
FORMAL METHODS IN SOFTWARE

ENGINEERING

Colin D. Walter

Department of Computation

UMIST

PO Box 88

Manhester M60 1QD, UK

www.o.umist.a.uk

1 Introdution

Formal methods in software engineering refers to the use of mathematis to

produe more reliable software, and, if neessary, to prove its orretness. It

is disrete mathematis, and in partiular mathematial logi [2℄, [7℄, whih is

mainly used. As in traditional engineering subjets where it is analogous to

ontinuous mathematis, its use is both in the theoretial foundations of the

subjet, and appliations.

2 De�ning Semantis

On the theoretial side, mathematis is used to make quite preise the meaning

of programming languages [4℄, [9℄. This is alled axiomati semantis, opera-

tional semantis, denotational semantis, operational semantis, et., depending

on the view taken. It should inlude a desription of the model of omputation

expeted on the target mahine and a formal treatment of exeption handling,

as knowledge of both of these is neessary to enable anything to be proved about

programs.

3 Computability & EÆieny

At a deeper level, logi also treats problems of omputability through, for ex-

ample, the study of simple but powerful models of mahines, suh as Turing

mahines [5℄. There are tasks that we would like to be able to do using a om-

puter program, but annot. Of partiular interest here is the impossibility of

onstruting a general purpose theorem prover. More generally, the spae and

time eÆieny of algorithms is studied [5℄ beause only �nite resoures are avail-

able for omputing. Part of program veri�ation involves heking that suÆient

resoures are indeed provided.



2 Conise Enylopedia of Software Engineering

4 Funtional Spei�ation

A number of aspets are involved in produing reliable software but most fre-

quently the funtional properties are investigated �rst. This requires the use of

a spei�ation language to desribe (i) properties required of the input, alled a

pre-ondition, and (ii) relationships required between input and output, alled a

post-ondition. Suh a pair of formulae is alled a funtional spei�ation. Code

an be written and maintained muh more suessfully against suh spei�a-

tions than with informal desriptions. Suh methods should be used as widely

as possible, espeially on ritial omponents of software.

5 Veri�ation

In setions where reliability is paramount, the formally de�ned semantis of the

programming language are then used to prove the software. This requires estab-

lishing that if the input satis�es the pre-ondition properties (i) then, provided

proper termination ours, output satisfying the post-ondition properties (ii)

is obtained. This stage is alled partial veri�ation. Of ourse, when this an

be done, it only establishes that the software is partially orret with respet

to the formal funtional spei�ation. Some problems still remain. First, proper

termination needs to be heked. But in addition there is no guarantee that

the spei�ation itself is orret; higher level desriptions use natural languages,

with all their inherent impreision and ambiguity, so that onnetions with the

informal requirements annot be given exatly, let alone proved.

Normally not all of the software needs to be written or maintained rigorously

against a formal spei�ation, and few aspets of the software need to be proved

formally in the above way. So usually the formal funtional spei�ation whih

is to be onstruted need only reet part of the total funtionality.

6 Spei�ation Languages

A variety of di�erent spei�ation languages has arisen beause of di�ering needs

and situations. The raw ingredients of pre- and post- onditions, whih are writ-

ten in notation similar to that of standard mathematial logi, need to be om-

bined with further information, suh as lists of external variables whose values

may be aessed or updated, or both, in order to make the interfae with the rest

of the world omplete and preise. For imperative programming languages, the

two most widely used notations are those of VDM [6℄ and Z [8℄, [11℄. For delar-

ative languages (funtional and logi programming languages) program sripts

are muh loser to the spei�ations we would like to write, and the appropriate

spei�ation language is obtained by doing little more than adding quanti�a-

tion to the programming language. (This is equivalent to allowing in�nite loops,

whih, of ourse, leads to non-exeutability.) Algebrai spei�ation languages

are used for this [3℄. Distributed and parallel omputing problems may require

temporal logi rather than lassial logi for their spei�ation, and use notations

suh as CSP [6℄, CCS [10℄ or Petri nets.



