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1 IntroductionSmart cards may contain sensitive data, such as private RSA keys [7], whichmay be of great value to an attacker if they can be retrieved. These may wellbe used for all authentication and key exchange processes, and so must not becompromised. However, we illustrate how one likely source of timing variationduring modular multiplication can be exploited to reveal such keys with veryfew observations.Kocher [5] wrote one of the earliest, relevant, publicly available documents ontime-based attacks and he relies for success on knowing the plaintext inputs. Thecauses of time variations are explicit conditional statements in the software, andimplicit conditionals introduced by the compiler or hardware, most usually in thecause of optimisation. Skipping a multiplication by 0 is a typical example of the? contact address: Computation Department, UMIST, Manchester, M60 1QD, UK,www.co.umist.ac.uk



2 LNCS Vol. 2020 Springer Verlag, 2001, pp 192-207latter which causes unexpected time variation. An example of the former is thatthe standard modular multiplication algorithms make conditional subtractionsof the modulus to keep the result within a �xed upper bound. It is this extrasubtraction that is the subject of study here. Dhem et al. [2] provided practicaldetails for using it in Kocher's attack to obtain RSA keys. They repeatedlyassume the next unknown exponent bit is 1 and partition the known plaintextinputs into two sets according to whether or not the extra subtraction occurs forthem in the corresponding multiplication of the exponentiation routine. Withenough observations, if di�erent average times occur for the two sets, the bitmust be 1 and otherwise it is 0. For 512-keys 300,000 timings must be collectedfor the attack to succeed.Recent independent work at Platform7 Seven [1] and by Schindler [8] has pro-vided theoretical justi�cation for this. Both show that in Montgomery's modularmultiplication algorithm [6], the need for a �nal subtraction to obtain a resultless than the modulus is di�erent for squares and multiplications. Borovik andWalter [1] used this in the way described here to read secret RSA exponentbits directly using unknown plaintexts. Schindler [8] used it to attack imple-mentations which make use of the Chinese Remainder Theorem to reduce thearithmetic. However, Schindler's is a chosen plaintext attack.Here we develop the attacks to a much wider setting and, in particular, tounknown or blinded inputs with unknown modulus and more general exponen-tiation algorithms. The paper commences with theoretical explanation of theobserved frequency of modular subtractions, enabling predictions about the av-erage behaviour of squares and multiplies. This provides a much clearer pictureof how to use timing measurements to reveal a secret RSA exponent. A littlemore strongly than Schindler, it is assumed that power, timing, or other mea-surements during each exponentiation are clear enough to enable the presenceor absence of an extra modular subtraction to be detected for each individualmultiplication. For each multiplication or squaring in an exponentiation scheme,the frequency of subtractions can then be computed for a set of observationsand used to di�erentiate between the two operations.If the usual square and multiply exponentiation algorithm has been used, thisprocess yields the exponent bits immediately. Indeed, straightforward statisticscan be applied to noisy data to deduce howmany observations need to be made toobtain the exponent with a given probability. For clean data, this number turnsout to be so small as to make the smart card totally insecure, and thereforeuseless, unless adequate counter-measures are employed.By carefully selecting appropriate subsets of observations, the same tech-niques can be applied to any sequence of multiplications which only uses multi-pliers from a small set, in order to identify which multiplier has been used. Asa result, the usual m-ary [3] or sliding window methods [4] of exponentiationare also vulnerable to this attack. For m = 4, under 1000 observations suÆce.Moreover this result is independent of the key length because the exponent digitsare determined independently, not sequentially.



