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1 Introduction

A randomised algorithm for function f takes the usual inputs for f together
with a stream of random numbers and combines them in a way such that
partial or complete knowledge of the atomic operations used to compute f
does not easily reveal the values of some or all inputs. The output of f is still
computed correctly, but the value is independent of the random input stream.

In this chapter we consider randomised algorithms for the exponentiation
function and assume side channel leakage reveals a certain level of partial
knowledge about the arithmetic and read/write operations performed on the
manipulated big numbers. Our object is to make it computationally infeasible
for an attacker to use this information to deduce the secret exponent during
its use over the lifetime of a cryptographic token.

For example, in the usual square-and-multiply algorithm (Fig. 1, [6]), full
knowledge of the sequence of squares and multiplies immediately determines
the complete exponent uniquely. Specifically, there is an exponent bit for every
square; and every time the square is followed by a multiplication the bit must
be a 1, whereas it must be a 0 when the square is followed by another square.

Inputs: M , bit representation D = dn−1dn−2...d2d1d0 ;
Output: C = MD.

C ← 1 ;

For i ← n-1 downto 0 do

Begin

C ← C2 ;

If di 6= 0 then C ← C * M

End

Fig. 1. Square-and-Multiply Exponentiation.
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As a rule, leaked information is rarely without error; a number of squares
may be incorrectly recorded as multiplications and vice versa. Hence there
is normally some error correction to be performed. If the number of errors
is small enough, a search of near-by keys will discover the true value D in
a computationally feasible time. Its correctness can be confirmed easily by
using the corresponding public key E and the relation PED = P . Traversing
the search space must often be done intelligently, selecting the most probable
alternatives first in order to have any hope of finding the key.

In typical protocols using RSA [13], the same secret key D is re-used a
number of times, during which it may or may not be possible to blind it by, for
example, adding a random multiple of φ(N) where N is the public modulus.
Data about the atomic operations can be accumulated over repeated use of
the secret key and might be combined successfully to reveal the key. However,
many protocols, such as ECDSA [2], generate a fresh random number on
each occasion for use as the secret key. In this case there is only one chance
to obtain the key and, moreover, it may be practically impossible to extract
useful side channel information from the cryptographic token at the same time
as using it to perform a real signature. Thus there is a variety of contexts for
which protection against leakage is desirable. Different randomised algorithms
are appropriate for these, and they have differing costs in terms of execution
time and space, and code size, as well as demands on the supply of random
numbers.

The body of this chapter describes the main randomised algorithms for
exponentiation, provides an overview of possible attacks on them under likely
leakage models, and considers how the inevitable errors affect results. One
corollary of the definition of a randomised algorithm is that successive uses of
the same inputs will result in different sequences of operations. Consequently,
Kocher’s averaging over many uses of the same key will prove useless [7].
However, we motivate the discussion further by showing how leaked data
might be combined in Kocher-like fashion to extract operator and operand
information from a single use of a secret key. This contrasts with attack details
in earlier chapters where such information was only obtained after averaging
over many applications of the same key. We also conclude with the important
but counter-intuitive result that use of longer keys may actually weaken a
crypto-system rather than strengthen it when side channel leakage occurs.

2 The Big Mac Attack

This attack [16] applies to m-ary exponentiation (Fig. 2, [6]), and to all sim-
ilar algorithms which use a table of pre-computed digit powers of the input
ciphertext C. Big Mac is so-called because the digits di of the secret key are
determined individually and independently, just like the flavours tomato, beef
burger, lettuce, cheese, etc. of different layers in a certain well-known fast food
product which is too large to be consumed in any other way.
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Using the notation of Fig. 2 in which the exponent has a representation in
base m, the attacker first has to distinguish the processes C ← Cm of raising
to the mth power and C ← C ∗M (di) of multiplication by the digit power of
M . He must then partition the multiplications into disjoint sets for which the
digits di have the same values. The method for doing this is intimated below.
Normally m will be a power of 2 so that raising to the mth power is a sequence
of log2m squarings. For convenience, we will assume that the mth power can
be detected by recognising squares from multiplies. Once the partitioning has
been performed, there are (m−1)! ways of associating specific different digit
values with the m−1 sets of multiplications. One of these choices will yield
the sought key. In fact, the pre-computations can be used to determine the
map from sets of multiplications to digits.

Inputs: M , base m representation D = dn−1dn−2...d2d1d0 ;
Output: C = MD.

{Pre-computation of the table:}
M(1) ← M ;

For i ← 2 to m-1 do M(i) ← M * M(i−1) ;

{Exponentiation of the message:}
C ← 1 ;

For i ← n-1 downto 0 do

Begin

C ← Cm ;

If di 6= 0 then C ← C * M(di)

End

Fig. 2. m-ary Exponentiation.

The background to the attack is the fact that the power consumed by
a hardware multiplier depends to some extent on the Hamming weight of
the inputs [21]. This means that if we were to look at the averaged power
trace for a large number of word-by-word multiplications a×b where a varies
randomly and b is fixed then we would obtain a result which is, at least to
some extent, characteristic of b. For standard classical multipliers, averaged
traces for words b of equal Hamming weight will be closer together than those
for words of different weights. However, all we need for the attack to succeed
is for the power trace to vary measurably between enough groups of word
values. This depends mostly on the experimental technique, and the trouble
and expense to which attacker and designer are prepared to go. With a bit
of experimentation, one can associate a probability of b having a particular
value for a given average trace.

