′2<S′1
2γ (6)

W ′2i−1 := 1S′
2i−1

<S′
2i−3

S′2γ
for 1 < i ≤ m

2
(7)

Wi :=

{
1Si<S2

i−1
γ if T (i) = ‘S’

1Si<Si−1S′jγ
if T (i) = ‘Mj ’

(8)

Thus the distribution of Si describes the random behaviour of the output
from the ith multiplication, V ′i and Vi correspond to the variation described in
assumption (xi), and W ′i , Wi are the associated distributions of final subtractions
recorded in Q′ and Q:

Mathematical Model. We interpret the components of the er-vector q′k =
(q′1,k, . . . , q

′
m−1,k), row subscripts in F ∪ {2}, as realizations of the random vari-

ables W ′1, . . . ,W
′
m−1 with S′0 having the uniform distribution of the normed (ran-

dom) input Ck/M to the kth exponentiation. Similarly, we interpret q1,k, q2,k, . . .
as realizations of the random variables W1,W2, . . ..
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Consequently, we have to study the stochastic processes W ′1,W
′
2,W

′
3,W

′
5, . . . ,

W ′m−1 and W1,W2, . . .. However, the situation is much more complicated than
in the case of the standard Montgomery algorithm considered in [12] because the
random variables S1, S2, . . . are neither independent nor identically distributed.
Their distribution depends on the sequence of operations T (1), T (2), . . ..

Definition 3. (i) For i ∈ F∪{2}, w ∈ {0, 1} and indices of the components

ranging over F∪{0, 2}, let the subset D′(i;w) ⊆ [0, 1)×[0, γ−1)
1
2m+1 be given

by those vectors (s′0, . . . , s
′
m−1) for which v′1, . . . , v

′
m−1 ∈ [0, 1) exist such that

s′0, . . . , s
′
m−1, v

′
1, . . . , v

′
m−1 satisfy (1)-(3) in place of S′0, . . . , S

′
m−1, V

′
1 , . . . , V

′
m−1

and, additionally, the component s′i and its predecessor must result in w when
inserted into whichever of (5), (6) or (7) describes W ′i . Thus, for example, by
(6) the vectors (s′0, . . . , s

′
m−1) in D′(1; 1) satisfy s′1 < s′0(R2(modM))/R, and

by (7) those in D′(2i−1; 1) satisfy s′2i−1 < s′2i−3s
′
2γ.

(ii) For i ≤ j ≤ i+f−1, w ∈ {0, 1} and t ∈ T , define Df (i, j;w, t) ⊆ [0, γ−1)f+1

to be the subset of vectors (si−1, . . . , si+f−1) for which there are vi, . . . , vi+f−1 ∈
[0, 1) such that si−1, . . . , si+f−1, vi, . . . , vi+f−1 satisfy (4) in place of Si−1, . . .,
Si+f−1, Vi, . . . , Vi+f−1 with the assumption that T (j) = t and, additionally, the
component sj and its predecessor must result in w when inserted into the instance
of (8) which describes Wj for T (j) = t. Thus, for example, the elements of
Df (i, j; 1, ‘Mk’) satisfy the constraint sj < sj−1s

′
kγ.

Remark 1. As already mentioned in Sect. 5, there may also be scenarios of prac-
tical interest which imply distributions of S′0 other than the uniform distribution
of assertion (x). For signing with constant prefixed padding, for instance, the ran-
dom variable S′0 can be assumed to have a Dirac (= single-point) distribution
due to the definition of S′1. Generally speaking, the distribution of S′0 influences
the conditional density g(·|·) in Lemma 2(i) and hence implicitly the conditional
probabilities in Theorem 1 and the optimal decision strategy. Then it is nec-
essary to adjust the derivation of g(·|·) to the concrete distribution of S′0 but
otherwise the remaining steps in this and the forthcoming sections pass through
identically.