Walter & Thompson, Distinguishing Exponent Digits 3The conclusion is clear: if suÆcient timing information can be gleaned, theneither such numerous conditional modular adjustments must be avoided (as theycan be � e.g. see [9]) or the exponent must be adjusted before each new decryp-tion in order to confound the averaging process [5].2 Timing Variations in Modular Multiplication2.1 Initial AssumptionsFor the purpose of this paper we consider a generic multi-precision implementa-tion of Montgomery multiplication [6] used in the context of an RSA decryption,but similar timing attacks can be mounted against other modular multiplicationalgorithms which display the same weakness as is exploited here.We assume that arithmetic is based on an m-bit architecture. Hence all num-bers are presented in radix r = 2m. Let k be the �xed number of digits used torepresent the arguments and intermediate results of the exponentiation. Thenl = mk is the number of bits in such numbers. For convenience and because it isto be expected, we will assume the modular multiplication algorithm performsl addition cycles so that the Montgomery scaling constant is R = 2l [10]. It isnatural to use as large a modulus N as possible, and so{ We assume that R=2 < N < R.This is perhaps the major drawback of many implementations, because it forcesa conditional modular subtraction to be made if an over
ow bit is to be avoided.2.2 Analysis of the Modular ReductionLet R�1 be the integer uniquely determined by the conditions R�R�1 � 1 modNand 0 < R�1 < N . This exists because R is a power of 2, ensuring that ithas no non-trivial common factor with the odd modulus N . Given non-negativeintegers A < R and B < R, the main loop of Montgomery multiplication returnsa number M � ABR�1 mod Nin the range 0 � M < B+N . Hence an extra subtraction of N or even of 2Nmay be required to get a residue less than N because B < 2N . In particular, thissubtraction might be deemed worthwhile to avoid the result over
owing into anextra digit position.In this paper we perform a cryptanalysis based on the conditions under whichsuch extra subtractions are performed at the end of each modular multiplication.Since M�N < B < R, we concentrate on the version of the algorithm for whichthe reduction is made at most once to a level below R:{ We assume the modular multiplication algorithm includes a �nal conditionalstatement for modular subtraction, namelyM := �M if M < RM�N if M � R :



4 LNCS Vol. 2020 Springer Verlag, 2001, pp 192-207This reduction is easier and faster to implement in hardware than obtaining theleast non-negative residue, and it suÆces for RSA exponentiation which employsrepeated modular multiplication. However, the version of the algorithm with themodular reduction to a level belowN (as in [8]) can be analysed analogously and,from the practical point of view, the analysis yields similar results in exactly thesame way. Of course, obtaining such a tight bound, i.e. the minimal non-negativeresidue modN , is computationally more expensive and so is often performed onlyat the very end of the exponentiation.Hardware limitations require that both multiplicands A and B and the mod-ulus N are smaller than R. So, written to the base r, they have the formsA = (ak�1ak�2 : : : a1a0)r,B = (bk�1bk�2 : : : b1b0)r andN = (nk�1nk�2 : : : n1n0)rwhere 0 � ai < r, 0 � bi < r and 0 � ni < r.Let n0 := (r�n0)�1 mod r. Then the Montgomery multiplication routineruns as follows:S0 := 0 ;for i := 0 to k � 1 doSi+1 := fSi + aiB + ((Si + aiB) � n0 mod r) �Ng=rendHere (Si+aiB) mod r is given by the rightmost digit of Si+aiB to the base rwhich is, of course, equal to (si0+aib0) mod r. Si+1 is clearly always an integer.Notice that, by induction,riSi � (ai�1 : : : a0)r �B mod Nand we can also prove by induction on i that Si < B +N . Indeed S0 = 0 givesus the basis of induction, and0 � Si+1 = 1r Si + air B + (Si+aiB)0 � n0 mod rr �N< 1r (B+N) + r�1r B + r�1r N= B+NHence Sk�1 � ABR�1 mod Nand Sk�1 < B+N < R+N < 2RNote the asymmetry between multiplicand A and multiplier B in this bound.To return a value of M = ABR�1+�N which is strictly less than R, we need toset M := �Sk�1 if Sk�1 < RSk�1 �N if Sk�1 � R