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 135-138 3

7 Appliation of Logi

Veri�ation is done by using an appropriate logi ontaining axioms and inferene

rules to dedue the post-ondition from the pre-ondition [2℄. For eah onstrut

in the programming language the logi inludes an inferene rule whih de�nes

its semantis. The meaning of the whole onstrut is determined in terms of

the semantis of its onstituent onstruts by means of pre- and post onditions

for eah of the onstruts involved. Appliation of these inferene rules is often

subjet to the satisfation of a property, alled a veri�ation ondition, whih

relates some of the pre- and post- onditions.

8 Veri�ation Conditions

Program provers are expeted automatially to redue a statement that ertain

ode satis�es a given spei�ation to the laim that a partiular logial formula

holds. This is done by a veri�ation ondition generator and depends on the ode

being annotated suÆiently with pre- and post- onditions and formulae alled

loop invariants. The inferene rules for a onstrut do not always enable one to

dedue the pre-and post- onditions needed for all the onstituent parts in order

for the whole onstrut to behave as desired. Those formulae whih annot be

dedued must be supplied. As noted above, some inferene rules also involve a

veri�ation ondition that must be satis�ed. Combining these yields a logial

formula upon whih the orret funtioning of the software depends.

9 Theorem Provers

A program prover must now invoke a theorem prover to show that the remaining

logial formula is always true. G�odel showed in the '30s that there is no algo-

rithm that will always establish the validity or otherwise of any formula. Hene

the theorem prover must either fail oasionally or require human interation.

A number of theorem provers are on the market, and they are the entre of

muh researh, not just beause of their appliation to proving partial orret-

ness of programs, but also beause the an be used to dedue information from

databases. Indeed a Prolog system is really just a theorem prover.

10 Termination and Convergene

The desription of funtional spei�ation and veri�ation above assumed that

the ode eventually terminated with some output rather than beoming stuk

in an in�nite loop or produing an error ondition. Proving the boundedness of

loops involves showing that suessive states at some exit point from the loop

onverge to a state satisfying the exit ondition. When using omplete number

systems suh as the reals R, this may require appliation of the usual de�nitions

in mathematial analysis of ontinuity and onvergene under the appropriate



4 Conise Enylopedia of Software Engineering

topology. When working with �nite sets of the integers, this usually involves a

well-ordering of the suessive states, whih e�etively means assoiating those

states with a stritly dereasing sequene of natural numbers � suh a sequene

must be �nite. All looping onstruts have to be heked, inluding reursion, and

are must be taken to avoid unexpeted iruits in linked data strutures. Careful

programming makes this, and indeed the whole veri�ation proess, easier.

11 Conurrent Programming

The use of a number of proessors in distributed or parallel omputing raises

a number of subtle problems to do with onvergene and termination (see [1℄)

whih do not arise, or are simple, in the sequential ase. Thus, proesses om-

peting for the same resoures ould result in deadlok through mutual exlusion,

ausing some requested outputs not to be omputed. Liveness is the property

that anything that is supposed to happen eventually does so. This is the proper

generalisation for onurrent proessing of heking termination in a sequential

system. Verifying the liveness of a system is part of applying formal methods.

Not only is the omplete deadlok of the system to be avoided, but also the

lokout of any individual proess.

Another important orretness property here is that of safety, whih in this

ontext is the generalisation of partial orretness for a sequential proess. As

well as eah proessor performing orretly with respet to its funtional spei�-

ation there are synhronisation requirements to satisfy, with onsumers having

to wait for input to beome available, and onsuming all input in order.

12 Cheking Resoures

We have dealt with non-termination above, and now turn to improper termina-

tion through the raising of exeptions. This arises from what may be regarded as

run-time type errors. Typially, suÆient resoures may not be available. Thus,

the implementations of the reals or integers or the memory may be assumed

in�nite for the partial veri�ation proess desribed above, whereas in reality

they are not: multipliation of two over-large numbers gives a result outside the

implemented type Integer. However, if we ensure that the model of omputation

used in the partial veri�ation really mathes in all respets the resoures avail-

able on the target mahine, then this kind of type heking is already done as

part of the veri�ation proess above. In pratie, though, it is often useful to

takle these problems separately, espeially if run-time errors are aeptable.