The idea behind the attack is to apply the usual averaging process of
Kocher’s power analysis [7] to digit × big integer multiplication traces rather
than to exponentiation traces. Kocher takes a number of exponentiation traces
associated with the same secret exponent and arranges them so that parts
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corresponding to the same exponent digit are aligned. He then takes an average
to improve the signal-to-noise ratio. Here we cut the trace of C ← C ×M (di)

into sub-traces corresponding to constituent operations C ← shift(C) + cj ×
M (di) where cj is a word-level digit of C, i.e. a group of consecutive bits of C
used as a single input to the hardware multiplier of the cryptographic token.
These sub-traces (one for each j) are aligned and averaged to give a trace
which should be characteristic of M (di). The dependency on the words cj of
C is averaged away. This is done for all n digits of the key D. The n averaged
traces are compared using the Euclidean distance between them. It turns out
that traces for which the digits have the same value are close together whereas
those for different valued digits are noticeably further apart. This enables the
partitioning to be performed.

Typically in RSA the inputs C and M will have around 1024 bits and an 8-
or 16-bit hardware multiplier will used. This means that C will be broken into
about 64 words, and this is the number of traces which are averaged. Unless
C has a really exceptional value (such as 0), this is enough to remove any
dependency on C in the averaged trace. Moreover, as M (di) also has about 64
words, it is very unlikely that a pair of them will share enough digits of similar
characteristics to be confused when their averaged traces are compared.

The same technique is applied to distinguish the squarings (or multipli-
cations) used in obtaining the mth power of C. In this case the averaged
trace is that of a random operand C ′ rather than that of M (i) for some digit
value i. This trace is not close to that of any of the multiplications involving
M (di) nor to any of the operands used in the other m-th power computations.
Hence, when the partitioning process is applied to all multiplications in the
exponentiation, including those in the m-th powers, we can identify the m-th
power computations and group together the sets of multiplications for which
the same exponent digit has been used. So, unless the key lengths are small
and the multipliers are large, one might expect the digits di, and hence the
key D, to be recovered more or less accurately from a single exponentiation.

3 Digit Representation and Exponentiation Algorithms

All of the randomised exponentiation algorithms in this chapter depend on a
randomised re-coding of the binary representation of the secret key D. This is
done by one of the change-of-base algorithms in Figs. 3 and 4, the latter being
a more complex version of the former in which the base m can be randomly
varied instead of being fixed. In both figures the function mod′ includes a
random input which allows a limited number of alternative output digits di
subject to the property that the division (D−di)/m, resp. (D−di)/mi, in the
next line is exact. So the outputs satisfy

D =

n−1∑
i=0

dim
i = ((...(dn−1m+ dn−2)m+ ...+ d2)m+ d1)m+ d0 (1)
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and

D = ((...(dn−1mn−2 + dn−2)mn−3 + ...+ d2)m1 + d1)m0 + d0 (2)

respectively.

Inputs: D ≥ 0, base m > 1 ;
Outputs: n, base m representation D = (dn−1...d2d1d0)m.

i ← 0 ;

While D > 0 do

Begin

di ← D mod′ m ;

D ← (D-di)/m ;

i ← i+1

End ;

n ← i

Fig. 3. Change-of-Base Algorithm for Fixed Base.

Fig. 3 just provides the usual, standard representation to some (fixed)
base m when mod′ is taken to be the usual mod function which returns the
least non-negative remainder on division by m. So m=2 will give the binary
representation, and m=10 the decimal version of D. With this fixed choice
for mod′, successive executions of the algorithm will always give the same
representation. It yields the normal m-ary exponentiation algorithm when
the digits are fed into the exponentiation algorithm given in Fig. 5.

Input: D ≥ 0 ;
Outputs: n, base sequence mn−1...m2m1m0, digit seq. dn−1...d2d1d0.

i ← 0 ;

While D > 0 do

Begin

Select base mi ;

di ← D mod′ mi ;

D ← (D-di)/mi ;

i ← i+1

End ;

n ← i

Fig. 4. Variable Base Representation Algorithm.

A well known example of the application of Fig. 4 is in the sliding windows
exponentiation algorithm. As before, take mod′ to be the mod function. The
base mi is chosen to be m = 2r if the remaining, unrecoded part of D is odd,
and to be 2 otherwise. This gives windows of r or 1 bits. The digits for the r-
bit windows are all odd, and those for the 1-bit windows are all 0. When these
are fed into Fig. 5, the sliding windows exponentiation algorithm is obtained.
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Inputs: M , representation D = dn−1...d2d1d0
with respect to bases mn−1...m2m1m0 ;

Output: C = MD

Pre-computation: a table containing M (d) = Md for each digit value d.
C ← 1 ;

For i ← n-1 downto 0 do

Begin

C ← Cmi ;
If di 6= 0 then C ← C * M(di)

End

Fig. 5. Left-to-Right Exponentiation.

The m-ary and sliding windows algorithms process the bits or digits of the
exponent D from left to right, i.e. from most to least significant. However,
the square-and-multiply algorithm for exponentiation can also process the
digits in the opposite order, as in Fig. 6. The cost difference between the
two directions for base 2 is almost entirely context specific, depending on, for
example, how one moves data around in registers.

Inputs: M , representation D = dn−1...d2d1d0
with respect to bases mn−1...m2m1m0 ;

Output: C = MD

C ← 1 ;

For i ← 0 to n-1 do

Begin

If di 6= 0 then C ← C * Mdi ;

M ← Mmi

End ;

Fig. 6. Right-to-Left Exponentiation.

However, for larger m, the Left-to-Right and Right-to-Left versions of
the exponentiation algorithm allow one to trade memory requirements for
execution time. The Left-to-Right version requires space for the pre-computed
powers of M but the Right-to-Left version has to spend time computing the
digit powers of M (which has a new value) at each loop iteration.

