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Abstract. We analyse timing variations in an implementation of modu-
lar multiplication which has certain standard characteristics. This shows
that squarings and multiplications behave differently when averaged over
a number of random observations. Since power analysis can reveal such
data, secret RSA exponents can be deduced if a standard square and
multiply exponentiation algorithm is used. No knowledge of the modu-
lus or input is required to do this. The technique generalises to the m-ary
and sliding windows exponentiation methods since different multipliers
can be distinguished. Moreover, only a small number of observations (in-
dependent of the key size and well under 1k) are required to perform the
cryptanalysis successfully. Thus, if the modular multiplication algorithm
cannot be made any safer, the exponent must be modified on every use.

Key words: Exponentiation, modular multiplication, Montgomery mul-
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1 Introduction

Smart cards may contain sensitive data, such as private RSA keys [7], which
may be of great value to an attacker if they can be retrieved. These may well
be used for all authentication and key exchange processes, and so must not be
compromised. However, we illustrate how one likely source of timing variation
during modular multiplication can be exploited to reveal such keys with very
few observations.

Kocher [5] wrote one of the earliest, relevant, publicly available documents on
time-based attacks and he relies for success on knowing the plaintext inputs. The
causes of time variations are explicit conditional statements in the software, and
implicit conditionals introduced by the compiler or hardware, most usually in the
cause of optimisation. Skipping a multiplication by 0 is a typical example of the
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latter which causes unexpected time variation. An example of the former is that
the standard modular multiplication algorithms make conditional subtractions
of the modulus to keep the result within a fixed upper bound. It is this extra
subtraction that is the subject of study here. Dhem et al. [2] provided practical
details for using it in Kocher’s attack to obtain RSA keys. They repeatedly
assume the next unknown exponent bit is 1 and partition the known plaintext
inputs into two sets according to whether or not the extra subtraction occurs for
them in the corresponding multiplication of the exponentiation routine. With
enough observations, if different average times occur for the two sets, the bit
must be 1 and otherwise it is 0. For 512-keys 300,000 timings must be collected
for the attack to succeed.

Recent independent work at Platform” Seven [1] and by Schindler [8] has pro-
vided theoretical justification for this. Both show that in Montgomery’s modular
multiplication algorithm [6], the need for a final subtraction to obtain a result
less than the modulus is different for squares and multiplications. Borovik and
Walter [1] used this in the way described here to read secret RSA exponent
bits directly using unknown plaintexts. Schindler [8] used it to attack imple-
mentations which make use of the Chinese Remainder Theorem to reduce the
arithmetic. However, Schindler’s is a chosen plaintext attack.

Here we develop the attacks to a much wider setting and, in particular, to
unknown or blinded inputs with unknown modulus and more general exponen-
tiation algorithms. The paper commences with theoretical explanation of the
observed frequency of modular subtractions, enabling predictions about the av-
erage behaviour of squares and multiplies. This provides a much clearer picture
of how to use timing measurements to reveal a secret RSA exponent. A little
more strongly than Schindler, it is assumed that power, timing, or other mea-
surements during each exponentiation are clear enough to enable the presence
or absence of an extra modular subtraction to be detected for each individual
multiplication. For each multiplication or squaring in an exponentiation scheme,
the frequency of subtractions can then be computed for a set of observations
and used to differentiate between the two operations.

If the usual square and multiply exponentiation algorithm has been used, this
process yields the exponent bits immediately. Indeed, straightforward statistics
can be applied to noisy data to deduce how many observations need to be made to
obtain the exponent with a given probability. For clean data, this number turns
out to be so small as to make the smart card totally insecure, and therefore
useless, unless adequate counter-measures are employed.

By carefully selecting appropriate subsets of observations, the same tech-
niques can be applied to any sequence of multiplications which only uses multi-
pliers from a small set, in order to identify which multiplier has been used. As
a result, the usual m-ary [3] or sliding window methods [4] of exponentiation
are also vulnerable to this attack. For m = 4, under 1000 observations suffice.
Moreover this result is independent of the key length because the exponent digits
are determined independently, not sequentially.
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The conclusion is clear: if sufficient timing information can be gleaned, then
either such numerous conditional modular adjustments must be avoided (as they
can be — e.g. see [9]) or the exponent must be adjusted before each new decryp-
tion in order to confound the averaging process [5].