The (conditional) probability of a given er-vector can be described using the sets
of Definition 3:

Lemma 2. (i) Assume the random variable S′0 is equidistributed on [0, 1). Then

the conditional distribution of the random vector (S′1, . . . , S
′
m−1) on [0, 1)

1
2m+1

under the condition W ′1=w′1, . . . , W
′
m−1=w′m−1 has Lebesgue probability density

g(s′1, . . . , s
′
m−1 | w′1, . . . , w′m−1) :=

1∫
0

1∩i∈F∪{2}D′(i;w′i)(s
′
0, s
′
1, . . . , s

′
m−1) ds′0∫

[0,1)×[0,γ−1)
1
2
m+1

1∩i∈F∪{2}D′(i;w′i)(s
′
0, s
′
1, . . . , s

′
m−1) ds′0ds

′
1 · · · ds′m−1

. (9)
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(ii) The distribution of Si−1 has a Lebesgue density, say hi−1. Moreover,

Prob(Wi = wi, . . . ,Wi+f−1 = wi+f−1 |W ′1 = w′1, . . . ,W
′
m−1 = w′m−1) = (10)∫

[0,γ−1)
1
2
m+f+2

g(s′1, . . . , s
′
m−1 | w′1, . . . , w′m−1) · hi−1(si−1)×

× 1∩i+f−1
u=i

Df (i,u;wi,T (u))(si−1, . . . , si+f−1) ds′1 · · · ds′m−1dsi−1dsi · · · dsi+f−1.

(iii) If S0 = S′r then

Prob(W1 = 1 |W ′1 = w′1, . . . ,W
′
m−1 = w′m−1) = (11)∫

[0,γ−1)
1
2
m+1

g(s′1, . . . , s
′
m−1 | w′1, . . . , w′m−1) ·max{0, 1−γ−1+s′r

2
γ} ds′1 · · · ds′m−1.

Proof. We first note that {(s′0, . . . , s′m−1) ∈ [0, 1)× [0, γ−1)
1
2m+1 |W ′1 = w′1, . . . ,

W ′m−1 = w′m−1} =
⋂
i∈F∪{2}D′(i, w′i). For the moment let Ψ : [0, 1)m/2+2 →

[0, 1) × [0, γ−1)m/2+1 be given by Ψ(s′0, v
′
1, . . . , v

′
m−1) := (s′0, s

′
1, . . . , s

′
m−1). By

this we mean that the coordinates s′i of image points are determined by in-
stances of the equation (3) of the form s′i = χ

(
s′i−2s

′
2γ + v′i

)
when i > 2

and the similar ones from equations (1) and (2) for i = 1, 2. The mapping Ψ
is injective (though not surjective) and differentiable almost everywhere with
Jacobian 1. As Ψ(S′0, V

′
1 , . . . , V

′
m−1) = (S′0, S

′
1, . . . , S

′
m−1) and since the ran-

dom variables S′0, V
′
1 , . . . , V

′
m−1 are independent and equidistributed on [0, 1) the

transformation theorem (applied to the inverse Ψ−1 where it is differentiable)
implies that the random vector (S′0, S

′
1, . . . , S

′
m−1) has constant density on the

image Ψ([0, 1)m/2+2). The definition of conditional probabilities and computing
the marginal density with respect to s′0 proves (9). The first assertion of (ii)
follows immediately from Lemma 3 (in the Appendix) with G = IR, µ = λ,
ν = λ |[0,1) and τ (depending on T (i−1)) denoting the distribution of S2

i−2γ or
Si−2S

′
jγ for a particular index j∈F . Equation (10) can be verified in a similar

way to (9). For fixed s′0, . . . , s
′
m−1 we define Ψs: [0, γ−1) × [0, 1)f → [0, γ−1)f+1

by Ψ(si−1, vi, vi+f−1) := (si−1, . . . , si+f−1). Again, Ψs is almost everywhere dif-
ferentiable with Jacobian 1, and the transformation theorem completes the proof
of (ii) as the random variables Si−1, Vi, . . . , Vi+f−1 are independent and equi-
distributed on [0, γ−1) or [0, 1), resp. (Note that Ψ−1s (si−1, ∗) = (si−1, ∗).) The
first Montgomery multiplication in the computation phase is a squaring. Hence
Prob(W1 = 1) = Prob(S′r

2
γ+V1 ≥ γ−1). As S′r

2
γ ∈ [0, γ−1) this proves (iii). ut

Remark 2. In the Appendix, Theorem 2 (i) to (iv) and (v) respectively consider
the fictional situations that the computation phase consists only of squarings or
multiplications by a fixed table entry. The distributions of the S1, S2, . . . then
converge respectively to f · λ[0,γ−1) and f(s′

j
) · λ[0,γ−1) for fixed s′j ∈ [0, γ−1).

