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Abstract. In smartcard encryption and signature applications, random-
ised algorithms are used to increase tamper resistance against attacks
based on side channel leakage. Mist is one of these. As is the case with
the classical m-ary and sliding windows exponentiation algorithms, the
most significant half of the public modulus yields information which can
be used to halve the number of key digits which need to be guessed
to recover the secret key from a Mist side channel trace. Lattice based
methods are used to reduce this to just one quarter of the least significant
digits. This enables the strength of the Mist exponentiation algorithm
to be gauged more accurately under several threat models.

Key words: Addition chains, division chains, randomized exponenti-
ation, Mist, randomary exponentiation, RSA, side channel leakage, power
analysis, SPA, DPA, SEMA, DEMA, blinding, smartcard.

1 Introduction

Smartcards have very limited scope for the inclusion of physical security mea-
sures. So tamper resistance should also be built into the component algorithms
whenever possible. Because exponentiation is such a major process in many
crypto-systems, including RSA, Diffie-Hellman and ECC, it is the main target
for improved algorithmic methods. Initial side channel attacks made use of tim-
ing differences [8] due to conditional subtractions during modular multiplications
[17]. Such differences are now easily avoided [19]. However, because unprotected
hardware gates use different amounts of power depending upon whether or not
they are switched to a different state, power usage by any chip is also data de-
pendent, and so provides side channel leakage which may enable secret keys to
be recovered. Although the first power attacks required averaging over a number
of exponentiations in order to reduce the effects of noise and dependence on
irrelevant data [9,12], recent progress suggests that there is enough data in the
trace of a single exponentiation to allow careful averaging to reveal the key [18].
In particular, one can average over subsets of digit-by-digit products within each
long integer multiplication rather than the sequential traces of many exponenti-
ations. In addition, electro-magnetic leakage seems to provide a very much more
powerful means of obtaining key data than power variation [15,16,4,1].
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Such side channels and methods enable all the classical exponentiation meth-
ods to be attacked: both sliding windows and m-ary [7]. Consequently, a new
breed of algorithms has had to be developed, namely the randomised exponent-
iation algorithms. Two such algorithms appeared at the CHES 2001 conference
[11,14] and further ones at, for example, the RSA 2002 [21] and CHES 2002 con-
ferences [5,6]. The first two seem to provide little extra security if one assumes
squares and multiplies (adds and doubles) can usually be distinguished during
a single exponentiation and no key blinding is used [13,23]; they are also only
suitable for elliptic curve (ECC) applications because of the requirement for the
computation of inverses. However, the more recent algorithms seem to be more
robust [22], and some of them can be applied easily to RSA because no inverses
need be computed.

The purpose of this article is to contribute further to an assessment of the
strength of the third of these randomised exponentiation algorithms, namely
Mist [21]. First, elementary methods are applied to show that half of the digits
generated by Mist suffice to reveal the key when the public modulus and expo-
nent are known. The techniques of Boneh et al. [2] have been used formerly on
classical representations of the secret key to show that only a quarter of the bits
of the key need be known before algorithmic methods can be applied to deter-
mine the complete key in polynomial time. Here those techniques are adapted to
the “randomary” representation of the key which Mist generates. The results
are similar: a quarter of the randomary digits are sufficient to enable recovery
of the full key in polynomial time.

These results are then applied to reduce the search space for keys which are
partially revealed through side channel leakage. Although the conclusions show
the computational effort to break the keys is still infeasible for standard key
lengths, there is little room left for complacency. Key blinding or keys of at
least 1024 bits would still appear to be necessary for good tamper resistance.
By comparison, of course, the quality of side channel leakage which we assume
is instantly fatal to the classical algorithms.

2 The MIST Algorithm

For notation, suppose that the RSA crypto-system has known public modulus
N , public exponent E and private exponent D (after any required blinding), so
that plaintext P and ciphertext C are related by P = CD mod N . It is side
channel leakage from this exponentiation that an attacker uses to extract the
secret key D.