Walter & Thompson, Distinguishing Exponent Digits 5This last adjustment is a possible cause of time variations in modular multiplica-tions. It might be avoided by performing the subtraction whether it is necessaryor not, and then selecting one of the two results. However, timing variationsmay still creep in here because of compiler optimisations or because a di�erentnumber of register movements is performed. Be warned!{ We assume that timing or other variations enable all or almost all occurrencesof this �nal subtraction to be observed.Notice now that the value of Sk�1 has very strong dependence on B throughthe middle term of the expression for it:Sk�1 = 1rSk�2 + ak�1r B + (Sk�2+ak�1B)0 � n0 mod rr NSo one has to expect much more frequent \long" multiplications (that is, mul-tiplications which involve the �nal modular adjustment) for larger values of B.These can be expected particularly as N approaches R.2.3 Analytical ApproximationThe modular adjustment happens when the random variable � = Sk�1=R isgreater than or equal to 1. Then � can be expressed in terms of other randomvariables, namely � = ��� + � + 
where � = ak�1+ 12r � AR ,� = BR ,� = (Sk�2+ak�1B)0 � n0 mod rr � NR + N2rR ,
 = Sk�2rR � B+N2rRare random variables distributed in some way over the intervals (0,1), [0,1),(0,N=R) and (� 1r , 1r ) respectively. Let us investigate the distributions that theserandom variables might have in the context of exponentiation. For this,{ We assume that A and B are uniformly distributed mod N .This may not hold for the initial one or two operations of an exponentiationbecause of the manner in which the initial input is formed. But, the whole valueof modular exponentiation as an encryption process is its ability to give whatappears to be a uniform, random output mod N no matter what the input hasbeen. Since 3 is accepted as a suitable encryption exponent, we can reasonablyassume that after two or three multiplicative operations, the inputs to further



6 LNCS Vol. 2020 Springer Verlag, 2001, pp 192-207operations in an exponentiation are close enough to being uniform modulo Nfor our purposes.Since the coeÆcient0 � (Sk�2 + ak�1B)0 � n0 mod rr � 1� 1rof N=R in the expression for � is suÆciently randomised by modulo r arithmetic,we can assume that � is independent of � and � and is uniformly distributed inthe interval (0; N=R). (It is easy to deduce from earlier multiplications that thisis the case even if B has been shifted up to make the computation easier.) Wewill argue that A and B are piecewise uniformly distributed on their intervalsso that the same is true for � and �. Clearly � and � are not independentfor squaring operations since then A = B, but we will justify that they areessentially independent for almost all of the multiplications.We will now prove that 
 is smaller than ��+� by a factor of order 1r so thatits contribution to � may be neglected. Since A is assumed uniformly distributedmod N , for non-small i, Si can also be expected to be randomly and uniformlydistributed mod N because its residue class is determined by a (large) suÆx ofA times B. As Si belongs to the interval [0; B+N) but can achieve both endpoints, and the added multiple of N is essentially random, the most reasonableexpectation is that Si is piecewise uniformly distributed over the three subinter-vals [0; B), [B;N) and [N;B+N) with probabilities 12N , 1N and 12N respectively.This leads to an average of 12 (B+N) for Si and therefore to an expected averageof 0 for 
.Consider the case when B+N < R. Then Sk�1 < B+N ensures that no�nal subtraction takes place. Hence, under the uniformity assumption mod N ,the distribution of the output will be identical to that of Sk�1 given above. So,such output provides a mean of 12 (B+N), which is less than 12R. Otherwise, topreserve uniformity mod N , when the subtraction takes place the output distri-bution will be close to uniform on each of the subranges [0; R�N), [R�N;N)and [N;R), yielding instead an average of 12R for the output. Thus,{ For a given input B, the output from a modular multiplication is approxi-mately piecewise uniform on the interval [0; R). For B+N < R the intervalsof uniformity depend on B. In both cases there are three intervals withnon-zero probabilities 12N , 1N and 12N respectively.By the above, if modular multiplier outputs are used for the inputs A andB of a subsequent multiplication, then their average values match or exceed12 (B+N), which is bounded below by 14R. Thus we obtain lower bounds of atleast 14 for each of � and �. So, � and � are at least r4 times larger than 
 onaverage. Hence, we can ignore the contribution of 
 providing:{ We assume that the radix r is not too small.Commonly used bases such as r = 28, 216 and 232 are quite acceptable here.From the above, we can expect that the statistics for �nal adjustments in the