These were graphed in Figure 1 for γ = 0.525 and C(j) = 1.5γR. In fact, the
density hi−1(·) depends on T (1), . . . , T (i−1) and s′1, . . . , s

′
m−1 (cf. Sect. 10).
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Theorem 1 quantifies the probabilities for the different type vectors of the
Montgomery multiplications i, . . . , i+f−1 given the observed extra reductions:

Theorem 1. Let θ = (ωi, . . . , ωi+f−1) ∈ T f . If T (i) = ωi, . . . , T (i+f−1) =
ωi+f−1 then let pθ ((qi,...,i+f−1;k)1≤k≤N | (q′k)1≤k≤N ) denote the conditional prob-
ability for the er-vectors (qi,...,i+f−1;k)1≤k≤N if (q′k)1≤k≤N were observed in the
initialization phase. Then,

pθ((qi,...,i+f−1;k)1≤k≤N | (q′k)1≤k≤N) ≈
N∏
k=1

∫
[0,γ−1)

1
2
m+f+2

g(s′1, ..., s
′
m−1 | q′1,k, ..., q′m−1,k) ×

×hi−1(si−1) · 1∩i+f−1
u=i

Df (i,u;wu,ωu)
(si−1, ..., si+f−1) ds′1...ds

′
m−1dsi−1...dsi+f−1 (12)

If r is the left-most block (i.e. digit) of the secret exponent after recoding then

Prob ((q1,k)1≤k≤N | (q′k)1≤k≤N ) ≈ (13)

N∏
k=1

∫
[0,γ−1)

1
2
m+1

g(s′1, ..., s
′
m−1 | q′1,k, ..., q′m−1,k) max{0, 1−γ−1+s′r

2
γ} ds′1...ds′m−1.

Proof. According to our mathematical model we interpret the observed er-vectors
q′k and qi,...,i+f−1;k as realizations of random variables W ′1,k, . . . ,W

′
m−1,k and

Wi,k, . . . ,Wi+f−1,k respectively, where the latter correspond to T (i) = ωi, ...,
T (i+f−1) = ωi+f−1. Theorem 1 is an immediate consequence of Lemma 2 and
the mathematical model. ut

7 A priori Distribution

In Section 9 we determine an optimal decision strategy for simultaneous guessing
of the types T (i), . . . , T (i+f−1) of the ith,. . . ,(i+f−1)th Montgomery multipli-
cations. It seems to be reasonable for the attacker to choose the hypothesis θ
within the set Θ ⊆ T f of all admissible hypotheses which is the most likely one,
given the observed er-vectors. In the sliding window exponentiation scheme a
multiplication using a particular table entry is preceded by at least b = log2m
squarings. Consequently, for the chosen f ,

Θ = θ0 ∪ {θk,j | 1 ≤ k ≤ f ; 1 ≤ j ≤ m−1 for odd j} if f ≤ b+1 (14)

where
θ0 := (‘S’, . . . , ‘S’) means T (i) = ‘S’, . . ., T (i+f−1) = ‘S’ and
θk,j := (‘S’, . . . , ‘S’, ‘Mj ’, ‘S’, . . . , ‘S’) means

T (i+k−1) = ‘Mj ’ but T (v) = ‘S’ for v 6= i+k−1.
However, the admissible hypotheses occur with different probabilities. The

optimal decision strategy in Section 9 exploits this fact. In the present section
we determine a distribution η on Θ which approximates the exact distribution
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of the admissible hypotheses and which depends on the secret key. We call η the
(approximate) a priori distribution, and ηk,j denotes the approximate probabil-
ity that (T (i), . . . , T (i+f−1)) = θk,j for randomly chosen i.