2 Timing Variations in Modular Multiplication

2.1 Initial Assumptions

For the purpose of this paper we consider a generic multi-precision implementa-
tion of Montgomery multiplication [6] used in the context of an RSA decryption,
but similar timing attacks can be mounted against other modular multiplication
algorithms which display the same weakness as is exploited here.

We assume that arithmetic is based on an m-bit architecture. Hence all num-
bers are presented in radix r = 2™. Let k be the fixed number of digits used to
represent the arguments and intermediate results of the exponentiation. Then
! = mk is the number of bits in such numbers. For convenience and because it is
to be expected, we will assume the modular multiplication algorithm performs
I addition cycles so that the Montgomery scaling constant is R = 2! [10]. It is
natural to use as large a modulus N as possible, and so

— We assume that R/2 < N < R.

This is perhaps the major drawback of many implementations, because it forces
a conditional modular subtraction to be made if an overflow bit is to be avoided.

2.2 Analysis of the Modular Reduction

Let R~! be the integer uniquely determined by the conditions R-R~! = 1 mod N
and 0 < R™! < N. This exists because R is a power of 2, ensuring that it
has no non-trivial common factor with the odd modulus N. Given non-negative
integers A < R and B < R, the main loop of Montgomery multiplication returns
a number

M = ABR ' mod N

in the range 0 < M < B+N. Hence an extra subtraction of IV or even of 2N
may be required to get a residue less than N because B < 2N. In particular, this
subtraction might be deemed worthwhile to avoid the result overflowing into an
extra digit position.

In this paper we perform a cryptanalysis based on the conditions under which
such extra subtractions are performed at the end of each modular multiplication.
Since M —N < B < R, we concentrate on the version of the algorithm for which
the reduction is made at most once to a level below R:

— We assume the modular multiplication algorithm includes a final conditional
statement for modular subtraction, namely

{M if M <R

M = YM_Nif M>R.
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This reduction is easier and faster to implement in hardware than obtaining the
least non-negative residue, and it suffices for RSA exponentiation which employs
repeated modular multiplication. However, the version of the algorithm with the
modular reduction to a level below N (as in [8]) can be analysed analogously and,
from the practical point of view, the analysis yields similar results in exactly the
same way. Of course, obtaining such a tight bound, i.e. the minimal non-negative
residue mod IV, is computationally more expensive and so is often performed only
at the very end of the exponentiation.

Hardware limitations require that both multiplicands A and B and the mod-
ulus NV are smaller than R. So, written to the base r, they have the forms

A= (ak—lak—z s (11(10)7«,
B = (bkflbkfz N blbO)r and
N = (nk,lnk,g .. .nlno)r

where 0 < a; <r,0<b; <rand 0<n; <r.
Let n' := (r—ng)~! mod r. Then the Montgomery multiplication routine
runs as follows:
So:=0;
for i:=0to k—1do
Siy1 :={Si+a;B+ ((S;i +a;B) -n’ mod r)-N}/r

end

Here (S;4a;B) mod r is given by the rightmost digit of S;+a;B to the base r
which is, of course, equal to (sjo+a;bp) mod r. S;y; is clearly always an integer.
Notice that, by induction,

r’S;, = (aj—1...ap), - B mod N

and we can also prove by induction on ¢ that S; < B + N. Indeed Sy = 0 gives
us the basis of induction, and

1 ; B -n' d
0 < Sip1 = —Si+&B+(Sl+az Jo -n' mo oy
T r r
< —(B+N)+ =B+ =N
r r r
= B+N
Hence
Sko1 = ABR_1 mod N
and

Sk—1 < B+N < R+N < 2R

Note the asymmetry between multiplicand A and multiplier B in this bound.
To return a value of M = ABR '+xN which is strictly less than R, we need to

set
M o= Sk_1 if Sp,_1 <R
= Sk =N if Sp_1 >R
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This last adjustment is a possible cause of time variations in modular multiplica-
tions. It might be avoided by performing the subtraction whether it is necessary
or not, and then selecting one of the two results. However, timing variations
may still creep in here because of compiler optimisations or because a different
number of register movements is performed. Be warned!