Walter & Thompson, Distinguishing Exponent Digits 7Montgomery multiplication(A;B) �! A
NB � ABR�1 mod Nare suÆciently close to the statistics of occurrences of the subtraction in theproduct �
 � = ��� + � if �� + � < 1�� + � � � if �� + � � 1where � = N=R. The radix r is large enough for the discreteness of the originalproblem to make only a marginal di�erence to the calculations if we substi-tute continuous random variables for the discrete ones: the relative errors willinvariably be bounded above by at most about 1r which, by assumption, is small.2.4 Heuristic Estimates for MultiplicationsIn order to get some intuition regarding the behaviour of Montgomery multipli-cation, let us assume, like Schindler [8], that{ � is uniformly distributed on (0; 1)The previous section clearly shows that this is a simpli�cation. The averageoutput of the modular multiplier is less than R=2 so that the distribution of� over [0; R) cannot be uniform. However, providing N is close to R, such anassumption is only slightly frayed at the edges.
- �
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Fig. 1. Computation of P (��+� � 1).Suppose � has the �xed value � = B=R. (So this is not a squaring.) Themodular adjustment takes place when the point (�; �) belongs to the upperright corner cut from the rectangle [0; 1]�[0; N=R] by the line ��+� = 1 (seeFigure 1). The probability of this event is the ratio of the area of the triangle tothat of the rectangle, namelyPmult(B) = P (��+� � 1) � ( 0 if N+B < R(B+N�R)22BN if N+B � R:



8 LNCS Vol. 2020 Springer Verlag, 2001, pp 192-207As expected, the reductions occur more frequently the larger B+N is, and, inparticular, they normally occur in a sizeable proportion of all observations.It is possible to obtain a more precise formula for Pmult as a function of Busing the piecewise uniform probability function described in the previous sec-tion. However, this detail is unnecessary for the attack which we describe. It issuÆcient to note that when we select a set of observations involving smaller thanaverage values of B then we can expect fewer subtractions to occur. This willhappen, paradoxically, if such B are the outputs of previous modular multipli-cations for which the extra subtraction did not occur (since we saw the averagewas 12R after a subtraction, but only 12 (B+N) < 12R otherwise).2.5 Probability Estimates for Multiplications & SquaringsWith the same de�nitions as before, the probability of modular adjustment in aMontgomery multiplication of independent arguments isPmult � P (��+� � 1) = Z 11�N=R Z 1(1�N=R)=x Z N=R1�xy p(x; y; z)dzdydxwhere p is the probability density function for �����. The randomising e�ect ofraising to an odd power of at least 3 means that most operands in the multiplica-tions of an encryption or decryption will be e�ectively independently distributedmod N . Hence, assuming this is the case, we could write p as a product of threefunctions of a single variable, representing the individual density functions for�, � and � respectively. As noted above, � is uniform on [0,N=R]. If we simplifyby assuming p�(x) = p�(x) = 1 thenPmult � RN Z 11�N=R Z 1(1�N=R)=x Z N=R1�xy dzdydx= RN Z 11�N=R�12x� (1�NR ) + 12(1�NR )2 1x� dx= R4N (1� (1�NR )2)� (1�NR )� R2N (1�NR )2log(1�NR)In the same way, the probability of a modular adjustment in a Montgomerysquare is Psquare � P (�2+� � 1) = Z 1p1�N=R Z N=R1�x2 p(x; y)dydxwhere p is now the probability density function for ���. Since � and � areindependent and � is uniform on [0,N=R], we can re-write this asPsquare � P (�2+� � 1) = Z 1p1�N=R Z N=R1�x2 p�(x)R=Ndydx