For cryptographic purposes it is usually desirably to re-code the expo-
nent in the same order as the digits are consumed in the exponentiation.
That means using the change-of-base algorithms here with the right-to-left
exponentiation algorithm. The high point of this chapter is the Mist algo-
rithm which does things in this order. If the opposite order is desired and
D is stored in binary, then the new bases must be powers of 2, and the
change of base is achieved by re-coding groups of bits from left to right, as
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in Fig. 7. Of course, this makes raising to the power m particularly easy,
but the subscripts are inevitably reversed from normal terminology, giv-
ing D = ((...(d0m1+d1)m2+...+dn−3)mn−2+dn−2)mn−1+dn−1. As we see
shortly, this is used very imaginatively in Itoh’s Overlapping Windows method
[4].

Input: Binary representation D = bz−1...b2b1b0 ≥ 0 ;
Outputs: n, base sequence m0m1m2...mn−1, digit seq. d0d1d2...dn−1.

i ← 0 ;

carry ← 0 ;

While z > 0 do

Begin

borrow ← carry ;

Choose +ve window size ri ≤ z ;

if ri = z then carry ← 0 else choose carry ;

mi = 2ri ;

di ←borrow×mi + (bz−1...bz−ri)2−carry ;

i ← i+1 ;

z ← z-ri
End ;

n ← i

Fig. 7. Variable Base Recoding Algorithm.

4 Liardet-Smart

For elliptic curves, Liardet and Smart [8] suggested using the variable base re-
coding of Fig. 4 where the base selection is a randomly chosen power mi = 2ri

of 2 bounded above by ri≤R. This choice is detailed in Fig. 8 where Random(R)
returns a randomly chosen integer in the interval [1,R]. The function mod′ of
Fig. 5 is deterministic, being the (signed) residue of least absolute value (tak-
ing 1 when D is odd and ri=2).

The re-coding is used in left-to-right exponentiation applied to perform
point multiplication in an elliptic curve context. So the terminology becomes
“additions” and “doublings” instead of “multiplications” and “squarings”.
Then the pre-computed table of Fig. 5 need only contain the odd multiples of
the input point up to 2R−1: negative digits are dealt with by a point subtrac-
tion of the corresponding positive multiple of the input point. So the space
efficiency is that of a sliding windows with (R−1)-bit windows for which all
digit multiples have to be computed.

If Random(R) were to have a uniform distribution over [1, R] then the aver-
age window size for the odd digits would be (R+1)/2. So the time efficiency of
the algorithm would be close that of the equivalent sliding windows algorithm
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Inputs: D, R ;
Output: mi

If (D mod 2) = 0 then

mi ← 2

else

Begin

r ← Random(R) ;

mi ← 2r

End

Fig. 8. Liardet-Smart Base Selection.

whose window size is (R+1)/2. Of course, the distribution of bases could be
biased to favour larger values in order to increase execution efficiency.

As the windows now occupy arbitrary positions in the addition/doubling
sequence, there will be both adds and doubles in any given position of the
side channel traces if the same key is re-used. This should make it virtually
impossible to deduce meaningful information from averaging a number of
traces. Moreover, if the pattern of adds and doubles can be determined for
a single use of the key, there is still the problem of identifying which digit
occurs. Even more difficult is to distinguish the sign of the occurring digit
because the same operands are used for both signs.

This is an excellent algorithm for protocols such as ECDSA [2] where
the secret key is used just once, providing there is not too much side chan-
nel leakage. There is an exercise at the end of the chapter to determine the
computational cost of key recovery under an expected leakage model. If the
classical algorithms for point addition and point doubling are used then the
different numbers and types of the constituent field operations could lead to a
very accurate determination of the sequence of adds and doubles. So balanced
code [1] may be advisable in combination with this algorithm.

4.1 Attacking the Algorithm

If the secret key is re-used unblinded, and the pattern of adds (A) and doubles
(D) is leaked with few errors, then the situation is less happy. An example is
given in Table 1 where possible digit sequences on the left are spaced out to
indicate the intervening doubling operations, and the corresponding operation
sequences, referred to as “traces”, are given on the right. So − − 3̄ indicates
base 23 with digit −3 and the corresponding sequence of adds and doubles is
D D DA. By pairing each A with a ”D”, corresponding Ds are aligned with
their associated bit position given at the head of each column. For uniformity,
there is an initial ...DA for the leading non-zero digit, although efficient code
would omit it.
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In order to determine the value of bits at position i or just above, we will
ignore the parts of the traces to the right of position i. For simplicity, assume
this part is deleted, i.e. the i rightmost occurrences of D are removed, and
any As therein. Next, partition the trace segments into two sets, TrAi and
TrDi , according to whether their rightmost operation (in position i) is A or
D. Assume there are enough traces to show all the possible patterns of adds
and doubles around this position. If only D occurs (i.e. TrAi is empty), then
the ith bit must be 0 since the representation using only base 2 would generate
A if the bit were 1. The same argument applies if only A occurs. So the bits
of index 0 and 1 must be 1 and 0 respectively in the example of Table 1.

4 3 2 1 0 4 3 2 1 0

1 1 0 1 DA DA D DA
1 - 1̄ 0 1 DA D DA D DA
- - 3 0 1 D D DA D DA

1 1 - 1 DA DA D DA
1 - 1̄ - 1 DA D DA D DA
- - 3 - 1 D D DA D DA
1 0 - - 3̄ DA D D D DA

Table 1. Some recodings of 13 = 11012 with R = 3 and their Add/Double traces.

Write Di for the value of the input binary key D from the most significant
bit down to, and including, bit i. Then the traces in TrAi represent the value
Di or Di+1 according to whether the next (i.e. less significant) digit is non-
negative or not. Clearly, as digit di is odd for these traces, it must be the odd
one of the values Di or Di+1 which is represented. So the bit pattern in the
number represented by the traces TrAi is identical to that in Di with the sole
possible exception of position i. Assuming there are enough traces for base 2
to have been chosen at position i, we will have A at position i+1 if, and only
if, the bit is 1 at that position. This can be seen in Table 1 where we can use
this to deduce the values of bits in positions 1 and 3. In fact, we can have no
more As until the next bit which is 1. So we can deduce bit 2 is 1 from the
trace set TrA0 . As the first trace only goes up to position 3, we know the input
has at most 4 bits, all of which have now been determined.