When re-coding, the secret exponent d is divided into blocks (digits) of length
1 and b. If d is assumed to be random then both block lengths should occur with
the same frequency, and the average block length is about (b+1)/2. Hence we
should expect about n/(b+1) blocks of length b and n/(b+1) blocks of length 1
where n is the bit length of the modulus M . Consequently, about 2n/(b+1)m
blocks of length b should equal any given odd exponent digit j. Thus we expect
this many vectors (T (i), . . . , T (i+f−1)) of type θk,j for 1 ≤ k ≤ f . As there
are about n+ n/(b+1) = (b+2)n/(b+1) Montgomery multiplications (including
squares) we set

η1,1 := · · · := ηf,m−1 :=
n(b+1)

(b+1) 1
2m(b+2)n

=
1

1
2m(b+2)

and

η0 := 1−
1
2mf

(b+2) 1
2m

=
b+2−f
b+2

if f ≤ b+1. (15)

8 Error Detection and Correction

It seems to be unhelpful to consider error detection and error correction strategies
before the decision strategy itself has been derived. However, the optimal decision
strategy considers the different types of possible error. Roughly speaking, it tries
to avoid estimation errors but ‘favours’ those kinds of errors which are easier to
detect and correct than others. The following example illuminates the situation.

Example 1. Let b = 2 (i.e. m = 4), and assume that the secret exponent d is
given by . . . |0|01|0|01|0| . . .. The correct type sequence is then given by

. . . , ‘S’, ‘S’, ‘S’, ‘M1’, ‘S’, ‘S’, ‘S’, ‘M1’, ‘S’, . . .
whereas the following a), b) and c) are possible estimation sequences:

a) . . . , ‘S’, ‘S’, ‘S’, ‘M1’, ‘S’, ‘M3’, ‘S’, ‘M1’, ‘S’, . . .
b) . . . , ‘S’, ‘S’, ‘S’, ‘S’, ‘S’, ‘S’, ‘S’, ‘M1’, ‘S’, . . .
c) . . . , ‘S’, ‘S’, ‘S’, ‘M3’, ‘S’, ‘S’, ‘S’, ‘M1’, ‘S’, . . .

Each of the subsequences a), b), and c) contains exactly one false guess. The error
in a) (‘M3’) is obvious as the number of squarings between two multiplications
must be at least b = 2. This type-a error (‘Mj ’ instead of ‘S’) is usually easy
to detect if its occurrence is isolated, i.e. if there are no further type-a or type-b
errors (‘S’ instead of ‘Mj ’) within a neighbourhood of the error. Then one or
at most two positions remain for which exactly one guess is false, and we call
the type-a error locally correctable. A type-a error is not locally correctable if it
occurs within a long series of squarings or if bursts of type-a and type-b errors
occur. Then we call it a global type-a error. The type-b errors and type-c errors
(‘Mi’ instead of ‘Mj ’) illustrated in sequences b) and c) are less obvious. If all
type-a errors have been corrected the attacker knows the number of type-b errors
(since the number of squarings equals the bit length d minus 1) but not their
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positions. In particular, type-b and type-c errors are global errors. Of course,
to correct type-b and type-c errors it is reasonable first to change those guesses
where the respective decisions have been “close” and then to check the new
exponent estimator (cf. Sect. 10).

9 The Optimal Decision Strategy

The preliminary work has now been done. Here the pieces are assembled to derive
an optimal decision strategy for guessing the types of f consecutive Montgomery
multiplications simultaneously when 1 ≤ f ≤ b+1. Therefore, we interpret the
estimation of T (i), . . . , T (i+f−1) as a statistical decision problem.