Walter & Thompson, Distinguishing Exponent Digits 9= RN Z 1p1�N=R(NR � 1 + x2)p�(x)dxOnce more, we will simplify by assuming that A is uniformly distributed on[0,R). Then p�(x) = 1, so thatPsquare � 1� 2R3N �1� (1�NR )3=2�At the upper end of the range for N , namely N close to R, we see that theexpression for the square is approximately 13 , while that for the multiplicationis only about 14 . Hence squares can easily be distinguished from multiplicationswith independent arguments by the frequencies of the extra subtractions. Al-though the density functions become progressively more badly approximated by1 as N decreases, the piecewise linear nature of the true density function can beused to obtain accurate formulae which demonstrate a similar di�erence for allvalues of N in the interval ( 12R,R).These formulae display a potentially useful dependence on N which mightbe exploited to deduce an approximate value for N from observing the actualvalue of Psquare or Pmult. Moreover, if input A can be restricted in some way,the density function may be modi�ed enough to provide detectable changes inPsquare or Pmult.For example, suppose the multiplicative operation Op1 (square or multiply)generates the input A to the multiplicative operationOp2 as part of some process,such as an exponentiation. Partition a set of observations of the process into twosubsets, one for which Op1 applies the extra adjustment and the other for whichit does not. The study in a previous section shows the related density functionsfor A are suÆciently di�erent to yield distinct averages for A and so will usuallyyield two di�erent values for the frequencies of extra subtractions at the endof Op2. This enables us to determine which multiplicative operation Op1 hasgenerated the argument used in Op2. If the wrong operation Op1 is selected, weexpect a much lower di�erence between the density functions so that there islittle di�erence between the observed frequencies for the two subsets.3 Attacks on Exponentiation with Unknown Modulus3.1 Unknown Plaintext Attack on the Square & Multiply MethodThe standard square and multiply method of exponentiation uses the binaryrepresentation e = nXj=0 ej2jof the exponent e. It scans the bits of e in descending order and applies a Horner-style evaluation Xe = ((: : : ((Xen)2Xen�1)2 : : :)2Xe1)2Xe0 :



10 LNCS Vol. 2020 Springer Verlag, 2001, pp 192-207Multiplication by Xei is performed conditionally whenever the bit ei is 1.When computing Xe mod N using modular Montgomery exponentiation we�rst replace X by XR mod N using a Montgomery multiplication by R2. Afterthat, the identity AR �BR �R�1 � ABR mod Nallows us to carry out the multiplication of (Montgomery) powers of XR untilwe get XeR mod N . Montgomery multiplying this result by 1, we obtain thedesired power Xe of X modulo N .Thus, in this section and the next section all multiplications are understoodas Montgomery multiplications modulo N . To make notation more transparent,we write X
NY instead of XYR�1 mod N and assume that the �nal modularreduction is done, when required, within the computation of X
NY . Thus allthe intermediate products are smaller than R and satisfy the conditions for thearguments of the modular Montgomery multiplication as set out in the previoussection.An immediate corollary from the statistical analysis of the previous sectionis that the probabilities of modular adjustments in a Montgomery square anda Montgomery multiplication are suÆciently large to make the adjustment de-tectable from only a few power traces, assuming that the timing di�erences canbe seen. They should be noticeably more frequent in the positions of squaresthan those of multiplication. This makes it possible to read directly the bits ofthe exponent from the observational data since, except perhaps for the �rst mul-tiplication, we can expect the arguments of each multiplication to be suÆcientlyindependent of each other. So a timing attack is easy to perform on the squareand multiply algorithm using unknown inputs.3.2 Unknown Plaintext Attack on the m-ary MethodThe m-ary method for the exponentiation X �! Xe [3, pp. 441{466] is a gen-eralisation of the square and multiply method. The exponent e is expressed interms of a base m, e = nXj=0 ejmj :The powersX i for i = 1; 2; : : : ;m�1 are precomputed and stored for multiplyinginto the partial result when required. The corresponding evaluation rule isXe = ((� � � ((Xen)mXen�1)m � � �)mXe1)mXe0 :In the process, whenever the non-zero digit ej = i is encountered, the storedpower X i is multiplied in. For example, for m = 4, X , X2 and X3 are precom-puted and stored.The base m is usually a power of 2, so that computation of the m-th power ofthe partial result consists of several consecutive squarings. The sliding windowsmethod [4] employs some recoding of the exponent and, among other things,performs a squaring when the next exponent bit is 0. This means that the evenpowers of X need not be stored. Now we describe our attack.