— We assume that timing or other variations enable all or almost all occurrences
of this final subtraction to be observed.

Notice now that the value of Si_; has very strong dependence on B through
the middle term of the expression for it:

(Sk—2+ar_1B)o-n' mod r
r

Qp—1

B+ N

1
Sk-1 = —Sk2+
T

So one has to expect much more frequent “long” multiplications (that is, mul-
tiplications which involve the final modular adjustment) for larger values of B.
These can be expected particularly as IV approaches R.

2.3 Analytical Approximation

The modular adjustment happens when the random variable o = Sp_1/R is
greater than or equal to 1. Then o can be expressed in terms of other random
variables, namely

where
ak_1+% A
a = N =,
r R
B
B - E )
L, (Sk—24ar_1B)o - n' mod r E i
B r R ' 2rR’
_ Skps _ B+N
v= rR 2rR

are random variables distributed in some way over the intervals (0,1), [0,1),
(0,N/R) and (—1,1) respectively. Let us investigate the distributions that these

random variables might have in the context of exponentiation. For this,
— We assume that A and B are uniformly distributed mod N.

This may not hold for the initial one or two operations of an exponentiation
because of the manner in which the initial input is formed. But, the whole value
of modular exponentiation as an encryption process is its ability to give what
appears to be a uniform, random output mod N no matter what the input has
been. Since 3 is accepted as a suitable encryption exponent, we can reasonably
assume that after two or three multiplicative operations, the inputs to further
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operations in an exponentiation are close enough to being uniform modulo N
for our purposes.
Since the coeflicient

(Sk_z + ak_lB)o -n' mod r
r

<1-1

r

of N/R in the expression for v is sufficiently randomised by modulo r arithmetic,
we can assume that v is independent of a and 8 and is uniformly distributed in
the interval (0, N/R). (It is easy to deduce from earlier multiplications that this
is the case even if B has been shifted up to make the computation easier.) We
will argue that A and B are piecewise uniformly distributed on their intervals
so that the same is true for a and f. Clearly a and / are not independent
for squaring operations since then A = B, but we will justify that they are
essentially independent for almost all of the multiplications.

We will now prove that - is smaller than af+v by a factor of order % so that
its contribution to o may be neglected. Since A is assumed uniformly distributed
mod N, for non-small i, S; can also be expected to be randomly and uniformly
distributed mod N because its residue class is determined by a (large) suffix of
A times B. As S; belongs to the interval [0, B+N) but can achieve both end
points, and the added multiple of IV is essentially random, the most reasonable
expectation is that .S; is piecewise uniformly distributed over the three subinter-
vals [0, B), [B, N) and [N, B+N) with probabilities 7%, + and 5% respectively.
This leads to an average of £ (B+N) for S; and therefore to an expected average
of 0 for ~.

Consider the case when B+N < R. Then S,_1 < B+N ensures that no
final subtraction takes place. Hence, under the uniformity assumption mod N,
the distribution of the output will be identical to that of Sy_; given above. So,
such output provides a mean of 1(B+N), which is less than }R. Otherwise, to
preserve uniformity mod IV, when the subtraction takes place the output distri-
bution will be close to uniform on each of the subranges [0, R—N), [R—N,N)
and [N, R), yielding instead an average of 1R for the output. Thus,

— For a given input B, the output from a modular multiplication is approxi-
mately piecewise uniform on the interval [0, R). For B+ N < R the intervals
of uniformity depend on B. In both cases there are three intervals with
non-zero probabilities -, +

s~ & and $x respectively.

By the above, if modular multiplier outputs are used for the inputs A and
B of a subsequent multiplication, then their average values match or exceed
%(B+N ), which is bounded below by %R. Thus we obtain lower bounds of at
least i for each of « and 3. So, « and 3 are at least 7 times larger than v on
average. Hence, we can ignore the contribution of v providing:

— We assume that the radix r is not too small.