An attacker may only be able to make, say, 10 measurements with enough
accuracy to deduce the patterns of adds and doubles. Consequently, a few
bits may be undetermined [19]. (If the arguments are performed carefully,
none should actually be incorrect). However, it then requires surprisingly little
computational power to deduce the key.

On the other hand, if adds can scarcely be distinguished from doubles, life
is much more difficult for the attacker. His main problem in performing this
attack is to align the doubles. Without the ability to do this, the sub-traces
corresponding to given key bits cannot be aligned. Their random movement
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within side-channel traces seems to average away useful information except
at the key ends. He could select the very longest traces to guarantee only
base 2 was used, and average them to deduce their common pattern, but,
of course, there will be no such traces because the probability of generating
them is too small for cryptographic-sized keys. So, overall, any uncertainty
over the interpreting the side channel leakage seems to increase dramatically
the difficulty of extracting the key.

In conclusion, this algorithm should only be used after careful regard to
its context. In particular, it should not be employed where the same key is
used repeatedly without blinding unless side channel leakage is low.

5 Oswald-Aigner Exponentiation

Another randomised algorithm was proposed by Oswald and Aigner [11]. For
ease of presentation, the description here is slightly modified. The base is fixed
at m = 2 and the digit set is {−1, 0, 1, 2}. In the digit re-coding phase (Fig. 3),
the randomisation occurs in the digit selection function mod′ which chooses
–1 or 1 when D is odd and 0 or 2 when D is even. However, choice is only
possible in certain cases: 2 is only allowed when the previous non-zero digit
was –1, namely when a “carry” has been propagated to obtain the next value
of D in the re-coding; and –1 is only allowed when there is no such carry being
propagated. Termination is forced by selecting 1 if D = 1 and 2 if D = 2.
This is described in detail in Fig. 9, and some re-codings of 29 are given on
the left side of Table 2.

For exponentiation, the right-to-left method of Fig. 6 is preferred because
the digits are then consumed in the same order as they are generated. In an
elliptic curve context, the digit –1 causes no problems as point subtraction
is as easy as point addition. The digit 2 is processed by re-ordering the loop
iteration to perform the point addition (with digit di = 1) after the point
doubling instead of before it. Hence the space efficiency matches that of the
equivalent square-and-multiply algorithm. On average half the re-coded digits
are odd (+1 or –1) and half are even (0 or 2). More precisely, the digits
{−1, 0, 1, 2} occur in the ratio 1

8 : 3
8 : 3

8 : 1
8 . So the average time efficiency

is a little poorer than square-and-multiply because occurrences of digit 2 are
more expensive than those of digit 0.

5.1 Attacking the Algorithm

As in the attack on the Liardet-Smart algorithm, suppose that adds (A) can
be distinguished from doubles (D) reliably in each execution of the exponen-
tiation procedure, and that the same key is used many times unblinded as the
exponent.

Again, the behaviour of the algorithm at any point depends on the local
bit pattern in the binary representation of the key. This bit pattern is reflected
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Input: D ≥ 0 ;
Outputs: n, and representation D = (dn−1...d2d1d0)2.

i ← 0 ;

Carry ← False ;

While D > 0 do

Begin

If D = 1 then di ← 1 else

If D = 2 then di ← 2 else

If Carry then

Begin

If (D mod 2) = 1 then di ← 1 else di ← 0 or 2 ;

If di 6= 0 then Carry ← False ;

End ;

else

Begin

If (D mod 2) = 0 then di ← 0 else di ← 1 or -1 ;

If di = -1 then Carry ← True ;

End ;

D ← (D-di)/2 ;

i ← i+1

End ;

n ← i

Fig. 9. Oswald-Aigner Digit Generation.

4 3 2 1 0 4 3 2 1 0

1 1 1 0 1 DA DA DA D DA
2 1̄ 1 0 1 AD DA DA D DA
1 2 1̄ 0 1 DA AD DA D DA
2 0 1̄ 0 1 AD D DA D DA
1 1 1 1 1̄ DA DA DA DA DA
2 1̄ 1 1 1̄ AD DA DA DA DA
1 2 1̄ 1 1̄ DA AD DA DA DA
2 0 1̄ 1 1̄ AD D DA DA DA

Table 2. Recodings of 29 = 111012 and their traces, both generated right to left.

in a restricted set of patterns over {A,D}. From these, the bit pattern can
be deduced. For example, the pattern DAAD only arises from the re-coding
12 or 1̄2 (more significant digit on the left). This means a corresponding bit
pattern 111 must occur in the binary representation: the middle 1 is needed
to generate the digit 2 using a carry which can only come from the bit on its
right being 1, and a 1 is needed on its left to give the re-coded digit 1 or 1̄.
This occurs for some traces representing the top three bits in Table 2.

Now suppose there are enough traces to generate every possible pattern
of operations near a given bit position. From the previous paragraph, we will
know every occurrence of 111. Also, the bit pair 00 always causes two doublings
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with no intervening addition, but for every other bit pair an intervening add
is possible. So we can identify every occurrence of 00. Thus 00 cannot occur
in the example of Table 2. Furthermore, the bit pattern 10 always has one A
between the Ds of its two bit positions whereas every other bit pattern allows
the Ds to be adjacent for some re-coding. Hence all occurrences of 10 will be
determined. This shows that 10 must occur over positions 2,1 in the example
of Table 2. These two cases enable every bit 0 to be determined as well as every
bit immediately to the left of a 0. Of course, the remaining undetermined bits
must all be 1s otherwise they would have been determined as belonging to a
pattern 00 or 10. In fact, if some traces contain one or more As and others
contain no As between two neighbouring Ds, then the corresponding bit pair
must be ∗1 for some bit ∗. So every bit 1 can be determined that way. This is
the case for the example of Table 2 and it reveals the whole key.