Walter & Thompson, Distinguishing Exponent Digits 11{ We assume that we do not know the modulus N of the exponentiation, norhave control or knowledge of plaintext inputs.Suppose we observe k runs of the exponentiation procedure involving di�erentunknown plaintexts A = A1; A2; : : : ; Ak. These plaintexts should have been ran-domly generated in some manner but need not be uniformly distributed mod N .The initialisation process generates Xi = AiR mod N for input into the expo-nentiation. After this multiplication (by R2), the numbers Xi will be more orless random mod N and belong to the interval [0; R). Hence, after any necessarymodular subtraction, the Xi will be distributed fairly uniformly over each ofthree sub-intervals according to the value of R2 mod N .As before, assume that we can detect whether or not the modular adjustmenthas taken place during the j-th multiplicative operation. If k is not too small,then these observations of essentially independent random encryptions enablefairly accurate determinations of the probabilities for the jth operation to requirethe modular adjustment. The previous section describes how these data can thenbe used to distinguish squares from multiplies.{ Now assume also that the initially generated powers of X are used as the Binputs to the Montgomery modular multiplication process.Recall that the frequency of extra subtractions depends on the value of theB input. Because multiplications corresponding to the same exponent digit willmake use of the same multiplier B, the expected frequency of extra subtrac-tions will be the same for both multiplications whatever the set of observations.However, the randomness of these multipliers means that for di�erent exponentdigits, the multipliers will generally have di�erent values and individually lead todi�erent probabilities for an extra subtraction. So, if a subset of observations canbe identi�ed in which the multipliers corresponding to two exponent digit valueshave di�erent properties, then potentially this will be re
ected in di�erent aver-age frequencies for the extra subtractions in the multiplications correspondingto occurrences of these two digits.In fact, it is possible to determine such observation subsets from any multi-plication and, in particular, from behaviour during the initialisation stage whenthe powers X i (i = 1; 2; : : : ;m) are formed. For example, for an exponent digit i,partition the observations into two subsets according to whether or not the gen-erating modular multiplication for X i included an extra subtraction. We notedbefore that the average values for X i must be di�erent for the two sets. Thiswill result in di�erent frequencies for the extra subtraction when X i is usedas a multiplier in the exponentiation and when it is not. Hence, occurrences ofexponent digit i should stand out. We illustrate this in Section 4.Suppose this process has already been applied for each i to identify whichexponent digits are most likely to be equal to i. Any pair of multiplicationsduring the exponentiation can then be compared in the same way, providing across-check on the initial assignment.LetM be the total number of multiplicative operations in the pre-computationand exponentiation combined. Then we could form a k�M observation matrix