Commonly used bases such as r = 28, 216 and 232 are quite acceptable here.
From the above, we can expect that the statistics for final adjustments in the
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Montgomery multiplication
(A,B) — A®nB = ABR™' mod N

are sufficiently close to the statistics of occurrences of the subtraction in the
product
al +v if af+rv<1

a®6:{aﬁ+u—p if af+v>1

where p = N/R. The radix r is large enough for the discreteness of the original
problem to make only a marginal difference to the calculations if we substi-
tute continuous random variables for the discrete omnes: the relative errors will
invariably be bounded above by at most about % which, by assumption, is small.

2.4 Heuristic Estimates for Multiplications

In order to get some intuition regarding the behaviour of Montgomery multipli-
cation, let us assume, like Schindler [8], that

— « Is uniformly distributed on (0,1)

The previous section clearly shows that this is a simplification. The average
output of the modular multiplier is less than R/2 so that the distribution of
a over [0, R) cannot be uniform. However, providing N is close to R, such an
assumption is only slightly frayed at the edges.

N Ea (1,4)
%a-l-u:l
@14
«@
1

Fig. 1. Computation of P(af+v > 1).

Suppose f has the fixed value f = B/R. (So this is not a squaring.) The
modular adjustment takes place when the point («,r) belongs to the upper
right corner cut from the rectangle [0,1]x[0, N/R] by the line af+v = 1 (see
Figure 1). The probability of this event is the ratio of the area of the triangle to
that of the rectangle, namely

0 if N+B<R
Poue(B) = Plaf+rv 2 1) ~ {% if N+B> R.
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As expected, the reductions occur more frequently the larger B+N is, and, in
particular, they normally occur in a sizeable proportion of all observations.

It is possible to obtain a more precise formula for Py as a function of B
using the piecewise uniform probability function described in the previous sec-
tion. However, this detail is unnecessary for the attack which we describe. It is
sufficient to note that when we select a set of observations involving smaller than
average values of B then we can expect fewer subtractions to occur. This will
happen, paradoxically, if such B are the outputs of previous modular multipli-
cations for which the extra subtraction did not occur (since we saw the average
was £ R after a subtraction, but only (B+N) < 3R otherwise).

2.5 Probability Estimates for Multiplications & Squarings

With the same definitions as before, the probability of modular adjustment in a
Montgomery multiplication of independent arguments is

N/R
Pyt ~ P(af+v >1) / / / p(z,y, z)dzdydz
1-N/R J(1-N/R)/xz J1—zy

where p is the probability density function for ax 8 xv. The randomising effect of
raising to an odd power of at least 3 means that most operands in the multiplica-
tions of an encryption or decryption will be effectively independently distributed
mod N. Hence, assuming this is the case, we could write p as a product of three
functions of a single variable, representing the individual density functions for
«, B and v respectively. As noted above, v is uniform on [0,N/R]. If we simplify
by assuming p,(x) = pg(r) = 1 then

R [t 1 N/R
Poue ® —/ / / dzdydx
N 1-N/RJ(1—-N/R)/xz J1—zy

1 N 1 N ,1
N 1_N/R{§”3‘(1‘§>+§(1‘§) z}dl‘
R N, N, R, N, N
= v UmR)) Umg) m gy g)leal-g)

In the same way, the probability of a modular adjustment in a Montgomery
square is

N/R
Piquare & P(a®+v > 1) / / p(z,y)dydz
VI-N/RJ1

where p is now the probability density function for axv. Since a and v are
independent and v is uniform on [0,N/R], we can re-write this as

N/R
Psquare ~ P(Oé2+V > ]. / / R/NdydCU
VI-N/R )1
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1
N ‘
= R (= — 1+ 2H)ps(z)dz
N J/i—nr R
Once more, we will simplify by assuming that A is uniformly distributed on
[0,R). Then po(z) = 1, so that

2R N
Poquare ~ 1— T <1 - (1—§)3/2>

At the upper end of the range for N, namely N close to R, we see that the
expression for the square is approximately %, while that for the multiplication
is only about %. Hence squares can easily be distinguished from multiplications
with independent arguments by the frequencies of the extra subtractions. Al-
though the density functions become progressively more badly approximated by
1 as IV decreases, the piecewise linear nature of the true density function can be
used to obtain accurate formulae which demonstrate a similar difference for all
values of N in the interval (3R,R).