Roughly speaking, in a statistical decision problem the statistician (here the
attacker) observes a sample ω ∈ Ω (here the observed extra reduction vectors
(q′k, qi,...,i+f−1,k)1≤k≤N ) which he interprets as a realization of a random variable
X. The distribution pθ of X depends on the unknown parameter θ ∈ Θ which
has to be guessed (here θ = (T (i), . . . , T (i+f−1))). The decision strategy clearly
depends on the observation ω but also considers the a priori distribution η
(cf. Sect. 7) which quantifies the likeliness of the possible parameters and the
‘damage’ caused by the possible guessing errors. The ‘damage’ is quantified by
the loss function s(θ, a) where θ ∈ Θ denotes the true parameter whereas a ∈ Θ
stands for a potential guess. In our case the loss function corresponds to the
effort which is necessary for the detection, localization and correction of wrong
guesses (cf. Sects. 8 and 10). Of course, correct decisions do not cause any loss,
i.e. s(θ, θ) = 0 for all θ ∈ Θ. A decision strategy is optimal if its expected loss
attains a minimum.

Optimal Decision Strategy. Let the a priori distribution η be given by (15).
Let τopt((q

′
k, qi,...,i+f−1,k)1≤k≤N ) := a∗ if the sum∑

θ∈Θ

s(θ, a′)pθ ((qi,...,i+f−1;k | q′k)1≤k≤N ) η(θ) (16)

is minimal for a′ = a∗ (i.e. the attacker picks a∗ ∈ Θ when he observes the vec-
tor (q′k, qi,...,i+f−1,k)1≤k≤N ). Then τopt is optimal among all decision strategies
which estimate T (i), . . . , T (i+f−1) simultaneously.

Proof. The proof of the analogous assertion in Section 7 of [12] can be re-applied
here almost literally. The conditional probabilities pθ(·|·) were computed in The-
orem 1. ut

10 Experimental Results

Although theoretical considerations were not significantly more difficult for f ≥
1, in this section we fix f=1 in order to simplify the calculations (cf. [12], §8).
Thus the types of the particular Montgomery multiplications are guessed sep-
arately. The restriction on f means it is convenient to attack a sliding window
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exponentiation scheme, and m = 4 (i.e. b = 2) was chosen for a simulation.
Extra reduction values q′1,k, . . . , q

′
m−1,k and q1,k, q2,k, . . . were obtained from the

simulation using pseudo-randomly chosen moduli M and inputs C1, . . . , CN .
We first determined the optimal decision strategy given in Section 9. We used

the loss function given by s(‘S’, ‘Mj ’) = 1 (type-a error), s(‘Mj ’, ‘S’) = 1.5 (type-
b error) and s(‘Mi’, ‘Mj ’) = 2.5 for i 6= j (type-c error). Equation (15) gives the
a priori distribution η(‘S’) = 0.75 and η(‘M1’) = η(‘M3’) = 0.125. Next, we
computed approximations as follows for the density hi−1(k) for each of the three
alternatives θ = ‘S’, θ = ‘M1’ and θ = ‘M3’. First, Theorem 2 was applied to
obtain the ‘pure’ limit densities f (cf. Thm. 2(iii)) and f(s) (cf. Thm. 2(v)). The
iterates of the densities fup(x) := 1[0,1)(x) and flow(x) := 1[γ−1−1,γ−1) (cf. Thm.
2(iv)) squeeze the respective limit distribution. The convergence is monotonic
and exponentially fast (Thm. 2(iv)). If T (i) = ‘Mj ’ then at least two squarings
had been carried out just before. As the convergence to f is exponentially fast
we assumed hi−1(k) ≈ f in that case. For the hypothesis T (i) = ‘S’ we set
hi−1(k) := η0·f + η1·f(s1) + η3·f(s3) with η1 = η3 = 0.125 and η0 = 0.75, and
sj denoting the ratio of table entry j divided by the modulus M . Then we put
the pieces together, determined the conditional probabilities p‘S ’(·), p‘M1 ’(·) and
p‘M3 ’(·) using Theorem 1, and so derived the optimal decision strategy.

Table 1. Average number of errors per 100 guesses with b = 2, f = 1.

