Techniques for the Hardware Implementation of Modular Multiplication

by

Colin D. Walter

Computation Department, U.M.I.S.T.,
PO Box 88, Sackville Street, Manchester M60 1QD, U.K.

C.Walter@co.umist.ac.uk http://www.co.umist.ac.uk/

Index Terms: Computer arithmetic, cryptography, RSA cryptosystem, Montgomery modular multiplication, redundant number systems, higher radix representation, optimal speed, area complexity.

Abstract

Hardware for modular multiplication is required for strong cryptosystems so that large volumes of encrypted data can be safely stored in public areas and obtained over a public network (e.g. the WWW) but only understood by authorised users. This article reviews the main bottlenecks which may arise in the more obvious implementations of RSA and outlines a variety of solutions to them so that plain text can be recovered in real time.

1. Introduction

RSA [1] is an arbitrarily strong, two key cryptosystem which is generally only currently used for authentication protocols and for exchange of session keys to enable secure communication by arithmetically less intensive encryption methods. However, there is a growing need for secure encryption of large volumes of data. In particular, this is the case for data accessible over the internet which is commercially sensitive and should only be comprehensible to certain readers. It is also the case for much private data which is stored on public servers. The quantity of such data can make weak cryptosystems essentially useless in such situations. However, software implementations of a strong cryptosystem such as RSA are too slow for decrypting retrieved data in real time for viewing or editing purposes. Only dedicated hardware can achieve a speed equal to the disk access times, internal bus speeds, etc. which dictate the retrieval times for unencrypted data.

An RSA cryptosystem consists of a modulus M of around 1024 bits and two keys d and e with the property that $A^d \equiv A \mod M$. Message blocks A satisfying $0 \leq A < M$ are encrypted to $A' = A^e \mod M$ and so uniquely decrypted by $A = A'^d \mod M$ using the same algorithm for both processes. $M = PQ$ is chosen as a product of two large primes, e is often small with few non-zero bits so that encryption is relatively fast, and d chosen to satisfy $de \equiv 1 \mod (P-1)(Q-1)$. Thus d has as many bits as M. The owner of the cryptosystem publishes M and e but keeps secret the factorization of M and the key d. Breaking the system requires discovering P and Q, which is computationally infeasible. Indeed, each addition of a small, almost constant number of bits (around 15) to the size of M doubles the effort required for this [2].

This paper discusses the major problems associated with space and time efficient hardware implementation of the cryptosystem and reviews their solution. Among the issues of concern are carry propagation, digit distribution, buffering, communication and use of available area.

2. Notation

The computation of $A' \mod M$ is split into two main processes: modular multiplication and exponentiation. The exponentiation is discussed last as it has to make repeated use of the modular multiplication hardware. Thus we look first at computing $(A\times B) \mod M$.

Each number X has a representation of the form $X = \sum_{i=0}^{n-1} x_i r^i$ where r is the radix or base (usually a power of 2) and x_i is the ith digit (usually $0 \leq x_i < r$). Let n be the number of digits for this representation of M. The representation is redundant if numbers can be represented in more than one way. Here this occurs by allowing digits...
in a range larger than 0.\(r-1\), and typically that
given by an extra (carry) bit, that is, 0.\(2r-1\). For
example, the output from a carry-save adder
provides two bits for each digit and so, in effect, is
a redundant representation where digits lie in the
range 0.2 rather than the usual 0.1. We use \(k\) for
the number of bits used to represent a digit, so that
\(kn\) is approximately \(2^{10}\) here, and \(O(kn)\) is
effectively constant.

The choice of \(k\) and \(n\) splits the formation of
\(A\times B\) into two multiplication levels: forming
products of \(k\)-bit digits and forming products of \(n\)-
digit numbers. More levels could be created.
Different algorithms are used for each level. The
lower level is of combinational logic, possibly
pipelined to increase throughput. The hardware
will be built around \(n\) \(k\)-bit digit multipliers, and
this defines our choice of \(k\). The upper level views
a product as a sequence of additions of digits
multiples \(a\times B\) of the multiplicand, and so will take
a number of clock cycles.