These formulae display a potentially useful dependence on N which might
be exploited to deduce an approximate value for IV from observing the actual
value of Piquare Or Pmuls. Moreover, if input A can be restricted in some way,
the density function may be modified enough to provide detectable changes in
Psquare or Ppulg-

For example, suppose the multiplicative operation Op; (square or multiply)
generates the input A to the multiplicative operation Ops as part of some process,
such as an exponentiation. Partition a set of observations of the process into two
subsets, one for which Op; applies the extra adjustment and the other for which
it does not. The study in a previous section shows the related density functions
for A are sufficiently different to yield distinct averages for A and so will usually
yield two different values for the frequencies of extra subtractions at the end
of Op,. This enables us to determine which multiplicative operation Op; has
generated the argument used in Ops. If the wrong operation Op; is selected, we
expect a much lower difference between the density functions so that there is
little difference between the observed frequencies for the two subsets.

3 Attacks on Exponentiation with Unknown Modulus

3.1 Unknown Plaintext Attack on the Square & Multiply Method

The standard square and multiply method of exponentiation uses the binary
representation
n
e = Zeﬂj
=0

of the exponent e. It scans the bits of e in descending order and applies a Horner-
style evaluation

X = ((-..((X)2Xen=1)2 )P X )2 X e,
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Multiplication by X¢ is performed conditionally whenever the bit e; is 1.
When computing X€ mod N using modular Montgomery exponentiation we
first replace X by X R mod N using a Montgomery multiplication by R2. After
that, the identity
AR-BR-R™' = ABRmod N

allows us to carry out the multiplication of (Montgomery) powers of X R until
we get X°R mod N. Montgomery multiplying this result by 1, we obtain the
desired power X¢ of X modulo N.

Thus, in this section and the next section all multiplications are understood
as Montgomery multiplications modulo /N. To make notation more transparent,
we write X®pyY instead of XY R™! mod N and assume that the final modular
reduction is done, when required, within the computation of X®xY . Thus all
the intermediate products are smaller than R and satisfy the conditions for the
arguments of the modular Montgomery multiplication as set out in the previous
section.

An immediate corollary from the statistical analysis of the previous section
is that the probabilities of modular adjustments in a Montgomery square and
a Montgomery multiplication are sufficiently large to make the adjustment de-
tectable from only a few power traces, assuming that the timing differences can
be seen. They should be noticeably more frequent in the positions of squares
than those of multiplication. This makes it possible to read directly the bits of
the exponent from the observational data since, except perhaps for the first mul-
tiplication, we can expect the arguments of each multiplication to be sufficiently
independent of each other. So a timing attack is easy to perform on the square
and multiply algorithm using unknown inputs.

3.2 Unknown Plaintext Attack on the m-ary Method

The m-ary method for the exponentiation X — X¢ [3, pp. 441-466] is a gen-
eralisation of the square and multiply method. The exponent e is expressed in

terms of a base m,
n
e = E e;jm’.
=0

The powers X for i = 1,2,...,m—1 are precomputed and stored for multiplying
into the partial result when required. The corresponding evaluation rule is

X¢ = (( . ((Xen)mXen,l)m . _)mXel)mXeol

In the process, whenever the non-zero digit e; = 4 is encountered, the stored
power X' is multiplied in. For example, for m = 4, X, X? and X? are precom-
puted and stored.

The base m is usually a power of 2, so that computation of the m-th power of
the partial result consists of several consecutive squarings. The sliding windows
method [4] employs some recoding of the exponent and, among other things,
performs a squaring when the next exponent bit is 0. This means that the even
powers of X need not be stored. Now we describe our attack.



Walter & Thompson, Distinguishing Exponent Digits 11

— We assume that we do not know the modulus N of the exponentiation, nor
have control or knowledge of plaintext inputs.