M/R N type-a global type-a type-b type-c

0.99 350 0.53 0.11 0.29 0.67
0.99 400 0.37 0.07 0.21 0.04
0.85 400 0.74 1.58 0.12 0.06
0.85 450 0.54 0.11 0.62 0.03
0.85 500 0.44 0.08 0.03 0.25
0.70 700 1.24 0.19 0.22 0.35

Applying this optimal decision strategy we obtained guesses T̃ (1), T̃ (2), . . ..
A large number of simulation runs gave the results in Tables 1 to 3. The “type-a”
column in Table 1 covers all errors of type a, namely both the locally correctable
and global type-a errors. In a first step the attacker corrects the locally correct-
able type-a errors. Usually, he knows a reference equation yd ≡ x(modM), e.g.

a signature. Using this he can check whether a guess d̃ for d is correct. As already
observed in Section 8, the number of global errors is relevant for the practical
feasibility of the attack. This is the sum of the type-b, type-c and global type-a
errors. Table 2 gives the percentage of trials for which the number of such global
errors is no more than a given bound. For example, at most one global error
occurred in 76% of the trials for the parameter set M/R ≈ 0.85, N = 500,
n = 512. Clearly, for the sake of efficiency the attacker first tries to change those
guesses for which the decision has been ‘close’.

A successful attack on a 512-bit exponent requires about 680 correct guesses.
For this, about 2 · 680 = 1360 hypotheses have to be rejected. To each rejected
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Table 2. Number of global errors.

M/R N n 0 ≤ 1 ≤ 2 ≤ 3

0.99 350 512 10% 31% 49% 64%
0.99 400 512 16% 46% 62% 78%
0.85 400 512 19% 43% 60% 71%
0.85 450 512 33% 62% 80% 90%
0.85 500 512 46% 76% 90% 97%
0.70 700 512 35% 60% 71% 76%

hypothesis about the types of a sequence of f=1 multiplicative operations, we
assign the ratio between the expected loss if this hypothesis had been chosen
divided by the expected loss for the hypothesis chosen in this decision. The
rejected hypotheses are ordered using these ratios, that with the smallest ratio
(i.e. the most likely alternative) first. If the estimator d̃ is false the attacker
replaces one, two or three guesses respectively by those from the rejected list,
beginning with the first, i.e. that with lowest ratio.

Table 3 gives the average rank of the lowest correct hypothesis which has
been rejected for a given number of global errors. For instance, if there were
three global errors, and the correct guesses for them were ranked 3, 29 and 53 in
the list, then the rank of the lowest would be 53. The second row of the table says
that if there are exactly three global errors for parametersM/R ≈ 0.99,N = 400,
n = 512 then 57 is the average rank of the lowest correct hypothesis which was
initially rejected. If the lowest rank is ≤ 100 (which would normally be the case
for an average of 57), the correction requires at most

(
100
3

)
= 161700 evaluations

of the reference equation (neglecting the unsuccessful efforts to correct exactly
1 or 2 global errors). This is clearly computationally feasible.

Table 3. Average rank of the last correct hypothesis for 1, 2 or 3 global errors.

M/R N n 1 2 3

0.99 350 512 31 66 63
0.99 400 512 30 25 57
0.85 400 512 39 57 55
0.85 450 512 22 37 59
0.85 500 512 24 57 70
0.70 700 512 63 132 271

The conditional probabilities (Section 6), and hence the optimal decision
strategy, only depend on the ratio γ = M/R. In our simulations we assumed
that the attacker knows this ratio. However, our attack is also feasible if the
attacked device uses the Chinese Remainder Theorem (CRT). Then the attacker
uses the extra reductions within the initialization phase and known squarings
from the computation stage to estimate the parameter γ. The moduli M for the
exponentiations are the prime factors of the RSA modulus M ′=p1p2. For the
secret RSA key d′, the attacker guesses the exponents actually used, namely d =
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d′(mod (pi−1)) for i = 1 or 2. If the guess d̃ for d is correct then gcd(Cd
′
(mod

M ′) − C d̃(modM ′),M ′) = pi and, similarly, gcd(C − C d̃e(modM ′),M ′) = pi.
Since the parameter γ has to be estimated the error probability for a singular
decision increases somewhat (cf. [12], first paragraph of Sect.10). However, since
CRT involves an exponent of only half the length, the number of wrong guesses
per exponentiation will be smaller and so the attack more likely to be successful.