However, the attacker may have too few traces to be sure of his deductions
about the bits. In this case he looks at the ratios of the number of traces
with zero, one or two As between the Ds of a bit pair. Most occurrences
of 1 will be determined unequivocally as above, including the majority of
occurrences of 111. Otherwise, it is possible to use the operation pattern to
assign a probability to the value of each bit pair. For example, no intervening
As will make 00 the most likely bit pair, and with a probability that increases
with the number of traces available for inspection. As each bit belongs to
two pairs (except at the ends), almost all bits are determined with high or
complete accuracy. Indeed, with as few as 10 correct traces, and a standard
key length for elliptic curve cryptography, it is computationally possible to
determine any unknown bits and reveal the secret key ([20], Thm. 1).

Greater accuracy is obtained from looking at patterns corresponding to
sequences of three or more bits instead of just two and this might overcome
problems arising from errors in the traces.

However, the above analysis depends critically on precise alignment of all
occurrences of doubles in the traces. With balanced code for adds and doubles
[1], this may be difficult because the adds and doubles cannot be distinguished
so easily. In fact, it is not clear how to align the traces satisfactorily even if the
bits of the key are known as far as the point of interest in the traces. Inexact
alignment seems to average away any useful data about the bits except at the
ends.

As with the Liardet-Smart algorithm, the security of the Oswald-Aigner
method relies on the key being different on each use, or for it to be very
difficult to use side channel leakage to distinguish adds from doubles reliably.

6 Ha-Moon

There are two randomising algorithms due to Ha and Moon et. al., [3, 25],
both presented as left-to-right exponentiation methods.
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The first [3] has fixed base m=2 and simply employs the most general
binary signed digit (BSD) coding in the change-of-base algorithm (Fig. 3): it
selects digit d=0 when D ≡ 0 mod 2, and randomly chooses between d=± 1
when D ≡ 1 mod 2. When D is odd, the random choice makes the next value
of D odd or even with equal probability, and so the occurrence or otherwise
of a multiplication does not indicate the value of the next bit in the original
input value of D. However, in exactly the same way as with the Oswald-Aigner
method, the pattern of additions and multiplications reveals the exponent with
feasible computation when it is re-used about 10 times [10].

The second, improved version by S.-M. Yen et al. [25] uses any fixed 2-
power radix and employs digit recoding from most to least significant, so that
conversion can be done on-the-fly during a left-to-right exponentiation. An
example with base 4 is given in Fig. 10. It is readily verified that the digit di
is always in the range 1 to 14.

Input: Base 4 representation D = (bn−1...b2b1b0)4, bn−1 > 0 ;
Output: Base 4 representation D = (dn−1...d2d1d0)4 + δ.

Carry ← bn−1 ;

i ← n-1 ;

While i > 0 do

Begin

Borrow ← 4*Carry ;

Carry ← Random from {1,2,3} ;

di−1 ← Borrow - Carry + bi−1 ;

i ← i-1 ;

End ;

δ ← Carry ;

Fig. 10. A Yen-Chen-Ha-Moon Digit Recoding with base 4.

Regarding time efficiency, the method is similar to m-ary exponentiation.
(Here with m = 4.) It has the same number of squarings. However, it also
has the same number of multiplications as squarings because all the digits
are now non-zero, whereas m-ary exponentiation has only m

m−1 = 3
4 of this

number. The pre-computations also add marginally to the time, as does the
extra digit δ. The space requirement is close to that of m2-ary exponentiation
since the pre-computed table contains m2−2 = 14 values. As the digits are
non-negative, the technique can be used for modular exponentiation as well
as for point multiplication on elliptic curves.

6.1 Attacking the Algorithm

The non-zero property of the digits ensures that the pattern of squares and
multiplications is always the same and there are no dummy operations to
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which to apply the safe error attack [24]. The attacks mounted on Liardet-
Smart and Oswald-Aigner are therefore impossible here.

However, there are features of the recoded digit values which might be used
to extract the bits of the key. Park and Lee [14] observed that the average
value of the digit di−1 has 2 for Carry and 8 for Borrow, making an average of
6+bi−1. Hence, minimal leakage of the value of the recoded digit from enough
traces will be sufficient to determine bi−1 correctly with high probability.
For example, the leakage can be turned into probable digit values using the
Big Mac attack [16] which was described in §2. Now the identical pattern of
operations for every exponentiation is in the attacker’s favour: he can easily
align operations at position i−1 and so pool any weak leakage in order to find
the average 6 + bi−1. This enables him to recover the secret key D with very
few errors. He just needs to collect more trace data to add into his averages
if the signal-to-noise ratio is not giving enough correct digits. Consequently,
any re-use of a key with such re-coding should be combined with random
blinding of it. Then the used value of bi−1 varies randomly and its average
value contains no information.

Thus the second Ha-Moon algorithm exhibits different strengths and weak-
nesses from those of the Liardet-Smart and Oswald-Aigner algorithms. This
may make it more suitable than the others in some contexts. As usual, mes-
sage whitening and key blinding appear necessary if the same key is to be
re-used a number of times.

7 Itoh’s Overlapping Windows

The algorithm of Itoh et al. [4] is a sliding window technique which, in its
general form, essentially includes all the preceding algorithms except that
digits are non-negative. It allows any representation given by the Variable Base
Representation Algorithm (Fig. 4) subject to the base being a 2-power. As
in the (second) Ha-Moon algorithm, the authors describe the conversion from
binary as a re-coding from left to right, enabling a table-driven exponentiation
to consume the digits in the order they are generated.