Suppose we observe k runs of the exponentiation procedure involving different
unknown plaintexts A = Ay, Ay, ..., Ax. These plaintexts should have been ran-
domly generated in some manner but need not be uniformly distributed mod N.
The initialisation process generates X; = A; R mod N for input into the expo-
nentiation. After this multiplication (by R?), the numbers X; will be more or
less random mod N and belong to the interval [0, R). Hence, after any necessary
modular subtraction, the X; will be distributed fairly uniformly over each of
three sub-intervals according to the value of R? mod N.

As before, assume that we can detect whether or not the modular adjustment
has taken place during the j-th multiplicative operation. If k£ is not too small,
then these observations of essentially independent random encryptions enable
fairly accurate determinations of the probabilities for the jth operation to require
the modular adjustment. The previous section describes how these data can then
be used to distinguish squares from multiplies.

— Now assume also that the initially generated powers of X are used as the B
inputs to the Montgomery modular multiplication process.

Recall that the frequency of extra subtractions depends on the value of the
B input. Because multiplications corresponding to the same exponent digit will
make use of the same multiplier B, the expected frequency of extra subtrac-
tions will be the same for both multiplications whatever the set of observations.
However, the randomness of these multipliers means that for different exponent
digits, the multipliers will generally have different values and individually lead to
different probabilities for an extra subtraction. So, if a subset of observations can
be identified in which the multipliers corresponding to two exponent digit values
have different properties, then potentially this will be reflected in different aver-
age frequencies for the extra subtractions in the multiplications corresponding
to occurrences of these two digits.

In fact, it is possible to determine such observation subsets from any multi-
plication and, in particular, from behaviour during the initialisation stage when
the powers X* (i = 1,2,...,m) are formed. For example, for an exponent digit i,
partition the observations into two subsets according to whether or not the gen-
erating modular multiplication for X¢ included an extra subtraction. We noted
before that the average values for X? must be different for the two sets. This
will result in different frequencies for the extra subtraction when X? is used
as a multiplier in the exponentiation and when it is not. Hence, occurrences of
exponent digit ¢ should stand out. We illustrate this in Section 4.

Suppose this process has already been applied for each ¢ to identify which
exponent, digits are most likely to be equal to i. Any pair of multiplications
during the exponentiation can then be compared in the same way, providing a
cross-check on the initial assignment.

Let M be the total number of multiplicative operations in the pre-computation
and exponentiation combined. Then we could form a kx M observation matrix



12 LNCS Vol. 2020 Springer Verlag, 2001, pp 192-207

Z = (z;;) by writing z;; = 1 if there was a modular adjustment in the j-th opera-
tion (a multiplication or squaring) of the i-th exponentiation, and z;; = 0 other-
wise. We have argued that there are strong dependencies between the columns Z;
and Z; of the matrix Z if the s-th and ¢-th multiplication in the exponentiation
routine are multiplications by the same power Xi6 7 of X; and which correspond
to the same digit e; in the exponent. Moreover, there are also strong depen-
dencies between the column corresponding to the precomputations of X;’ and
X f iT! and the columns Zs, Zy corresponding to digit e;. This, again, allows us
to perform more advanced statistical analysis and deduce effectively the digits
of the exponent from observation of adjustments.

3.3 The Danger of Signing a Single Unblinded Message

In this section we describe how it is possible to attack the exponent of a Mont-
gomery based exponentiation, without the statistical analysis described in sec-
tions 2.3 to 2.5, if the modulus and a single plaintext input are known. This
would be the case if an RSA signature were computed directly without use of
the Chinese Remainder Theorem or appropriate counter-measures. The attack
may be applied to both the square and multiply and m-ary methods although,
for simplicity, only the square and multiply attack is described here.

Consider the single sequence of modular operations, squares and multiplies,
formed by exponentiation of a known input A with secret exponent e and
known modulus N. For any ¢, denote the most significant ¢ bits of e by e(t) =
€n€n_1,---,€n_tt1.Let f(t) denote the number of modular operations (including
precomputations) that result from using e(t) as the exponent and let Z = (z;)
be the observation vector indicating the extra subtractions. (We don’t make use
of any initial elements representing the precomputations.)