The Mist algorithm [20,21] is a random-ary exponentiation method very
similar to m-ary exponentiation, but it reverses the order of processing the digits
of D, and the base m is varied randomly for each digit choice. The following
version computes P = CD mod N .
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The Mist Exponentiation Algorithm

{ Pre-condition: D ≥ 0 }
Q ← C ;
P ← 1 ;
While D > 0 do
Begin

Choose a random base m from set S ;
d ← D mod m ;
If d 6= 0 then P ← Qd×P mod N ;
Q ← Qm mod N ;
D ← D div m ;
{ Loop invariant: CD.Init = QD×P mod N }

End ;
{ Post-condition: P = CD.Init mod N }

The values of d are analogous to digits of D in representations where the base
m is constant. Generally, the random choice of m is from a fixed set with known
security and efficiency properties, such as S = {2, 3, 5}. When the random base
set S consists of the single divisor 2, the method simplifies to the binary square-
and-multiply algorithm in which the least significant exponent bit is processed
first. In general, for a singleton set S = {m}, the algorithm simplifies to classical
m-ary exponentiation but performed from right to left rather than from left to
right. Space and time efficiency were shown in [21] to be comparable with 4-ary
exponentiation when addition chains for computing Qm compute Qd en route
rather than sequentially, and m is chosen with a suitable bias which favours
m = 2 or d = 0.

The random choice of bases generates different exponentiation schemes on
successive runs and so makes impossible the usual averaging process required
for power analysis (SPA/DPA) [9] or electro-magnetic analysis (SEMA/DEMA)
[15]. Hence, we assume that the attacker has extracted data from a single expo-
nentiation which enables him to determine either i) which operations are squares
and which are multiplications, or ii) which operations share an argument. In [22],
the following results were established:

Theorem 1. ([22], Thm. 9) Suppose squares and multiplies can be distinguished,
but not individual reuse of operands. Then, for the choice of parameters given
in [22], the average number of exponents which can generate the same sequence
of squares and multiplications as a given one for D is bounded below by D3/5.

Theorem 2. ([22], Thm. 8) For the choice of parameters given in [22], the av-
erage number of exponents with exponentiation schemes that have an operand
sharing pattern identical to a given one for D is about D1/3.

Both of these theorems are established by counting the number of choices for
the pairs (m, d). For example, addition chains for (2,1) and (3,0) are chosen to
give them the same operand sharing patterns and square & multiply sequences.
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Every time one of these patterns turns up, there is an ambiguity about the choice
for D which effectively doubles the size of the search space for the correct D.
In other cases there is a unique choice, or even three or four choices for (m, d)
which give the pattern which the attacker has recognised. Simulations indicate
that there is very little collapsing of the search space as a result of duplication
in the reconstructed exponents. However, as one of the reviewers has pointed
out, the size of the search space is not necessarily an accurate measure of the
time to recover the correct key. If efficiency considerations dictate non-uniform
selection criteria for d, then some exponents are more likely than others. So,
on average, an intelligent search for the correct exponent would only have to
traverse a fraction of the entire space. Nevertheless, if each d is equally likely,
then half the space must be traversed. This latter is the case assumed in the
illustrative results below, but it is easy to adapt the deductions to alternative
situations.

If the digits and bases are indexed from 0 to n−1 in the order generated,
then the following notation, initial conditions and properties hold, just as for a
fixed base m:

D0 = D
di ≡ Di mod mi

Di+1 = Di div mi

dn−1 6= 0
Dn = 0

(1)

Di = miDi+1 + di

Di = ((. . . (dn−1mn−2 + dn−2) . . .)mi+1 + di+1)mi + di

D = ((. . . (dn−1mn−2 + dn−2) . . .)m1 + d1)m0 + d0

(2)

This indexing follows that of digits in the standard base m representation. Some
additional related quantities are of use later:

µi =
∏i−1

j=0mj

δi = ((. . . (di−1mi−2 + di−2) . . .)m1 + d1)m0 + d0
(3)

which satisfy
δi ≡ D mod µi

Di = D div µi

D = µiDi + δi

(4)

Exponent blinding is assumed throughout, since this is probably essential to
help address the vulnerability of applications for which the algorithm is consid-
ered necessary. So D will always represent the exponent actual used, with its
digits as above, while D′ will be the original unblinded secret key. Notation for
the blinding is introduced in the next section.