3. Multiplication

Practical planar designs are well known for
multipliers which are optimal with respect to some
measure of time and area [3]-[8]. Under a model
which assumes that wires take area but do not
contribute to time, \(\text{Area}\times \text{Time}^2\) complexity for a \(k\)-
bite multiplication is bounded below by \(k^2\) [3] and
this bound can be achieved for any time in the range
\(\log k \text{ to } \sqrt{k}\) [6]. Such designs tend to use the
Discrete Fourier Transform and consequently
involve large constants in their measures of time
and area. There are more useful designs which are
asymptotically poorer but perform better if \(k\) is not
too large. Since the cross-over point is claimed to
be around \(k = 3\times10^3\) bits [5], i.e. greater than the
size of the numbers here, classical methods are
preferable. Indeed, it makes sense to pick a
standard \(k\)-bit combinational multiplier off the shelf
since it will contain years of optimisation, it will
have a known latency and will be known to be
correct. For a current standard chip of perhaps \(10^7\)
transistors devoted entirely to RSA, \(k = 32\) or 64 is
the maximum practical [9] since there must be
space for registers and for other operations such as
modular reduction.

There is a direct trade-off between time and
area. Doubling the number of digit multipliers
allows the parallel processing of twice as many
digits and so halves the time taken. If the \(k\)-bit
multiplier works in one cycle with no pipelining and
\(k\) is roughly the bandwidth of the internal bus, it is
easy to calculate that sufficient throughput for real-
time decryption requires \(n\) multipliers so that a
complete multiplier digit times multiplicand \(a\times B\) (or
equivalent) can be computed in one cycle. Then, in
effect, each cycle processes all the multiplicand bits
with \(k\) of the multiplier bits. A different regime
would lead to more complex data paths and hence
less efficient use of chip area, and so is not
considered.

Suppose therefore that the \(n\) digit multipliers
are used to add \(a\times B\) to a partial product in one clock
cycle. If the carries are propagated then this takes
extra time beyond the digit multipli-ca-tions. The
digit multipliers ought not to lie idle while this
happens. The equivalent of a carry save adder
might be used to avoid carry propagation, so that
the partial product has a redundant representation
[10]. Alternatively, successive \(a\times B\) can be
pipelined: either \(a_{i+1}B\) can be formed as the previous
carries are propagated or, if \(a_i\) and its carry are
calculated on one cycle, the next multiplier along
should use this carry on the next cycle to compute
\(a_iB_{i+1}\) and another carry [9].

4. Modular Reduction

The reduction of \(A\times B\) to \((A\times B) \text{ mod } M\) can be
covered in several ways, but each involves
repeatedly choosing a suitable digit \(q\) and
subtracting a shifted \(qM\) from the current
remainder. The successive choices of digit \(q\) can be
pieced together to form the integer quotient \(Q =
(A\times B) \div M\) or a closely related quantity if desired.
Classically, shifted multiples of \(M\) are subtracted
from the most significant end of \(A\times B\):

\[
\begin{align*}
\{ & \text{ Pre-condition: } 0 \leq A\times B < M \times r^n \} \\
R & := A\times B \\
\text{For } i := n-1 \text{ downto } 0 \text{ do} \\
\text{Begin} \\
q & := \text{ R } \text{ div } (M \times r^i) \\
R & := R - q \times M \times r^i \\
\{ & \text{ Invariant: } 0 \leq R < M \times r^i \\
& \quad & & \quad \text{ & } R \equiv (A\times B) \text{ mod } M \} \\
\text{End} ; \\
\{ & \text{ Post-Condition: } R = (A\times B) \text{ mod } M \} \\
\end{align*}
\]

This requires waiting for a full carry propagation
with each subtraction if the largest possible multiple
is to be removed. A better solution is just to use the

bottom digit or two of M and the remaining product to
determine a sufficiently good multiple of M to

remove [10]. This reduces the result enough to
guarantee an upper bound of rM, say, when the

process terminates. This can be cleaned up
properly at the end of the de-encryption. The critical
path is now in the circuitry for computing q, but
this can be reduced by scaling M [11,12]. M
is replaced by a small multiple so that its top digits
are known and simple, say, 10... Minor post-
processing will again recover the correct residue.

If the product $A \times B$ is fully computed before the
modular reduction starts, then a register of $2n$ digits
is required. However, if the product is performed
by repeated shifting and addition, the modular
reductions can be interleaved with the additions to
keep the partial sum down to only about n digits,
thereby saving space. This has the added advantage
that the multiplier hardware and modular reduction
hardware can work simultaneously on the same
modular product; otherwise full utilisation of these
two parts of the hardware would require the
complication of handling two modular products at
once.