A binary chop on e may now proceed as follows. Suppose the ¢t most significant
bits of the exponent are known. We want to establish the value of the next bit.
So far, X = ARmod N and Y = A°‘ R mod N can be computed independently
of the target device. Therefore Y is known and the observation vector Z' = (z})
obtained from this exponentiation with e(t) should match the first f(¢) elements
of Z exactly.

To determine e(t + 1) compute the two Montgomery operations Y := Y®@nY
followed by ¥ = Y®nX. Extend the observation vector Z' = (z}) by adding
the two extra elements associated with these operations. Elements f(¢)+1 should
match in Z and Z' since the same square is being performed. If they don’t match,
a previous bit of e has been incorrectly assigned and backtracking is necessary
to correct it [5]. Assuming the elements match and earlier bits were correctly
assigned, if elements f(t)4+2 do not match in both vectors then certainly e,_; =
0 since different operations must be being performed for the two observation
vectors. Otherwise, we assume e,,_; = 1 and continue.

Backtracking to fix incorrect bits is not expensive, and one simply has to
choose exponent bits which are consistent with the vector Z. The average number
of incorrect bits chosen before an inconsistency is discovered is very small. For
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simplicity, suppose that a subtraction occurs 1 in 4 times for both multiplications
and squares, and that the numbers of subtractions required in two successive
operations are independent. (As noted in section 2, this is close to what happens
in reality.) Then the probability of a match between two elements is about % when
a previous bit has been incorrectly assigned. So the average number of matching
clements after picking an incorrect bit is just (1—2)~* = £. This shows that a
single power trace suffices to determine e completely except perhaps for the final
two or three bits — and they are easily determined by comparing final outputs,
which should equal Y = A° mod N = 1@y (A°R).

We conclude that, as a matter of routine, any document digest should be
combined with an unseen random component prior to signing. In particular [5],
if v is random and d is the public key associated with e, then the attack is
confounded by first replacing A with ARv?, exponentiating as before, and then
dividing by v mod N. However, such a blinding process fails to disrupt the
attacks of §3.1 and §3.2 since they do not depend on knowledge of the inputs.

4 Computer Simulation

We built a computer simulation of 4-ary exponentiation for 384-bit exponents
using 8-, 16- and 32-bit arithmetic and an implementation of Montgomery mul-
tiplication which included the final conditional modular adjustment which has
been assumed throughout. The size of the arithmetic base made no difference to
the results, as one can easily ascertain.

First, a random modulus and exponent were generated and fixed for the set of
observations. Then a random input in the range (0,N) was generated and scaled
by R in the usual way, namely Montgomery-multiplying it by R2. This first
scaling enabled the observations to be partitioned according to whether or not
an extra subtraction occurred. If X was the output from this, the next process
computed and stored X2 and X2. The output data was partitioned according
to whether or not subtractions were observed here too, giving 8 subsets in all.
The exponentiation algorithm then repeatedly squared the running total twice
and, according to the value of the next pair of exponent bits, multiplied in either
X, X% or X3. These three initial powers of X were always chosen as the “B”
argument in the modular multiplication. The A input was the accumulating
partial product and therefore the output from two successive squares. For each
of the 8 subsets, the total number of extra subtractions were recorded for each
multiplicative operation in the exponentiation.

As in Schindler [8], squares showed up clearly from multiplications by their
lower number of subtractions when the full set of all observations (the union of
the 8 subsets) was considered. To complete the determination of the exponent,
it was necessary to establish which of X, X2 or X3 had been used in each
multiplication. Already, a sequence of 4 successive squares indicated the positions
of all the 00 bit pairs in the exponent. The partitioning into 8 subsets resulted
in values for the B inputs which had different average properties. Consequently,
for each subset, different frequencies of extra subtractions were observed. For
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multiplications with the same value of B the proportion of extra reductions in
the subset tended to the same limit, but for those with different values of B,
as expected, the limits were different. Selecting different subsets of the partition
accentuated or diminished these differences. Combining the results from the best
differentiated subsets, it was easy to determine which exponent bit pair had
been used. Not only did the investigation enable the deduction of equivalence
classes of equal digits, but knowledge of which subset was associated with which
combination of subtractions in the initialisation process enabled the digits to
be correctly assigned. Only the first one or two exponent digits were unclear,
and this was because of the lack of independence between the arguments in the
corresponding multiplications.
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Fig. 2. Simulation: Set for Squares with Subtraction
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Fig. 3. Simulation: Subset for Cubes without Subtraction