3 Halving the Search Space

The starting point for both of the main results is the observation that φ(N) has
a good approximation given in terms of N . If N = PQ is the prime factorisation
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of N , the standard choice of P and Q to have the same number of bits allows
an attacker to assume that P < Q < 2P . Then 2

√
N < P+Q < 3

√
N/2 and so

φ(N) = N−(P+Q)+1 is bounded by

N − 3
√
N/2 + 1 < φ(N) < N − 2

√
N + 1 (5)

This interval has length less than 1
8

√
N , so that three more than half the most

significant bits of φ(N) can be determined trivially.
Suppose that the public and private exponents, E and D′ respectively, are

related by
D′×E = 1+kφ(N) (6)

where it is reasonable to assume that D′ is chosen to make D′ < φ(N) so that
k < E. However, to such D′ a blinding factor should normally be added [8],
giving the secret key

D = D′+rφ(N) (7)

which is actually used for an exponentiation. Here r is a random number, often
of 32 bits. Then

D =
1 + (k+rE)φ(N)

E
(8)

Let B be an upper bound on such r. Then, in effect, the coefficient k+rE of φ(N)
is a random number in the range 0 to BE. The attacker just has to generate each
of the O(BE) possible values of the random coefficient of φ(N) in order to obtain
a set containing an approximation to the value of D used in the exponentiation
which he has observed. If there is no blinding, r = 0 is taken, and B = 1 will
give the relevant results for that case.

For a given choice of r and k, let Dl and Du denote the (irrational) lower and
upper bounds on D determined by equations (5) and (8). So, for the assumptions
made above,

Du −Dl =
k+rE
E

(3
√

1/2− 2)
√
N <

B

8

√
N (9)

Next the attacker must generate all possibilities for the last half or so of the
digits of D, taking enough of them to construct a Dj satisfying both

Dj ≥
√

(k+rE)N
E

and Dj ≥ Du−Dl (10)

The first inequality is usually a consequence of the second. By (9), this is the

case if
√

k+rE
E ≤ k+rE

E (3
√

1/2− 2), i.e. if k+rE
E ≥ (3

√
1/2− 2)−2, which holds

for r ≥ 68. So we can normally ignore it in the following estimates.
Depending on the threat model for side channel leakage, the digit choices will

be restricted in some way. We will consider in more detail the two particular cases
covered by Theorems 1 and 2. In each case, the ambiguities for each base/digit
pair (mi, di), j ≤ i ≤ n−1, were described in detail in [22]. The attacker’s next
problem is to identify which such choice is correct.
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By (8) and the first inequality of (10), Dj >
√
D, so that (4) gives δj <

µj <
√
D < Dj . Thus µj = D div Dj by (4). By the second inequality of (10),

Dl/Dj < D/Dj < Du/Dj ≤ Dl/Dj + 1. So, combining these,

Lemma 1. For j as chosen above, µj = D div Dj = bDl/Djc or bDu/Djc.

These two quantities can be calculated from the assumed values of Dl and
Du and used to reject Dj if neither expression has the characteristic property of
µj , namely being a product of elements from the chosen base set S = {2, 3, 5}.
This should almost completely determine the correct Dj .

Our next task is to estimate how many values of Dj will be accepted by this
process. It is reasonable to assume bDl/Djc and bDu/Djc are effectively random
in terms of their prime factorisations. So we need to know the probability that
a random number of size D/Dj will be a product of powers of only 2, 3 and 5.