11 Conclusion

A timing attack on RSA implementations has been given further detail in the
more complex situation of modular reductions being driven by a register length
bound rather than a modulus bound. Graphs of the limiting distributions were
drawn illustrating one source of the attack. Another source was the combination
of exact conditional probabilities for the modular reductions with statistical
decision theory for treating sequences of modular multiplications. This reduces
the sample size necessary to deduce the secret RSA key from side channel leakage.
The resulting powerful methods reduce the number of errors far enough for their
correction to be computationally feasible for keys with standard lengths using
data obtained well within the normal lifespan of a key.
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Appendix

Lemma 3. Let τ and ν denote probability measures on a locally compact abelian
group G. If µ is a Haar measure on G and ν has a µ-density then the convolution
product τ ∗ ν also has a µ-density.

Proof. For any measurable B ⊆ G we have τ ∗ ν(B) =
∫
G
ν(B−x) τ(dx). If

µ(B) = 0 then µ(B−x) = 0 and hence ν(B−x) = 0. This proves the lemma. ut

Theorem 2. Suppose γ ∈ (0.5, 1), and let F and χ: [0, γ−1 + 1)→ IR be defined
as in Section 6. Assume further that U0, V1, V2, . . . denote independent random
variables where U0 assumes values on [0, γ−1), while V1, V2, . . . are equidistributed
on the unit interval [0, 1). Finally, let Un+1 := χ(U2

nγ + Vn+1) for all n ∈ IN.
(i) Regardless of the distribution of U0, for each n ≥ 1 the distribution µn of
Un has a Lebesgue density fn. Moreover, fn(x) = 1 for x ∈ [γ−1−1, 1) and
fn(x) + fn(x+1) = 1 for x ∈ [0, γ−1−1).
(ii) For n ≥ 2 we have

fn+1(x) =

∫ √xγ−1

0

fn(u) du for x ∈ [0, γ−1−1). (17)

(iii) Regardless of the distribution of U0 we have

‖fn+1 − fn‖∞ := sup
x∈[0,γ−1)

|fn+1(x)− fn(x)| ≤
(
γ−1−1

)n−1 ‖f2 − f1‖∞ (18)

for all n ≥ 2. In particular, the sequence f1, f2, . . . converges uniformly to a
probability density f : [0, γ−1)→ [0, 1] which does not depend on the distribution
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of U0. To be precise, f(x) = 1 for x ∈ [γ−1−1, 1), f(x) + f(x+1) = 1 for
x ∈ [0, γ−1−1), and f is the unique solution of (17) possessing these properties,
i.e. (17) holds with f in place of fn and fn+1.
(iv) If f1 ≤ f on [0, γ−1−1) then also fn ≤ f for all n ≥ 1. If f1 ≤ f2 then the
sequence f1, f2, . . . is monotonically increasing on [0, γ−1−1). Similarly, f1 ≥ f
on [0, γ−1−1) implies fn ≥ f for all n ≥ 1, and if f1 ≥ f2 then the sequence
f1, f2, . . . is monotonically decreasing on [0, γ−1−1). If the distribution of U0 has
a Lebesgue density f0 then the assertions of (iv) even hold for f0, f1, . . . in place
of f1, f2, . . ..
(v) Let U ′0 := U0 and U ′n+1 := χ(U ′nsγ + Vn+1) for all n ∈ IN where s ∈ [0, γ−1)
is fixed. Then all assertions from (i) to (iv) can be transferred almost literally to
this case. In particular, for x ∈ [0, γ−1−1) we have

fn+1(x) =

{∫ x/sγ
0

fn(u) du if x < s
1 otherwise.

(19)

The limit distribution f(s) of f1, f2, . . . is the unique solution of (19) with f(s)(x)=
1 for x ∈ [γ−1−1, 1) and such that f(s)(x) + f(s)(x+1) = 1 for x ∈ [0, γ−1−1).