The method is illustrated by several examples, the first being the overlap-
ping windows method (O-WM) in Fig. 11. There are two main parameters,
k and h, with k > h and a recommended relationship h ≥ k/2. The base for
both input and output is fixed at m = 2k−h for this example. In the figure,
the k-bit variable Left consists of two parts. Its lowest k−h bits are the next
set of bits of D to be processed, namely the base m digit bi−1. Its top h bits,
the value of Top, is the remainder left from processing the more significant
bits of D. The output digit di−1 is no larger than Left and so the digit range
is from 0 to 2k−1. Consequently, the process can be viewed as a k-bit sliding
windows method with an overlap of h bits.

Fig. 11 is just a fixed base version of the variable base re-coding in Fig. 7
with appropriate simplifications and detail about “choose”. It yields a left-to-
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Input: h, k with 0<h<k; n>0; D = (bn−1...b2b1b0)m where m=2k−h.
Output: Random base m representation D = (dn−1...d2d1d0)m.

m ← 2k−h ;

Top ← 0 ;

i ← n ;

While i > 0 do

Begin

Left ← m*Top + bi−1 ;

If i=1 then Top ← 0

else Top ← Random from {0,1,...,min{Left,2h-1}} ;

di−1 ← Left - Top ;

i ← i-1 ;

End ;

Fig. 11. O-WM Recoding.

right exponentiation method whose time efficiency is similar to that of m-ary
exponentiation, and whose space efficiency is that of 2k-ary exponentiation.
For smart card applications, k needs to be kept very small, which limits the
amount of randomness which can be introduced. We need h ≥ k/2 to add as
much randomness as is in the key D.

The full O-WM method still keeps k fixed but allows h to vary, so that the
base m also varies. This uses the recoding method of Fig. 7 where Carry is
chosen to keep output digits in the range 0 to 2h−1. Interested readers should
consult the original paper of Itoh [4].

7.1 Attacking the Algorithm

The O-WM method is very similar to the second Ha-Moon algorithm for a
fixed base m = 2k−h. The main difference is in the range for Carry in Fig.
10. The similarity means that the same attacks are likely to work for both
algorithms, although there are more complications here. The presence of zero
digits and/or variable bases means that matters are easier when squares can
be recognised. Then the multiplications can be correctly aligned in the same
way as in Table 1 for Liardet-Smart. Leakage of Hamming weight enables this
to be done, and so that is assumed in the leakage model here.

In particular, the attack described in §6.1 works here, using Park & Lee’s
averaging technique [14]. Usually a good first approximation to bi−1 is ob-
tained by ignoring the effect of Left on the range of randoms assigned to
Top: when the previous value of Top is non-zero, Left has a value of at least
m = 2k−h, which is at least 2h if h ≤ k/2. There is a large cost in selecting
h > k/2, but even if this were to occur, very few previous values of Top are
small enough to reduce the range of the following value of Top. Hence Top has
an average value only slightly less than 1

2 (2h−1), making the average value
of di−1 a little less than bi−1 + 1

2 (m−1)(2h−1). This enables an approximate
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value for bi−1 to be deduced once squaring operations in the traces have been
aligned. Of course, at least 1 in 2h of the random values will be 0, so the
average for Top should be reduced by O(2−h), and that for di−1 reduced by
O((m−1)2−h) = O(2k−2h). So in most cases this rough calculation should
yield bi−1 simply by rounding down. With a bit more effort the accuracy of
the digit prediction would be improved.

In comparison with earlier algorithms, it is clear that this one is more dif-
ficult to break if suitable parameters can be chosen (such as large k and small
k−h), especially if the base is made variable. So security can be improved,
but it is at the cost of run-time efficiency.

8 Randomized Table Method

Itoh et al. [4] enhance O-WM with a “randomized table” technique (RT-WM)
which modifies the digit range {dmin, ..., dmax} to {r+dmin2c, ..., r+dmax2c}
where r is a random c-bit number fixed for each exponentiation. The required
pre-computed table then contains the powers of the input text under the new
digit range. As the method can be applied as an additional counter-measure to
any recoding scheme, the translation is described as a separate process here.
However, it is a fully integrated part of the re-coding in [4].

For the desired sequence of bases mn−1,mn−2, ...,m0, let

D0 = r(((...(mn−2 + 1)mn−3 + ...+ 1)m1 + 1)m0 + 1).

Compute D′ = (D − D0 − δ)/2c where D − D0 = δ mod 2c, and apply the
chosen re-coding method with the chosen bases to D′ to obtain

D′ = ((...(d′n−1mn−2 + d′n−2)mn−3 + ...+ d′2)m1 + d′1)m0 + d′0

where the digits d′i are in the range {dmin, ..., dmax}. Then

D = ((...(dn−1mn−2 + dn−2)mn−3 + ...+ d2)m1 + d1)m0 + d0 + δ

for digits di = r+d′i2
c in the required range {r+dmin2c, ..., r+dmax2c}.

8.1 Attacking the Algorithm

The motivation behind RT-WM is clearly the disruption of the digit averaging
attacks described in §§6.1 and 7.1. Currently there are no published attacks
on the method.

If the leakage were strong enough, an attack which yields any information
from individual traces might be applied to the table construction phase first
in order to reveal r, and then applied to the exponentiation phase. This is
unlikely to work without averaging over many traces: devices which employ
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the algorithm are likely to use hardware counter-measures which are sufficient
to defeat attacks on a single trace.

The average of r is 1
2 (2c−1), which leads to an average value for D0. In

the case of Ha-Moon 2 or O-WM this would lead to average values for each
digit d′i. Ostensibly, this leads to recovery of the average for D′ and hence to
D. However, the borrows in computing D′ = (D−D0−δ)/2c mean that every
d′i has the same average, namely that of a random digit. Hence the average d′i
contains no information, and D cannot be recovered in this way.