Suppose µ = 2x3y5z < K. Then there are at most log2K possible choices for
x, log3K for y and log5K for z, making a total of at most (log 2 log 3 log 5)−1

(logK)3 choices for µ. Differentiating with respect to K, this in turn means a
maximum density of

3(log 2 log 3 log 5)−1(logK)2/K (11)

for numbers of size K with the required form. So these forms are quite rare.
Combining (5) and (8) with the equality in (9) yields essentially

√
N − 3

√
1/2

3
√

1/2− 2
<

D

Du−Dl
<

√
N − 2

3
√

1/2− 2
(12)

If Dj is chosen to be minimal such that the second inequality of (10) holds then
Du−Dl ≤ Dj ≤ 5(Du−Dl) because 5 is the maximum base. Thus, ignoring
insignificant terms, the numbers of interest are bounded below by D div Dj ≥

bDl/5(Du−Dl)c ≥ b
√

N−3
√

1/2

5(3
√

1/2−2)
c ≈ 5

3

√
N and bounded above by D div Dj ≤

Du/(Du−Dl) ≤
√

N−2

3
√

1/2−2
< 9
√
N . So we may use K = 5

3

√
N in (11) to provide

an upper bound on the density of {2, 3, 5}-powers in the region containing µj .
If, instead, Dj is chosen minimal such that the first inequality of (10) holds then
D div Dj >

1
5

√
D ≈ 1

5

√
rN where r < 68. So again we must choose K in (11)

to be O(
√
N).

However, by Theorems 1 and 2, there are up to Dj
3/5 or Dj

1/3 values of Dj

with the right patterns to consider. Here O(Dj) = O(Du−Dl) = O(B
√
N) by

(9). Hence, by (11), the expected number of values Dj for which Dl div Dj or
Du div Dj has the right form is at most

O(B3/5{logN}2N−1/5) or O(B1/3{logN}2N−1/3) (13)

respectively for each choice of k and r. In both cases, this is less than 1 for some
expected sizes of N (192 bits in the case of ECC, say) and B (32 bits, say). This
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indicates that essentially only one solution is likely to exist, which will be the
required one if k and r are chosen correctly. However, without the aid of any
leaked data, an exhaustive search will have Dj cases to consider and will reduce
the exponent of N in this expression to 0. Thus, any side channel which reduces
the search space to below that of an exhaustive search will reduce the expected
number of Dj generating the right form to at most O(B{logN}2).

Once a feasible Dj is determined, the remaining part of D is straightforward
to reconstruct iteratively. Using equation 2(i) repeatedly, each new value Di

(j−1 ≥ i ≥ 0) is constructed from the preceding Di+1 and the divisibility of the
associated µi by only 2, 3 or 5 is checked in the same way as for Dj in order to
determine which choice of (mi, ri) is correct.

The effort for this is minimal at least for i ≈ j. However, as i decreases,
the probabilities change: µi = D div Di has fewer and fewer factors, and so is
more and more likely to be of the correct form. For µi ≈ 3×29 there are only
about µi

3/5 ≈ 54 or µi
1/3 ≈ 9 remaining choices for extending Di to D in

a way consistent with the side channel leakage. Also, only 79 values from the
interval [1 .. 3×29] give subsequent µi′s with the right form. So there are very
few incorrect choices which satisfy all the criteria and every plausible case can
be investigated in full. For µi > 3×29, (11) shows that at most 1 in 12 numbers
have the requisite form. The average base value mi′ is 2.50 so that the previous t
base values reduce D by a factor of about 2.50t. So there are around (2.50t)3/5 or
(2.50t)1/3 choices respectively for these t base/digit pairs. Any one of these has
a probability at most 12−t of being acceptable under the divisibility criterion.
Hence at most about (2.50t)3/512−t or (2.50t)1/312−t of the incorrect choices
will survive t base choices. These both tend to 0 as t increases. Hence, although
one may temporarily have to consider some additional incorrect choices for Di,
these will disappear very quickly as i decreases. Indeed, with a probability of
less than 1 in 12 of acceptability and at most 4 choices for extending Di+1 to
Di, the average number of further iterations which an incorrect value survives is
less than

∑∞
i=1 i(

4
12 )i = 3

4 . Thus, normally there will be fewer than two values
of Di+1 which are under consideration for generating Di – the correct one (if k
and r were selected correctly) and at most one incorrect one. The computational
cost of generating possible D from a correct Dj is therefore of the same order as
that of applying the divisibility criterion j times: once for each i < j; and the
computational cost for an incorrect Dj is just the cost of a constant number of
applications of the divisibility criterion.