12 LNCS Vol. 2020 Springer Verlag, 2001, pp 192-207Z = (zij) by writing zij = 1 if there was a modular adjustment in the j-th opera-tion (a multiplication or squaring) of the i-th exponentiation, and zij = 0 other-wise. We have argued that there are strong dependencies between the columns Zsand Zt of the matrix Z if the s-th and t-th multiplication in the exponentiationroutine are multiplications by the same power Xeji of Xi and which correspondto the same digit ej in the exponent. Moreover, there are also strong depen-dencies between the column corresponding to the precomputations of Xeji andXej+1i and the columns Zs, Zt corresponding to digit ej . This, again, allows usto perform more advanced statistical analysis and deduce e�ectively the digitsof the exponent from observation of adjustments.3.3 The Danger of Signing a Single Unblinded MessageIn this section we describe how it is possible to attack the exponent of a Mont-gomery based exponentiation, without the statistical analysis described in sec-tions 2.3 to 2.5, if the modulus and a single plaintext input are known. Thiswould be the case if an RSA signature were computed directly without use ofthe Chinese Remainder Theorem or appropriate counter-measures. The attackmay be applied to both the square and multiply and m-ary methods although,for simplicity, only the square and multiply attack is described here.Consider the single sequence of modular operations, squares and multiplies,formed by exponentiation of a known input A with secret exponent e andknown modulus N . For any t, denote the most signi�cant t bits of e by e(t) =enen�1; : : : ; en�t+1. Let f(t) denote the number of modular operations (includingprecomputations) that result from using e(t) as the exponent and let Z = (zj)be the observation vector indicating the extra subtractions. (We don't make useof any initial elements representing the precomputations.)A binary chop on emay now proceed as follows. Suppose the tmost signi�cantbits of the exponent are known. We want to establish the value of the next bit.So far, X = AR mod N and Y = Ae(t)R mod N can be computed independentlyof the target device. Therefore Y is known and the observation vector Z 0 = (z0j)obtained from this exponentiation with e(t) should match the �rst f(t) elementsof Z exactly.To determine e(t+1) compute the two Montgomery operations Y := Y
NYfollowed by Y = Y
NX . Extend the observation vector Z 0 = (z0j) by addingthe two extra elements associated with these operations. Elements f(t)+1 shouldmatch in Z and Z 0 since the same square is being performed. If they don't match,a previous bit of e has been incorrectly assigned and backtracking is necessaryto correct it [5]. Assuming the elements match and earlier bits were correctlyassigned, if elements f(t)+2 do not match in both vectors then certainly en�t =0 since di�erent operations must be being performed for the two observationvectors. Otherwise, we assume en�t = 1 and continue.Backtracking to �x incorrect bits is not expensive, and one simply has tochoose exponent bits which are consistent with the vector Z. The average numberof incorrect bits chosen before an inconsistency is discovered is very small. For



Walter & Thompson, Distinguishing Exponent Digits 13simplicity, suppose that a subtraction occurs 1 in 4 times for both multiplicationsand squares, and that the numbers of subtractions required in two successiveoperations are independent. (As noted in section 2, this is close to what happensin reality.) Then the probability of a match between two elements is about 58 whena previous bit has been incorrectly assigned. So the average number of matchingelements after picking an incorrect bit is just (1�58 )�1 = 83 . This shows that asingle power trace suÆces to determine e completely except perhaps for the �naltwo or three bits � and they are easily determined by comparing �nal outputs,which should equal Y = Ae mod N � 1
N(AeR).We conclude that, as a matter of routine, any document digest should becombined with an unseen random component prior to signing. In particular [5],if v is random and d is the public key associated with e, then the attack isconfounded by �rst replacing A with ARvd, exponentiating as before, and thendividing by v mod N . However, such a blinding process fails to disrupt theattacks of x3.1 and x3.2 since they do not depend on knowledge of the inputs.4 Computer SimulationWe built a computer simulation of 4-ary exponentiation for 384-bit exponentsusing 8-, 16- and 32-bit arithmetic and an implementation of Montgomery mul-tiplication which included the �nal conditional modular adjustment which hasbeen assumed throughout. The size of the arithmetic base made no di�erence tothe results, as one can easily ascertain.First, a random modulus and exponent were generated and �xed for the set ofobservations. Then a random input in the range (0,N) was generated and scaledby R in the usual way, namely Montgomery-multiplying it by R2. This �rstscaling enabled the observations to be partitioned according to whether or notan extra subtraction occurred. If X was the output from this, the next processcomputed and stored X2 and X3. The output data was partitioned accordingto whether or not subtractions were observed here too, giving 8 subsets in all.The exponentiation algorithm then repeatedly squared the running total twiceand, according to the value of the next pair of exponent bits, multiplied in eitherX , X2 or X3. These three initial powers of X were always chosen as the \B"argument in the modular multiplication. The A input was the accumulatingpartial product and therefore the output from two successive squares. For eachof the 8 subsets, the total number of extra subtractions were recorded for eachmultiplicative operation in the exponentiation.As in Schindler [8], squares showed up clearly from multiplications by theirlower number of subtractions when the full set of all observations (the union ofthe 8 subsets) was considered. To complete the determination of the exponent,it was necessary to establish which of X , X2 or X3 had been used in eachmultiplication. Already, a sequence of 4 successive squares indicated the positionsof all the 00 bit pairs in the exponent. The partitioning into 8 subsets resultedin values for the B inputs which had di�erent average properties. Consequently,for each subset, di�erent frequencies of extra subtractions were observed. For