Proof. To prove the first assertion of (i) we apply Lemma 3 with G = IR and
µ = λ while τ is the distribution of U2

n−1γ and ν the restriction of the Lebesgue
measure to [0, 1). If γ−1−1 ≤ a < b ≤ 1 we have Un ∈ [a, b) iff U2

n−1γ + Vn ∈
[a, b) ∪ [a+1, b+1). As Un−1 and Vn are independent, and χ coincides with the
reduction modulo 1 on this union and Vn is equidistributed on [0, 1), this proves
the second assertion of (i). However, for any 0 ≤ a < b ≤ γ−1−1, we have
Un ∈ [a, b) ∪ [a+1, b+1) iff U2

n−1γ + Vn ∈ [a, b) ∪ [a+1, b+1) ∪ [a+2, b+2). From
mod 1 = mod 1 ◦ χ we obtain the final assertion of (i) as Vn is equidistributed
on [0, 1). For x ∈ [0, γ−1−1) the pre-image χ−1(x) equals x and hence

Prob(Un+1 ≤ x) =

∫ x

0

fn+1(u) du =

∫ √xγ−1

0

fn(u)Prob(u2γ + Vn ≤ x) du

=

∫ √xγ−1

0

fn(u)(x− u2γ) du

= x

∫ √xγ−1

0

fn(u) du− γ
∫ √xγ−1

0

fn(u)u2 du.

If fn is continuous at
√
xγ−1 differentiating the left- and the right-hand side

verifies assertion (ii) for fn+1(x). We denote the density of U2
1 γ + V2 by h2 for

the moment. Applying the convolution formula for densities (to that of U2
1 γ and

V2) yields |h2(x+ s)− h2(x)| ≤ Prob(U2
1 γ ∈ [−s, 0] ∪ [1, 1 + s]) for |s| < 0.5. As

[−s, 0]∪ [1, 1+s] converges to {0, 1} the right-hand probability converges to 0 as
s→ 0, i.e. h2 is continuous at x. As x was arbitrary this proves the continuity of
h2, and f2 has at most two discontinuity points in (0, γ−1), namely γ−1−1 and
1. This proves (ii) for n = 1 since densities may be defined arbitrarily on zero
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sets. For arbitrary n, assertion (ii) follows by induction. Clearly,

‖fn+1 − fn‖∞ = sup
x∈[0,γ−1−1)

|fn+1(x)− fn(x)|

= sup
x∈[0,γ−1−1)

∣∣∣∣∣
∫ √xγ−1

0

(fn(u)− fn−1(u)) du

∣∣∣∣∣
≤ sup
y,z∈[0,γ−1−1)

∣∣∣∣∫ z

y

(fn(u)− fn−1(u)) du

∣∣∣∣ ≤ (
γ−1−1

)
‖fn − fn−1‖∞.

The first inequality follows from the fact that fn(x) = fn−1(x) = 1 on [γ−1−1, 1)
while fn(x) + fn(x+1) = 1 for x ∈ [0, γ−1−1). Equation (18) follows by induc-
tion. Similarly, one concludes ‖fn − f∗n‖∞ ≤ (γ−1−1)n−2‖f2 − f∗2 ‖∞ for arbi-
trary sequences f1, f2, . . . and f∗1 , f

∗
2 , . . .. This shows the uniqueness of f and, as

f1, f2, . . . converges uniformly, f fulfils (17). If, in addition, f1(x) ≤ f2(x) for all
x ∈ [0, γ−1−1) then by induction we obtain

fn+1(x)− fn(x) =

∫ √xγ−1

0

(fn(u)− fn−1(u)) du

=

∫
[0,
√
xγ−1)∩[0,γ−1−1)∩{u:u>

√
xγ−1−1}

(fn(u)− fn−1(u)) du ≥ 0.

Replacing fn by f we obtain the first assertion of (iv), and the second part can
be shown similarly. Assertion (v) can be verified in same way as (i) to (iv). ut