In total, there were O(BE) values for (k, r), and hence for Dl and Du, and
O({B

√
N}3/5) or O({B

√
N}1/3) ways for choosing Dj from each Dl or Du.

Thus, from this method there will be respectively at most

O(EB8/5N3/10) or O(EB4/3N1/6) (14)

possible values for Dj , and hence of D, which are generated and need checking.
As noted above, almost all Dj will be rejected by the divisibility criterion on
its first or second application and not lead to a viable D. These figures give the
order of work involved in an attack. For standard RSA key sizes of 1024 or more
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bits and no other data to narrow the search space even further, this is still a
computationally infeasible task for any E and no blinding (B = 1). Observe that
increased security is obtained more cheaply by increasing the public exponent E
or the size of the blinding factor B rather than the modulus N .

Other parameter choices and threat scenarios for Mist can be tested in a
similar way to see if the search space still remains large enough to prevent a
successful attack.

4 Quartering the Search Space

The lattice-based techniques of Coppersmith [3] produce complementary results
to those in the previous section. They enable one to deduce the secret key from
the least significant digits rather than the most significant ones. Existing rele-
vant work for recovering secret keys from the public modulus and such partial
knowledge of the key is exclusively centred on a bit-based view of the key. With
bases 3 and 5 as possibilities, the bit-based view must be reformulated in a less
base-dependent way. Fortunately, the generalisations involve few complications.
So, analogously to the quarter of bits of D that Boneh et al. [2] use, a similar
argument here requires on average about a quarter of the digit/base pairs to
be established. Effectively, the computational effort must then be directed at an
exhaustive search of a space whose size is a fractional power of D with exponent
only a quarter of the value given in Theorems 1 or 2. The main result needed in
the proof is the following:

Theorem 3. ([2], Cor 2.2) Let N = PQ be an n-bit RSA modulus. Let µ ≥ 2n/4

be given and suppose P0 =def P mod µ is known. Then it is possible to factor N
in time polynomial in n.

Both here and in [2], the choice made for µ is a product of base values. This
makes µ a power of 2 in [2], but a product of powers of 2, 3 and 5 here. Suppose
pairs (mi, di) have been guessed correctly for 0 ≤ i ≤ j−1 and some j. Then
δj and µj are known, and satisfy D ≡ δj mod µj , as in equation 4(i). µj is the
value which will be taken for µ in the theorem, so we choose j large enough that
µ = µj ≥ 2n/4.

Rewriting equation (8) entirely in terms of N and P rather than N and φ(N)
gives

DE = 1 + (k+rE)(N−P−N/P+1) (15)

Reducing this modulo µ = µj , we see that P0 ≡ P mod µ is a solution for x in
the equation

δjE ≡ 1 + (k+rE)(N−x−N/x+1) mod µ (16)

and hence a root of

(k+rE)x2 − (1−δjE+(k+rE)(N+1))x+ (k+rE)N mod µ (17)
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The coefficients here are all divisible by k+rE because (k+rE)φ(N) = 1−DE ≡
1−δjE mod µ. Suppose g = gcd{k+rE, µ}. Then, dividing (17) through by
k+rE, P0 ≡ P mod µ is a root of the quadratic

x2 − ((1−δjE)/(k+rE)+N+1)x+N mod µg−1 (18)

As before, the attack must consider separately every possible value for k+rE. g
is easily computed once k+rE is chosen, and so (18) is obtained.

Solutions are most easily obtained by first completing the square. N+1 and
(DE−1)/(k+rE) = φ(N) are both even, so the coefficient of x in (18) is also
even. In fact, Q0 ≡ Q mod µ is a second solution to (18) and the coefficient of x
is then −(P0+Q0). So, by taking y = x− 1

2 ((1−δjE)/(k+rE)+N+1) in (18), x
is obtained from the solutions of an equation of the form

y2 ≡ c mod µg−1 (19)

where c is easily computed. For solutions to exist, any power of 2, 3 or 5 which
divides c must occur to an even power. If this is not the case, the wrong k+rE
must have been chosen, and so the next one should be selected. If it is the case,
then that power can be removed from y easily and replaced later. So, without
loss of generality, assume c is prime to each of 2, 3 and 5. Thus we are looking
for a solution prime to µg−1.