However, what annot be heked at that stage are the properties required

of external objets, suh as �les to whih a program may wish aess. One is

then fored to verify the whole environment, or be ontent with the possibility of

run-time errors from this soure. In partiular, in this wider ontext, it usually

has to be assumed that the software is ompiled orretly, and runs on orret

hardware under a orret operating system. Clearly, veri�ed software an still



D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 135-138 5

produe undesirable output if these assumptions about the orretness of the

environment are not met. Indeed, even the veri�ation proess an be faulty.

It is worth mentioning also that some resoures may vary with time � suh

as hanging diskettes, operating systems, ompilers or even the whole mahine,

available memory, or power to operate. These an vary over anything from very

short to very long periods, and any veri�ation is only valid as long as its pre-

suppositions about those resoures are satis�ed.

13 Cost and Limitations

The brief overview of formal methods here shows that some of it requires onsid-

erable expertise although muh is straightforward, some an be mehanised but

muh annot, and it is essentially impossible to guarantee expeted behaviour

without verifying the omplete system inluding all other software and hardware.

Formal methods are valuable; the more that is heked the greater on�dene

there is in the produt. However, most systems will be very muh larger than

an be ompletely veri�ed in a reasonable time, and there are so many soures of

error in veri�ation, just as in writing software, that testing will always be part

of the validation proess. Formal methods provide further tools for inreasing

the reliability of software and hardware, and have the potential for providing

everything that is required, although suh thoroughness is only at great ost.

They an be applied to investigate as many properties as desired, beoming

most ost-e�etive for safety-ritial requirements, for �nanial aspets and for

heavily used items. Assuming the formal spei�ation is orret, it is true that

almost without limit, more and more money an be spent to obtain an ever more

reliable produt through formal methods.

14 Related Topis

There are several losely related items in this volume, most of whih provide

greater width than has been possible here, desribing other areas where formal-

ity is required to guarantee orretness against an all-inlusive spei�ation. In

partiular, the reader is referred to the artiles on

Software Safety and Seurity

Software Spei�ation & Veri�ation

Software: The Role of Validation

Spei�ation Languages

System Spei�ation Languages for Hardware Desription

Translation, Veri�ation and Synthesis: A Comparison

Validation and Veri�ation of Real Time Software

Of these Software Spei�ation & Veri�ation provides greater depth by expand-

ing some of the detail in this artile. It inludes examples of formally spei�ed



6 Conise Enylopedia of Software Engineering

software using a ouple of spei�ation languages, and the axiomati semantis

of one or two program onstruts. Hardware desription languages are usually

suÆiently similar to programming languages for muh of the veri�ation proess

to be done as for software. If the desribed hardware is then orretly translated

automatially into iruit diagrams, orret hardware should result.

Referenes

1. M. Ben-Ari, Priniples of Conurrent Programming, Prentie/Hall International,

1982, ISBN 0-13-701078-8.

2. R. Dowsing, V. Rayward-Smith, C.D. Walter, A First Course in Formal Logi

and its Appliations in Computer Siene, Blakwell Sienti�, 1986, ISBN 0-632-

01308-7.

3. H.Ehrig, B.Mahr, Fundamentals of Algebrai Spei�ation Vols 1,2, Springer-

Verlag, 1985, ISBN 3-540-13718-1, and 1990, ISBN 3-540-51799-5.

4. M.J.C. Gordon, The denotational Desription of Programming Languages,

Springer-Verlag, 1979, ISBN 3-540-90433-6.

5. D. Harel, Algorithmis � the Spirit of Computing, Addison-Wesley, 1987, ISBN

0-201-19240-3.

6. C. A. R. Hoare, Communiating Sequential Proesses, Prentie/Hall International,

1985, ISBN 0-13-153271-5.

7. D. C. Ine, An Introdution to Disrete Mathematis and Formal System Spei�-

ation, Oxford University Press, 1988, ISBN 0-19-859664-2.

8. C.B. Jones, Systemati Software Development using VDM, (2nd Edition) Pren-

tie/Hall International, 1990, ISBN 0-13-880733-7.

9. E.G.Manes, M.A.Arbib, Algebrai Approahes to Program Semantis, Springer-

Verlag, 1986, ISBN 3-540-96324-3.

10. R. Milner, Communiation and Conurreny, Prentie/Hall International, 1989,

ISBN 0-13-115007-3.

11. M. Spivey, The Z Notation � A Referene Manual, Prentie Hall, 1989.