It turned out that it was most helpful to look at the one third of observations
for which the initial computation of X? generated an extra subtraction and
partition this set according to whether the initial formation of X3 had an extra
subtraction or not. For both subsets, exponent digit 1 = 014 generated the largest
number of extra subtractions, digit 2 = 104 the next largest and digit 3 = 114
the smallest number. So a graph of digit positions marked along a frequency
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axis showed the digit positions clustering around three distinct sites. Switching
between the two sets shifted the relative position of the digit 3 = 11, instances
in relation to the other two, making it possible to distinguish those digits from
the others.

This is illustrated in Figures 2 and 3, where the three thick lines under the
graph bracket together the positions of equal digits. The two sets enable an
immediate, clear, correct association of digits with exponent positions. The il-
lustrations are for 1000 samples when N/R = 0.99. Certainly, a smaller sample
would have sufficed: half this number can almost be done by eye. For N/R = 0.51,
about twice these sample sizes are required for the same degree of resolution.
Notice that these sample sizes are independent of the key size because the prob-
ability of an extra subtraction is independent of the key size.

We did not attempt to perform a thorough analysis of the simulation out-
put to see how few observations were necessary to guarantee that the correct
exponent could be obtained. The digits which were most likely to be incorrectly
assigned were those with subtraction frequencies furthest from the average for
the digit. With sufficient observations to separate most of the non-zero digits into
one of three classes, the potentially incorrect digits were clearly visible. Then,
providing the number of such digits was small enough, every alternative could
have been tested individually using other known data. Of course, in the presence
of noisy readings, many more observations may need to be made, whilst if the
data is clean enough, the results show that, in the absence of counter-measures,
the safe lifetime of the key is too short for practical purposes.

5 Discussion

Any modular multiplication algorithm used in a smart card may suffer a prob-
lematic conditional subtraction of the type considered here in order to keep the
result from overflowing. This is true not just for Montgomery modular multipli-
cation but also for the classical algorithm, where the multiple of the modulus for
subtraction is estimated from the top two or three digits of the inputs. Since the
result is an approximation, a further conditional subtraction may be requested
to obtain a least non-negative result. This subtraction is also open to attack in
the above manner.

If the conditional modular reduction is performed every time and the previous
value or new value is selected as appropriate, the movement of data may still
betray whether or not the reduction is happening. Alternatively, an overflow
bit can be stored and processed like another digit of the operand. This may
cause exactly the timing variation that we should be trying to avoid. If not, then
processing a top digit of 0 or 1 might still be easily recognised.

A general conclusion is therefore that N should be reduced away from a word
boundary or register working length sufficiently for the modular multiplication
algorithm to avoid any overflow to an extra word.
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6 Counter-Measures & Conclusion

A detailed analysis has been presented showing how conditional subtractions
at the end of Montgomery modular multiplications can be used very effectively
to attack an RSA exponentiation with unknown modulus and secret exponent.
The attack does not require knowledge of the plaintext input and can be applied
successfully to the m-ary and sliding windows methods of exponentiation as well
as to the standard square-and-multiply methods. Moreover, it applies in the
same way to many other implementations of modular multiplication.

Computer simulations showed that if the data is clean enough to pick out
each subtraction with high accuracy, then very few encryptions (under 1000)
need to be observed before the exponent can be determined as a member of a
small enough set for all possibilities to be tested individually. Furthermore, this
number is independent of the key length.

There are simple counter-measures to avoid the problem. One of these is to
modify the exponent by adding a random multiple of ¢(IN) before each expo-
nentiation [5] so that the exponent digits are changed every time. This defeats
the necessary averaging process over many observations which is the usual key
to a successful side-channel attack.
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