The solutions to (19) are obtained by solving modulo the maximal 2-, 3- and
5- powers which divide µg−1 and then using the Chinese Remainder Theorem to
reconstruct the solutions modulo µg−1. Solutions modulo the prime powers are
obtained by lifting solutions progressively from lower powers of the prime. For
higher powers of 2 than 22, Boneh et al. ([2], App. A) have previously noted that
there are at most 4 solutions if there are solutions at all, and have provided a
construction process for them. For an odd prime p, residues mod pt (t≥1) which
are prime to p form a cyclic group of order φ(pt) under multiplication (e.g. [10],
Thm. 7.2.10). Hence (19) will have exactly two solutions, say ±yt, or none at all
for µg−1 = pt. Any solutions modulo pt+1 must then have the form ±(yt+δtpt)
for some δt in [0 .. p−1]. Each δt can be tried in turn to find the solutions. Once
more, no solutions at any point means the wrong value for k+rE; otherwise
there will be two.

Using the Chinese Remainder Theorem to combine the results modulo the
powers of 2, 3 and 5, the number of solutions is the product of the number of
solutions modulo the individual prime powers, namely 4×2×2 = 16, assuming
at least 23×3×5 divides the modulus and each has at least one solution. These
16 solutions are all different because, by reducing them modulo each of the three
prime powers, different solutions sets modulo the prime powers are recovered.

The effort in obtaining and combining the solutions in this way for a fixed
k+rE is proportional to the sum of the exponents of the powers of 2, 3 and 5
dividing µg−1. It is thus a computation of order at most log(µg−1), and hence
of order at most logµ. As j was chosen so that µ ≥ 2n/4 and there are up to
BE choices for k+rE, the solutions now provide all possible values for the P0

in Theorem 3 for a computational effort of O(nBE). Hence,
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Theorem 4. For a public RSA modulus N with n bits, public exponent E and
exponent blinding using a random multiple of φ(N) which is bounded above by
B, given the least significant randomary digits of D whose product of bases is
at least N1/4, it is possible to factorise N in time which is polynomial in n and
linear in BE.

As a corollary, it is possible to deduce the maximum effort required to deduce
the secret key under the assumptions stated in Theorems 1 and 2. The number
of partial keys which need to be tested is of order (N1/4)3/5 and (N1/4)1/3

respectively.

Corollary 1. Under the threat scenarios described in Theorems 1 and 2 with
known public modulus N and encryption key E, it is possible to factorise N in
time which is a product of polynomial time in logN and linear time in BEN3/20

or BEN1/12 respectively.

It is now clear that exponent blinding is important in the prevention of such
attacks, and such blinding provides more tamper resistance per bit than increas-
ing the key length. If similar but more powerful attacks than those described
in [22] can be developed, then blinding will become strongly advisable if the
key length is under 1024 bits. Furthermore, we have assumed the bases mi were
chosen at random. However, biasing the choice for efficiency or other reasons
further reduces the time for executing the attack.

5 Conclusion

Two techniques have been demonstrated for using knowledge of the public RSA
modulus and exponent in order to reduce the computational effort of recovering
the secret key from partial knowledge of a randomary digit expansion of D
generated by the Mist exponentiation algorithm. The first relies on the scarcity
of large numbers which are products of powers of only 2, 3 and 5. The other
generalises the well-known, lattice-based, “Bellcore Attack” method of Boneh,
Durfee and Frankel [2].

Under threat models in which squares and multiplies or operand re-use can
be recognised during a single exponentiation, these techniques do not undermine
the confidence that power and EMR attacks (SPA/DPA and SEMA/DEMA) on
the Mist exponentiation algorithm still appear to be computationally infeasible
for standard key lengths and sensible implementations which include appropriate
blinding. Of course, under the same assumptions, the classical sliding windows
and m-ary exponentiation schemes provide no resistance whatsoever.
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