14 LNCS Vol. 2020 Springer Verlag, 2001, pp 192-207multiplications with the same value of B the proportion of extra reductions inthe subset tended to the same limit, but for those with di�erent values of B,as expected, the limits were di�erent. Selecting di�erent subsets of the partitionaccentuated or diminished these di�erences. Combining the results from the bestdi�erentiated subsets, it was easy to determine which exponent bit pair hadbeen used. Not only did the investigation enable the deduction of equivalenceclasses of equal digits, but knowledge of which subset was associated with whichcombination of subtractions in the initialisation process enabled the digits tobe correctly assigned. Only the �rst one or two exponent digits were unclear,and this was because of the lack of independence between the arguments in thecorresponding multiplications.

Fig. 2. Simulation: Set for Squares with Subtraction

Fig. 3. Simulation: Subset for Cubes without SubtractionIt turned out that it was most helpful to look at the one third of observationsfor which the initial computation of X2 generated an extra subtraction andpartition this set according to whether the initial formation of X3 had an extrasubtraction or not. For both subsets, exponent digit 1 = 014 generated the largestnumber of extra subtractions, digit 2 = 104 the next largest and digit 3 = 114the smallest number. So a graph of digit positions marked along a frequency



Walter & Thompson, Distinguishing Exponent Digits 15axis showed the digit positions clustering around three distinct sites. Switchingbetween the two sets shifted the relative position of the digit 3 = 114 instancesin relation to the other two, making it possible to distinguish those digits fromthe others.This is illustrated in Figures 2 and 3, where the three thick lines under thegraph bracket together the positions of equal digits. The two sets enable animmediate, clear, correct association of digits with exponent positions. The il-lustrations are for 1000 samples when N=R � 0:99. Certainly, a smaller samplewould have suÆced: half this number can almost be done by eye. ForN=R � 0:51,about twice these sample sizes are required for the same degree of resolution.Notice that these sample sizes are independent of the key size because the prob-ability of an extra subtraction is independent of the key size.We did not attempt to perform a thorough analysis of the simulation out-put to see how few observations were necessary to guarantee that the correctexponent could be obtained. The digits which were most likely to be incorrectlyassigned were those with subtraction frequencies furthest from the average forthe digit. With suÆcient observations to separate most of the non-zero digits intoone of three classes, the potentially incorrect digits were clearly visible. Then,providing the number of such digits was small enough, every alternative couldhave been tested individually using other known data. Of course, in the presenceof noisy readings, many more observations may need to be made, whilst if thedata is clean enough, the results show that, in the absence of counter-measures,the safe lifetime of the key is too short for practical purposes.5 DiscussionAny modular multiplication algorithm used in a smart card may su�er a prob-lematic conditional subtraction of the type considered here in order to keep theresult from over
owing. This is true not just for Montgomery modular multipli-cation but also for the classical algorithm, where the multiple of the modulus forsubtraction is estimated from the top two or three digits of the inputs. Since theresult is an approximation, a further conditional subtraction may be requestedto obtain a least non-negative result. This subtraction is also open to attack inthe above manner.If the conditional modular reduction is performed every time and the previousvalue or new value is selected as appropriate, the movement of data may stillbetray whether or not the reduction is happening. Alternatively, an over
owbit can be stored and processed like another digit of the operand. This maycause exactly the timing variation that we should be trying to avoid. If not, thenprocessing a top digit of 0 or 1 might still be easily recognised.A general conclusion is therefore that N should be reduced away from a wordboundary or register working length suÆciently for the modular multiplicationalgorithm to avoid any over
ow to an extra word.
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