The modular reduction requires another n digit
multipliers to compute qM, so that the main area
taken up by the RSA circuitry is $2n$ kxk-bit
multipliers and an adder to combine their outputs.
It has been suggested that a table be formed
containing some or all digit multiples of M in order
to avoid re-computing them so many times. This is
unwise as it requires $O(2^n)$ entries, so the time and
space requirements would exceed those of re-
computation unless k were very small.

5. Montgomery’s Algorithm

The above modular reduction method has several
disadvantages. It requires a redundant
representation (which takes up more space) to avoid
carry propagation, makes a poor choice of multiple
to subtract, takes time to compute the digit q_i, and
requires the global broadcasting of q to each digit
position. Peter Montgomery [13] has shown how to
use the least significant digit of an accumulating
product to determine the multiple of M to subtract.
He reverses the usual multiplication order by
choosing multiplier digits from least to most
significant and shifting down on each iteration. If R
is the current partial modular product, then q is
chosen so that $R+qM$ is a multiple of r, and this is
shifted down (i.e. divided by r) for use in the next
iteration. Consequently, $(A \times B \times r^{-n}) \mod M$ is
computed:

{ Pre-condition: $0 \leq A < r^n$ }
$R := 0$;

For $i := 0$ to $n-1$ do

Begin
$q := (- (r_0 A \times B_0) m_0^{-1}) \mod r$;
$R := (R + a_i B + qM) \div r$;
{ Invariant: $0 \leq R < M + B$ }
End ;

{ Post-Condition: $R \equiv (A \times B \times r^{-n}) \mod M$ }

The extra factor, a power of r, is easily cleared up
in minor post-processing [14]. Any extra multiple
of M is also easily removed.

With this algorithm, the digit q is computed
from the lowest digits of R and M without waiting
for any carry propagation. So pipelining of the
digits can now take place with $a_i b_j$, computed on the cycle after $a_i b_j$ using its

carry and the same values of q and a_i. Thus, a non-
redundant representation can be used and q and a_i
no longer need to be broadcast to all digit slices in
the same clock cycle.

Once more the critical path length is in
computing q. To reduce this path M is again scaled
[15], this time ensuring that its lowest digits are
known and simple, say ...01. This moves the
critical path to within the multiplier of each digit
slice, so that most of the hardware is operating at
full capacity. Further optimisation must
concentrate on the digit slice and improved
communications.

6. Communications

Our goal is to have only local inter-
communication because of the delays and wiring
associated with global movement of data. The
standard approach, namely parallel processing of
digit operations for the same multiplier digit,
requires broadcasting q and a_i to all digit slices on
each cycle [10,12]. Avoiding this requires
pipelining digits as described above and yields a
systolic array [16,17,9].

If the term $a_i b_j$ were added to the partial result
in digit slice j on cycle $i+j$, the first output digit
would occur at time $n-1$. Full utilisation of the
hardware could only occur if another modular multiplication were to start at time n when digit slice 0 becomes free again. Fortunately, the exponentiation involved in the cryptosystem means that the output from one modular multiplication is the input to the next modular multiplication, and so no time is lost and little wiring and buffering is required to achieve this. The precise timing details are actually slightly more complex because of the shift down in Montgomery’s algorithm [16,17,9].

Since this system requires input digit serially, k bits at a time for each number and produces output similarly, its I/O matches internal bus speeds and bandwidth and so reduces the need for on chip buffering of data.

7. Exponentiation

The exponentiation required for encryption and decryption is generally achieved simply by incorporating several registers and making repeated use of the modular multiplier hardware. If the exponent d has the same size as M, namely about nk bits, then the usual square and multiply algorithm for exponentiation takes between nk and $2nk$ modular multiplications, and $1.5nk$ on average. There are ways to reduce this towards nk [18,19] but the possible improvements are very limited. Much more is achieved by good design for the modular multiplier.

8. Conclusion

We have reviewed the main bottlenecks which may arise in hardware for implementing the RSA cryptosystem and shown how to make the most efficient use of area. The key solutions are to use Montgomery’s modular multiplication algorithm [13], scale the modulus, pipeline digit products and use an existing k-bit combinational multiplier. Finally, k is chosen as large as possible to make full use of the available chip area so that real time decryption is achieved.

References

26th May 1998