There are new methods being published which enable weak leakage to
be combined successfully in the presence of randomising counter-measures,
e.g. [23]. If the same key is used sufficiently many times, the information
theoretic content of the side channels is enough to determine the key uniquely.
The only question is whether or not the information can be combined into a
computationally feasible attack.

9 The MIST Algorithm

In the preceding algorithms, the Change-of-Base and Variable Base Represen-
tation algorithms in Figs. 3,4 only made use of bases which are powers of 2.
This means that these algorithms can be expressed as left-to-right recodings
of binary, and digits can be consumed as they are generated by the usual
left-to-right exponentiation algorithm. The MIST algorithm [17] deliberately
selects bases which are not all powers of the same prime, but this forces digit
generation to be from right to left. However, by separating digit generation
from exponentiation, the exponentiation can be performed in either direction.

The original description suggests choosing the recoding base mi randomly
from the set S = {2, 3, 5}. An example algorithm for this is given in Fig.
12 where Rand(n) returns a random non-negative integer less than n. Be-
cause raising to the power 3 or 5 is less efficient than raising to a power of
2, the choice is biased towards base 2. However, a multiplication is saved in
the exponentiation when the digit is zero, so there also a bias towards se-
lecting bases for which the digit is 0. The digit choice mod′ could be the
least non-negative value, but alternatives are possible, such as the residue
of least absolute value. D would be stored efficiently in base 240 if the ma-
chine word were 8 bits long, so that recoding digit and base selection could
be done by looking only at the lowest digit. A typical recoding example is
23510 = (((((0×2 + 1)×3 + 0)×2 + 1)×5 + 4)×2 + 0)×3 + 1. This can be
abbreviated to 235 = 120312450213 using the obvious notation to indicate the
base of each digit.

Space efficiency is similar to that of binary exponentiation except for an ex-
tra register required to store one more intermediate product, and space for the
recoding. Time efficiency is between that of binary and quaternary exponen-
tiation. The details to check this require modelling the recoding as a Markov
process and computing its eigen-vectors [17]. The left-to-right exponentiation
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mi ← 0 ;

If Rand(8) < 7 then

If D ≡ 0 mod 2 then mi ← 2 else

If D ≡ 0 mod 5 then mi ← 5 else

If D ≡ 0 mod 3 then mi ← 3 ;

If mi = 0 then

Begin

p ← Rand(8) ;

If p < 6 then mi ← 2 else

If p < 7 then mi ← 5 else

mi ← 3

End

Fig. 12. One Choice for Digit Recoding in Mist.

method of Fig. 5 uses table entries for the multiplications. However, to achieve
the best efficiency in the right-to-left method of Fig. 6, the computations of
Mdi and Mmi must be combined to minimise the total number of long integer
multiplications. Specifically, Mdi should be computed en route to Mmi . The
details can be expressed using an addition chain in which a+ b = c stands for
the computation of Ma×M b to obtain M c. For example, the addition chain
1+1=2, 2+1=3, 2+3=5 enables M2, M3 and M5 to be computed with three
multiplications, and so is suitable for base 5 with any digit except 4.

9.1 Attacking the Algorithm

The algorithm is designed to make it much more difficult to apply any of
the previous attack methods to deduce the exponent D. Specifically, the vari-
able base choice means there is no alignment between operations and bits of
D which could be exploited. So attacks similar to those against the Liardet-
Smart and Oswald-Aigner algorithms are not possible. In general, the patterns
of squarings and multiplications do not seem to narrow the search space suf-
ficiently to allow key recovery [18].

In any exponentiation, detection of operand re-use may be possible by ob-
serving Hamming weights on the bus or repeated access of the same memory
locations. This makes every table-based left-to-right exponentiation poten-
tially vulnerable. Indeed, all the previous algorithms are fatally compromised
unless there is enough noise to ensure a number of mistakes in determining
the operand sharing. However, in the original right-to-left MIST, the operand
sharing pattern still leaves an ambiguity between the digit/base pairs 12 and
03. These occur sufficiently frequently to make it computationally infeasible
to traverse the search space for the correct key D.

Nevertheless, Oswald [12] has reported analysing patterns of squarings
and multiplications from a single trace by using Viterbi’s algorithm [15] to
select the most likely sequence of digits. This chooses about 83% of digits
correctly, but apparently does not identify which are the correct ones. It is
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an improvement on the 74% predicted by independently selecting the most
likely digits when the pattern for each digit has been identified [18]. The
latter choice ignores a strong dependence between consecutive digit choices
resulting from the efficiency-driven bias in Fig. 12. With short elliptic curve
keys, Oswald’s technique leaves some 30 bits to modify, which is infeasible
without good information about their positions. Further work on the attack
may reveal this so that a prioritised search can be performed. But the result
also assumes perfect information from the trace. In practice, noise leads to
some degradation in the deduced pattern, and this is likely to render the
attack infeasible.

10 Conclusion

The first attacks on exponentiation by Kocher et al. [7] showed that key
recovery is possible from weak side channel information when keys are re-
used with the same unprotected pattern of long integer operations. Similar
trace averaging methods can reveal repeated patterns of operand re-use and of
data movements in algorithms. This can still create problems for algorithms
that appear to have key-independent computation patterns at the highest
level [5]. Randomisation techniques are required to prevent this. Key blinding
provides one solution, but it may be insufficient [22]. Further randomisation to
confuse the attacker can be provided through the randomary exponentiation
in this chapter. Most of the methods that have been developed thus far have
been seen to be weak on their own, and require key blinding as well if the
key is to be re-used. However, for once-off key use the randomisation provides
the algorithms with considerably increased security and an efficiency which is
often better than that of algorithms with uniformly balanced code – such as
square-and-always-multiply.

11 Exercises

These exercises are aimed at developing an appreciation of just how difficult
it is to discover the correct key from imperfect side channel leakage even when
the degree of error is very low.

1. In the Liardet-Smart algorithm choose a key size of 160 bits, an upper
bound R = 4 on the window size, and assume that there is side channel
leakage from a point multiplication which provides the sequence of adds
and doubles without error.
a) What is the average number of windows which occur?
b) Calculate the average number of different keys for which the same

pattern of adds and doubles will occur.
c) Does the algorithm become more or less secure if the value of R is

altered?
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d) Is there a most secure value for R with this level of leakage?
e) Is it computationally feasible to attack an implementation of this al-

gorithm with so much leakage?
f) What are the answers to these questions if the key size is doubled to

320 bits?
g) Repeat the previous parts under the assumption that adds and doubles

are only determined correctly with a probability of p = 0.95. (So
about 10 errors may need to be corrected before guessing the digits
corresponding to each addition.) Make any reasonable simplifications
you wish. For example, ignore the fact that some patterns of adds and
doubles are impossible.

2. This excercise involves some programming, but it can be done entirely by
hand. If so, take a smaller key size such as 20 bits, adjust the probabilities,
e.g. pS = 1− 1

20 = 0.95, and use the parity of word lengths in this question
as the random number generator.
a) Use a random number generator to obtain a random 160-bit keyD. For

convenience, pick a key for which exactly 80 bits are 0 and 80 bits are
1 (including the first). Convert D into the string of squarings (S) and
multiplications (M) which occur when it is used as the exponent in the
usual square-and-multiply algorithm. Make sure your implementation
omits unnecessary operations, such as an initial squaring of 1.

b) Suppose this key and algorithm are used in a cryptographic token
which suffers from side channel leakage. Assume that pS = 1− 1

80 and
pM = 1− 1

40 are the probabilities that each S and M is determined
correctly before taking account of the fact that two multiplications
cannot be adjacent. Use these probabilities to generate a string λ over
the alphabet {S,M} which might be have been deduced from the trace
information.

c) Write down a formula for the expected number of errors in λ. In
how many cases is it expected to be possible to correct the error when
“MM” occurs? Are there any end conditions which λ must also satisfy
before it can correspond to the true sequence of operations? Compare
your figures with those from the key and string which you generated.

d) What are the probabilities of having a) no errors, b) exactly one er-
ror, c) exactly two errors, d) exactly 5 errors to correct? (You may
assume, for simplicity, that observable errors, such as “MM”, have not
occurred.)

e) Take your string λ, and correct the obvious errors such as occurrences
of “MM”. Mark all characters in λ which might represent isolated
errors. (So assume there are no adjacent errors.) How many keys need
to be tested for correctness if λ contains exactly a) one error, b) two
errors, or c) five errors?

f) Are there any substrings which must be correct if they contain at most
one error?
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g) Suppose the search for the correct key is done using a machine with a
32-bit processor. Using information in earlier chapters about the cost
of elliptic curve operations, estimate how many 32-bit operations are
needed to check the correctness of the key if it has exactly five errors
and has been used in an elliptic curve point multiplication over a 160-
bit field? (Assume the test requires a 160-bit point multiplication.)

3. In this question we assume the same key is re-used without blinding, so
that there are a number of traces corresponding to the same exponent.
We try to reconstruct the key from these traces.
a) Write a program to generate the sequences of squarings (S) and mul-

tiplications (M) given by a) the Liardet-Smart and b) the Oswald-
Aigner algorithms. Collect 50 such sequences, initially for 20-bit keys.

b) As in Table 1 align the squarings of a number of such sequences and
determine whether or not the ratio of squares to multiplications is
the same for each column in the averaged sequence. If it is not, can
anything be deduced about the corresponding bit in the exponent?

c) Look at the patterns of S and M which are possible for an adjacent pair
of bits. Do the possibilities determine either or both of the bits? Mark
the bits which are determined. How many bits are doubly determined
as a result of pairing them with the bits on either side? How many bits
remain undetermined? If those bits had different values, would they
have been determined. If so, does this mean all bits can be determined?

d) Repeat the previous part of the question, this time looking at the
patterns of S and M for three adjacent bits.

e) Mechanise the bit determination process worked out in the previous
parts. Apply the process to a number of sets of 2n sequences, n =
1, 2, ... and a 160-bit key. Calculate the average number of incorrectly
determined bits for each size of trace set. If there are cases where all
the bits are recovered correctly, how often is the correct key recovered
for each set size?

4. a) Choose a random 160-bit key. Write a program implementing the Ha-
Moon recoding algorithm of Fig. 10 and use it to generate a number
of randomised digit sequences for the key. Extend the program so that
it will average the digit values at each base 4 position in the key. Use
this information to predict the base 4 digit of the key as described in
§6.1.

b) Apply the digit prediction process to a number of sets of 2n sequences,
n = 1, 2, .... Calculate the average number of incorrectly determined
digits for each size of trace set. If there are cases where all the digits
are recovered correctly, how often is the correct key recovered for each
set size?

c) Extend the digit prediction process so that it returns a probability
with each digit, namely the 1 minus half the distance of b̄i from its
nearest integer, where b̄i is the real number average used to predict the
digit bi. Repeat the previous part, this time treating each incorrect
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digit prediction as correct if it is among the 10% with the lowest
probabilities and the next nearest integer is the correct value.

d) Estimate the cost of checking a key prediction in terms of the number
of 32-bit operations required to perform a 160-bit elliptic curve point
multiplication. For a case where digit errors were predictable in the
sense of the previous part of the question, is it computationally feasible
to correct all the digit errors identified as correctable? Decide your
answer by estimating the number of hours a PC of your choice would
require to test half the key possibilities. Is it computationally feasible
to recover a key in this way, given that you must now divide the cost
of correcting digit errors by the probability of having a key prediction
that is correctable?
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